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Abstract. A new orthometric correction (OC) formula is
presented and tested with various mean gravity reduc-
tion methods using leveling, gravity, elevation, and
density data. For mean gravity computations, the
Helmert method, a modified Helmert method with
variable density and gravity anomaly gradient, and a
modified Mader method were used. An improved
method of terrain correction computation based on
Gaussian quadrature is used in the modified Mader
method. These methods produce different results and
yield OCs that are greater than 10 cm between adjacent
benchmarks (separated by �2 km) at elevations over
3000 m. Applying OC reduces misclosures at closed
leveling circuits and improves the results of leveling
network adjustments. Variable density yields variation
of OC at millimeter level everywhere, while gravity
anomaly gradient introduces variation of OC of greater
than 10 cm at higher elevations, suggesting that these
quantities must be considered in OC. The modified
Mader method is recommended for computing OC.

Keywords: Gravity anomaly gradient – Geoid –
Orthometric correction – Mean gravity – Terrain
correction

1 Introduction

The orthometric height (OH) can be obtained by spirit
leveling (see e.g. Heiskanen and Moritz 1967; Moffit and
Bossler 1998). However, height differences from leveling
must be corrected for non-parallel equipotential surfaces
using the orthometric correction (OC) in order to obtain
OHs (Heiskanen and Moritz 1967, Chap. 4). Recent
work on the OC can be found in, for example, Strang van
Hees (1992), Kao et al. (2000) and Allister and
Featherstone (2001). Dennis and Featherstone (2003)

discuss various height systems and their advantages and
disadvantages in practical applications. Rigorous OC
computation is expensive because it requires observed
gravity values at benchmarks along the leveling route.
Also, the conventional thought is that the OC is small,
especially in areas of low elevation, so it can be neglected
in most cases. As already mentioned in Heiskanen and
Moritz (1967), different methods for the OC may yield
different OHs and the differences can reach several
centimeters. This implies that OHs from leveling may
mismatch the true orthometric heights by several centi-
meters if the OC computation is not sufficiently accurate.

It is common practice to evaluate the precision of a
gravimetric geoid model by comparing modeled geoidal
height with ‘geoidal’ heights computed from the differ-
ence between GPS-determined ellipsoidal heights and
the ‘orthometric heights’ obtained from leveling. As just
stated, OHs from leveling could be in error by several
centimeters if the OC is not applied or is not properly
applied. Recent progress in both theory and numerical
technique has greatly improved the precision of geoid
modeling, and a sub-centimeter accuracy appears within
reach (see e.g. Sansò and Rummel 1997). Thus, incorrect
OHs from leveling will make such geoid model evalua-
tion unreliable. Furthermore, use of incorrect OHs for
geoid model evaluation will be very likely to occur over
a region with a rugged terrain and high mountains, for
example the Rocky Mountains in North America, the
Alps in Europe, and the Central Range in Taiwan (see
below). In view of the popular use of GPS and geoid
modeling for OH determination today, the subject of
OC deserves more attention.

One approximation of the OH is used in Taiwan, and
in earlier vertical networks normal gravity was used to
convert leveling heights to OHs. In a recent effort by the
Ministry of the Interior of Taiwan to completely revise
Taiwan’s vertical datum, leveling and gravity data have
been collected at Taiwan’s first-order benchmarks. Ele-
vation, density, and gravity data are also available from
other sources, for example the Institute of Agricultural
and Forestry Aerial Survey, and the Institute of Earth
Sciences, Academia Sinica (Yen et al. 1990). In thisCorrespondence to: C. Hwang
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paper, these data will be used to investigate the theories
and methods of OC, for which Taiwan is an ideal testing
area because of its rugged terrain and complex geolog-
ical structure. In the following sections, a new OC for-
mula will be derived and results of OC computations
using various gravity reduction methods over Taiwan
will be presented.

2 Theories

2.1 Orthometric height and orthometric correction

The OH is the height above the geoid measured along
the curved plumb line. Leveling alone will yield a
geometric height difference between two consecutive
benchmarks, which in turn yields an OH difference by
applying the OC (Heiskanen and Moritz 1967, Chap. 4).
Thus the OC plays a critical role in obtaining OHs from
leveling. A new OC formula is derived below. By
definition, the OH (H) at a benchmark is the ratio
between its geopotential number (C) and its mean
gravity along the plumb line (�gg) between the surface and
the geoid. Thus, for two benchmarks A and B

HA ¼
CA

�ggA

HB ¼
CB

�ggB

ð1Þ

The difference between HA and HB is

DHAB ¼ HB � HA

¼ CB

�ggB
� CA

�ggA

¼ 1

�ggB
CB � CAð Þ þ CA

gB
� CA

�ggA

¼ 1

�ggB

ZB

A

g dnþ CA

�ggB
� CA

�ggA
ð2Þ

where dn is the differential geometric increment of height
and g dn ¼ dC, with g being surface gravity. Furthermore
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�ggA

�ggB
� 1

� �
ð3Þ
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dni þ

1
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gi � �ggBð Þdni

¼ DnAB þ
1

�ggB

Xk

i¼1
gi � �ggBð Þdni ð4Þ

where DnAB is the sum of all geometric height differences
between A and B obtained directly from leveling, gi is
surface gravity value at leveling set i, dni is the geometric
height difference at leveling set i, and k is the number of
sets. A leveling set may span up to 100 m horizontal
distance between backsight and foresight, depending on
the terrain and the level used (see e.g. Moffit and Bossler
1998). In Eq. (4), the two integrals have been approx-
imated by finite, discrete sums. Substituting Eqs. (3) and
(4) into Eq. (2) yields

DHAB ¼ DnAB þ
1

�ggB

Xk

i¼1
gi � �ggBð Þdni þ HA

�ggA

�ggB
� 1

� �
ð5Þ

Thus an OC formula is obtained as

OCAB ¼
1

�ggB

Xk

i¼1
gi � �ggBð Þdni þ HA

�ggA

�ggB
� 1

� �
: ð6Þ

This formula is to be compared with the formula given
by Heiskanen and Moritz (1967, p. 168)

OCHM
AB ¼

Xk

i¼1

gi � c0
c0

dni þ
�ggA � c0

c0
HA �

�ggB � c0
c0

HB ð7Þ

where c0 is normal gravity at some latitude (usually
45�N or 45�S). If A is sufficiently close to B in horizontal
distance (below 2 km), Eq. (6) can be simplified as
follows. Within a short distance, gravity can be assumed
to be a linear function of height, as well as horizontal
distance. Then, Eq. (4) gives

1

�ggB

ZA

B

g� �ggBð Þdn ¼ 1

�ggB

gA þ gB

2
� �ggB

� �
DnAB ð8Þ

Thus, a simplified formula for the OC is

OCAB ¼
1

�ggB

gA þ gB

2
� �ggB

� �
DnAB þ HA

�ggA

�ggB
� 1

� �
ð9Þ

where gA and gB are the surface gravity values at A and
B. From Eq. (9) and the assumptions used to derive it,
gravity values need only be measured at the two adjacent
benchmarks (A and B in this case), without knowing the
gravity values at the k leveling sets between them. As an
example, Fig. 1 shows the relationship between gravity
and elevation collected at 32 leveling sets along a 2-km-
long leveling line in central Taiwan. The mean elevation
here is approximately 1800 m and the height difference
between the start and end benchmarks is approximately
100 m. In this case, the gravity values are almost linearly
correlated with elevation. For this particular leveling
line, the OC was computed using Eq. (9) and the more
rigorous Eq. (6). The difference in OC is less than
0.1 mm. Thus, the small perturbation from linearity
should have little effect on the accuracy of the approx-
imation in Eq. (9).

In Eq. (9) it remains to determine the mean gravity
values along the plumb lines at A and B. A simple
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method of mean gravity computation is based on the
Poincaré–Prey reduction, where the topographic effect
of only the Bouguer plate is considered. This assumes
that the vertical gravity gradient and density are con-
stant along the plumb line. By setting Q on the geoid in
Eq. (4–2) of Heiskanen and Moritz (1967, p. 164) and
then taking the average value of the surface gravity and
the gravity on the geoid, the mean gravity along the
plumb line can be computed by (cf. Heiskanen and
Moritz 1967, p. 167)

�gg ¼ g� 1

2

@g
@h
þ 2pKq

� �
H ð10Þ

where g is surface gravity, @g=@h is free-air gravity
gradient, q is rock density, K is the gravitational
constant, and H is height (here H is the approximate
OH from leveling without applying the OC). The free-air
gravity gradient can be split into the normal gravity
gradient and gravity anomaly gradient

@g
@h
¼ @c
@h
þ @Dg
@H

ð11Þ

where c and Dg are normal gravity and the gravity
anomaly, respectively. The linear normal gradient is
approximately )0.3086 mGal m)1. If the gravity anom-
aly gradient is neglected and the rock density is
assumed to be 2.67 g cm)3, then an approximate
formula for computing mean gravity along the plumb
line is

�gg ¼ gþ 0:0424H : ð12Þ

The use of mean gravity computed by Eq. (12) in Eq. (1)
yields the Helmert OH.

2.2 Error due to density variation and gravity anomaly
gradient

As will be shown below, the gravity anomaly gradient
over Taiwan can be very large in mountainous areas, so
it cannot be neglected. Vanı́ček et al. (2000) reported
that use of the gravity anomaly gradient will change
OHs by up to a few decimeters over the Canadian
Rocky Mountains. Also, rock density over Taiwan is
variable and cannot be assumed to be constant.
Therefore, in this paper, it will be investigated how
density variations and gravity anomaly gradients affect
the result of OC. From Eq. (10), variation of rock
density (dq) gives rise to variation of mean gravity along
the plumb line (d�gg) as

d�gg ¼ �2pKHdq ð13Þ

which, based on Eq. (9), in turn introduces a variation in
the OC as

dOCd
AB ¼

@OCAB

@�ggA
d�ggA þ

@OCAB

@�ggB
d�ggB

¼ 2pK
�gg2

B

gA þ gB

2
ðHB � HAÞHBdqB

h

þ �ggAHAHBdqB � �ggBH2
AdqA

i
ð14Þ

Furthermore, the gravity anomaly gradient introduces a
variation of mean gravity along the plumb line as

d�gg ¼ �1=2DgH H ð15Þ

where DgH ¼ @Dg=@H . Using a similar derivation to
Eq. (14), the variation in the OC due to the gravity
anomaly gradient is

dOCg
AB ¼

1

2�gg2
B

h gA þ gB

2
ðHB � HAÞHBDghB

þ �ggAHAHBDghB � �ggBH2
ADghA

i
ð16Þ

Since in our first-order leveling network any two
adjacent benchmarks are only about 2 km apart, the
approximations DghA � DghB and �ggA � �ggB may be
employed in Eq. (16). Then

dOCg
AB ¼

DghB

2�gg2
B

gA þ gB

2
HB þ �ggBHA

� �
ðHB � HAÞ ð17Þ

The gravity anomaly gradient at point p can be
computed by (Heiskanen and Moritz 1967)

@Dg
@h
¼ R2

2p

Z Z

r

Dg� DgP

l30
dr� 2

R
DgP ð18Þ

where R is the Earth’s mean radius (� 6371 km), DgP is
the gravity anomaly at p, Dg is the gravity anomaly on

Fig. 1. Relationship between elevation and gravity along a 2-km-long
leveling line at approximately longitude 121�903400 and latitude
24�205900. A mean value of 978 469.308 mGal is removed from the
gravity values
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the unit sphere, r is the unit sphere, dr is the differential
element of area ð¼ cos/ d/ dk, with / and k being
latitude and longitude) and l0 ¼ 2R sinðw=2Þ, with w
being the spherical distance. The kernel function l0 in
Eq. (18) becomes singular when w ¼ 0, thus the
integration part in Eq. (18) can be split into two parts
to avoid this singularity, i.e. symbolically

@Dg
@h
¼ R2

2p

Zr0

0

Dg�DgP

l30
drþR2

2p

Zr

r0

Dg�DgP

l30
dr� 2

R
DgP

¼AþBþC ð19Þ

where r0 is the innermost zone (see later discussion). It
turns out that the C term is very small compared to
the A and B terms, so it can be neglected. For
example, in the extreme case of Dgp ¼ 370 mGal at a
benchmark of elevation Hp ¼ 3500 m near the highest
spot in the Central Range of Taiwan, the C term will
contribute CHp=2 ¼ 0:2 mGal to the mean gravity [see
Eqs. (10) and (11)]. The A term is the innermost-zone
effect and can be computed by (Heiskanen and Moritz
1967, p. 122)

A ¼ s0
4
ðgxx þ gyyÞ ð20Þ

where s0 is the radius of the innermost zone, which can
be approximated as s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxDy=pÞ

p
, with Dx and Dy

being the planar grid intervals in the east and north
directions, and gxx and gyy the second derivatives of the
gravity anomaly along the east and north directions. In
the practical computations of the innermost-zone
effect, a quadratic polynomial is least-squares (LS)
fitted to the gridded gravity anomalies and then gxx
and gyy are obtained from the second derivatives of the
polynomial.

The B term in Eq. (19) can be computed by Gaussian
quadrature (see e.g. Gerald and Wheatley 1994). Let the
B term be expressed as

B ¼ R2

2p

Zr

r0

Dg� DgP

l30
dr

¼ 1

16pR

Z

k

Z

t

Dg� DgP

sin3 w
2

dt dk

� 1

16pR

Ztmax

tmin

Zkmax

kmin

gðt; kÞ dk

2
64

3
75dt

¼ 1

16pR

Ztmax

tmin

kðtÞ dt ð21Þ

where kmin and kmax are the longitudes of the western and
eastern borders of the computational area, and

tmin ¼ sinð/minÞ; tmax ¼ sinð/maxÞ, with /min and /max

being the latitudes of the southern and northern borders.
Extending the one-dimensional (1-D) Gaussian quadra-
ture formula to the two-dimensional (2-D) case yields

B �
XM
i¼1

wt
ikðtiÞ ð22Þ

with

kðtÞ ¼
Zkmax

kmin

gðt; kÞ dk �
XN

i¼1
wk

i gðt; kiÞ ð23Þ

where wk
i and wt

i are weighting coefficients, and ti and ki
are the nodal coordinates along latitude and longitude
for the domains ½kmin; kmax� and ½tmin; tmax�, and for the
chosen M and N, which are the numbers of weighting
coefficients and nodes. In the computations, M and N
are chosen to be the numbers of grid points along
latitude and longitude, respectively. This choice of M
and N yields the highest possible integration precision
for the given grid. Since the gravity anomalies are given
on a regular grid in latitude and longitude, interpola-
tions using six-degree polynomials were made to obtain
the function values kðtiÞ and gðt; kiÞ at the unevenly
spaced nodes ti and ki. Use of a degree higher than six
does not increase the interpolation accuracy. The
program GAULEG, provided in Press et al. (1989),
was used for the computations of weighting coefficients
and nodal coordinates. Compared to other numerical
integration methods such as Simpson’s method, Gauss-
ian quadrature requires less functional evaluations and
can achieve high precision, provided that the number of
weighting coefficients is sufficiently large (this will also
depend on the frequency content of the function to be
integrated); see also Gerald and Wheatley (1994) for
discussions of the accuracy of Gaussian quadrature and
other numerical integration techniques.

2.3 A modified Mader method of gravity reduction

From the definition of OH in Eq. (1), it is clear that the
mean gravity along the plumb line is an important
quantity that should be computed with great care.
According to Dennis and Featherstone (2003) and
Heiskanen and Moritz (1967), the Mader method
(Mader 1954) yields a more realistic mean gravity than
the Poincaré–Prey reduction method because the former
takes into account the terrain effect. In this paper, the
Mader method is modified to consider density variations
and to use rigorous terrain corrections (TCs) and gravity
gradients. Letting the surface gravity value be gp, the
procedure for OC computation for the modified Mader
method is as follows (see Fig. 2).

Step 1. Remove the topographic mass above the geoid

g0p ¼ gp þ tcsurface � 2pKqHp ð24Þ
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Step 2. Apply the free-air reduction to surface gravity to
approximately obtain gravity on the geoid

gp0 ¼ g0p �
@g
@h

Hp ð25Þ

Step 3. Restore the topographic mass above the geoid

g0p0 ¼ gp0 � 2pKqHp � tcsea ð26Þ

Step 4. Compute the mean gravity (as an approximation
of the true mean along the plumb line)

�ggp ¼ ðgp þ g0p0Þ=2 ð27Þ

The purpose of Step 1 is to make the ‘free-air
reduction’ in Step 2 close to reality. Step 1 is
implemented by first computing the TC to the surface
gravity, tcsurface, and then removing the gravity effect
due to the Bouguer plate. In Step 2, the vertical gravity
gradient is the gradient of g0p, which is the sum of the
gradient of normal gravity and the gradient of the
Bouguer anomaly (Heiskanen and Moritz 1967). The
vertical gradient of the Bouguer anomaly can be
computed using Eq. (19). In Step 3, the gravity effect
of the mass above the geoid is the sum of the effect of
the Bouguer plate and the effects of the missing mass
above the level at p and the redundant mass below the
level at p (the latter two effects are collected in the tcsea
term). In Step 4, it is again assumed that gravity is a
linear function of height, so that the mean gravity is
the arithmetic average of the gravity values at the
surface and on the geoid.

In Steps 1 and 3, two kinds of ‘terrain correction’
need to be computed, one at the surface and the other
at sea level. The TC at the surface, tcsurface, is the
conventional TC seen in standard textbooks such as
Heiskanen and Moritz (1967) and Torge (1989).
Referring to Fig. 2, the potential at (xp; yp; s) due to
the mass above and under the level of Hp is

V ¼ K
Z

x

Z

y

ZH

z¼Hp

qðx; yÞ dx dy dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2 þ ðy � ypÞ2 þ ðz� sÞ2

q :

ð28Þ

Then the TC at a surface point p is

tcsurface ¼
@V
@s

� �
s¼Hp

��

¼K
Z

x

Z

y

ZH

z¼Hp

qðx;yÞðz�HpÞ dx dy dz

½ðx� xpÞ2þðy� ypÞ2þðz�HpÞ2�3=2

¼K
Z

x

Z

y

qðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2þðy� ypÞ2

q
2
64

� qðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2þðy� ypÞ2þðH �HpÞ2

q
3
75dxdy

¼K
Z

x

Z
y

f ðx;yÞdxdy ð29Þ

where density q and height H (can be OH without OC)
are functions of x; y. Since f ðx; yÞ is always positive, the
TC at the Earth’s surface is always positive. Further-
more, the TC at the sea level point corresponding to p is

tcsea¼
@V
@s

� �
s¼0j ¼K

Z

x

Z

y

ZH

z¼Hp

qðx;yÞzdxdy dz

½ðx�xpÞ2þðy�ypÞ2þz2�3=2

¼K
Z

x

Z

y

qðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xpÞ2þðy�ypÞ2þh2

p

q
2
64

� qðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xpÞ2þðy�ypÞ2þH2

q
3
75dxdy

¼K
Z

x

Z

y

gðx;yÞdxdy: ð30Þ

Depending on Hp, the function gðx; yÞ can be positive or
negative. Thus, unlike tcsurface, tcsea can be positive or
negative. For example, if on average Hp is higher than
the surrounding terrain, then tcsea will be negative.
Linear approximations for Eq. (29), such as those given
in Moritz (1968) and Schwarz et al. (1990), enable the
use of fast Fourier transform (FFT) for efficient
computation, but may yield a poor accuracy in the case
of large terrain slope (Forsberg 1984; Schwarz et al.
1990; Tsoulis 2001). In order to achieve the highest
possible precision, in this paper the Gaussian quadrature
as used in Eq. (21) is used to compute the required TCs.
Gaussian quadrature computes TC on a pointwise base
rather than on a gridwise base as in FFT, so it will need
only a little computation time if only few data points are
sought. However, in the case of TC for a grid consisting
of a large number of grid points, Gaussian quadrature
will be slower than FFT. This is a minor problem given
today’s computing power.

Fig. 2. Geometry for terrain corrections and reduction of mean
gravity
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3 Data

3.1 Leveling data

The spirit leveling data were collected in 2000 and 2001
on 1010 first-order benchmarks in a multi-year project to
set up a new vertical control network for Taiwan. The
total length of the leveling lines is about 2000 km.
Figure 3 shows the distribution of these benchmarks,
together with topography (see below). The leveling lines
are situated in different terrains, ranging from plains and
foothills in the western and eastern coastal areas to high
mountains in the Central Range. In particular, several
benchmarks are situated about 3500 m above sea level on
a leveling line crossing the Central Range [the southern
portion of Circuit (a) in Fig. 3]. The geometric height
differences were measured by Zeiss DiNi digital levels,
along with precise leveling rods graduated on ivar strips.
In this measuring campaign, it was required that the
difference from forward and backward leveling between
two benchmarks must be less than 2.5

ffiffiffiffi
K
p

mm, where K
is the distance in kilometers between two adjacent
benchmarks. Systematic errors due to collimation error,
refraction of the atmosphere, the Earth’s curvature, and
a thermal effect on leveling rods have been corrected as
best as possible. Approximated orthometric heights (i.e.
without applying OC), which will be used in the OC
computations, at these 1010 benchmarks are obtained by
LS adjustment by fixing the height at Benchmark K999
to 5.6156 m at Keelung Harbor. These geometric height
differences are to be corrected for OC.

3.2 Elevation data

A total of 6 421 075 point elevations were obtained from
the Agricultural and Forestry Aerial Survey Institute,

Taiwan, to construct regular grids for the terrain
correction. The spatial resolution of these point data is
about 80 m. As a first step, the coordinates of the data
points were transformed to a geocentric system using the
transformation parameters provided by the Ministry of
the Interior, Taiwan. The GMT (Wessel and Smith 1995)
routine ‘surface’ was then used to interpolate elevations
onto regular grids with a tension factor of 0.25. A 300 � 300

grid (equivalent to a 90-m spatial resolution) and a
3000 � 3000 grid (equivalent to a 1-km spatial resolution)
were then constructed. The first versions of elevation
grids from ‘surface’ contained serious edge effects along
the coastlines. Therefore, for the revised versions the
GMT routine ‘grdlandmask’ was used to generate a land/
ocean mask grid, which was then used to constrain the
elevations at sea (i.e. to set zeros at sea). Figure. 3 shows
a shaded-relief map based on the 300 � 300 elevation grid.

3.3 Gravity data

Relative gravity measurements were also collected on
the 1010 first-order benchmarks shown in Fig. 3. An
adjustment of these gravity measurements was carried
out using the method described in Hwang et al. (2002),
yielding an averaged standard deviation of 0.07 mGal
for the adjusted point gravity values. These gravity
values at benchmarks are the most important quantities
for OC computations. In addition, three sets of point
gravity data on land and one set of marine gravity data
around Taiwan from Hsu et al. (1998) were also
collected and compiled. The compilation involved
coordinate transformation, outlier removal and use of
a common normal gravity formula. Figure 4 shows the
distribution of all gravity data. An empirical covariance
function of the free-air gravity anomaly around Taiwan
was computed. As a result of the rugged terrain and high
mountains, the variance of gravity anomaly around
Taiwan is 7736 mGal2. The correlation length of the
covariance function is approximately 26 km. Based on
this empirical covariance function, gravity anomalies
were computed on a 10 � 10 grid using LS collocation
(Moritz 1980). Figure 4 also shows contours of the free-
air gravity anomaly. Compared to the gravity anomaly
grids in Hwang (1997) and in Yen et al. (1990), the
current grid has a higher spatial resolution and contains
gravity features not seen before. This new gravity
anomaly grid will be used to compute the gravity
anomaly gradients.

3.4 Density data

The density data used in this study were provided by
Chiou (1997) and are available on a 50 � 50 grid. To form
this density grid, Chiou (1997) first obtained the
distribution of rocks over Taiwan. By associating each
type of rock with an average density and using a
statistical technique, Chiou (1997) then derived the
50 � 50 density grid. Chiou’s density model has been
validated by a density model from seismology data.

Fig. 3. A shaded-relief map of elevation over Taiwan (in km). Solid
dots represent the 1010 first-order leveling benchmarks. (a), (b), (c),
and (d) indicate four closed leveling circuits. K999 is the origin of
Taiwan’s vertical control network
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Figure 5 shows a contour map of density over Taiwan.
In the western coastal plains and the Longitudinal
Valley in eastern Taiwan, where sediments prevail, the
densities are relatively low and are mostly below
2.0 g cm)3. In the foothills to the west and east of the
Central Range, the densities range from 2.0 to
2.5 g cm)3. In the eastern part of the Central Range,
the density is highest and can reach 3.08 g cm)3. The
averaged density over Taiwan is 2.37 g cm)3, which
differs by 12% from the commonly used value of
2.67 g cm)3.

4 Results

4.1 Orthometric corrections from different
reductions of mean gravity

OC was computed for the geometric height differences
between adjacent benchmarks for the 1010 first-order

benchmarks (Fig. 3) using different reductions of mean
gravity, all based on Eq. (9). The following five methods
were used to compute mean gravity.

Method 1. Helmert method (with a constant density of
2.67 g cm)3).
Method 2. Helmert method with variable density only.
Method 3. Helmert method using gravity anomaly gra-
dient only.
Method 4. Helmert method using both variable density
and gravity anomaly gradient.
Method 5. Modified Mader method.

The resulting mean gravity values are called G1, G2, G3,
G4, and G5, and the corresponding OCs are called OC1,
OC2, OC3, OC4, and OC5. Figure 6 shows OC1, OC4,
and OC5. Figure 7 shows their differences with respect
to location and height. Table 1 shows the statistics for
OC. The OC was also computed using Eq. (7) (the
Heiskanen and Moritz formula) with the same mean
gravity as used in Method 1, and it was found that the
maximum and standard deviation differences between
the OC from Eq. (7) and those from Method 1 are 0.77
and 0.07 mm, respectively. Thus, the new formula in
Eq. (6) produces similar results to that from Eq. (7) for a
maximum height of 3500 m.

In general, for all methods, the OC is only few mil-
limeters over plains and foothills, and is relatively large
over the Central Range. In terms of standard deviation,
Method 5 produces the largest OC (Table 1). Two
groups of large OC occur around the terrain peaks of
Circuits (a) and (d) (see Fig. 3) across the Central
Range. Here the largest OC between two adjacent
benchmarks is greater than 10 cm. The OCs in these two
groups are nearly anti-symmetric with respect to the
terrain peaks. However, it can be shown that, at high
elevations, the OC is dominated by the height difference
between the two adjacent benchmarks, (see also Kao
et al. 2000). Since the elevation does not monotonically
increase or monotonically decrease along a leveling line,

Fig. 4. Distribution of all gravity data (top) and contours (bottom) of
free-air gravity anomalies from a 10 � 10 grid. The contour interval is
50 mGal

Fig. 5. Contours of rock density over Taiwan (from Chiou 1997). The
contour interval is 0.1 g cm)3
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the sign of height difference may alternate in any pos-
sible manner. This alternation of the sign of height dif-
ference results in large positive and negative OCs side by
side, as seen in Figs. 6 and 7.

The differences in OC from the different methods, as
shown in Fig. 7, are small at low elevations and large at
high elevations. The largest differences for OC4–OC1,
OC5–OC1 and OC5–OC2 (see Fig. 7) are approximately
7, 14, and 18 cm, respectively. These large differences in
the OCs are due to the large differences in the mean
gravity used. For example, at elevation of 3 km a dif-

ference of 50 mGal in mean gravity will create a differ-
ence of 15 cm in orthometric height (Heiskanen and
Moritz 1967, p. 169). Other analyses are described in the
following sections.

4.2 Effects of density variation and gravity anomaly
gradient on OC computation

From Table 1 it can be seen that the effect of density
variation on the OC is small everywhere (maximum
3 mm at the peak of the Central Range). However,

Fig. 6. Orthometric corrections fromMethods a 1, b 4, and c 5.Dark-
gray and light-gray bars indicate positive and negative OC values,
respectively. Solid lines are contours of elevation at an interval of
500 m

Fig. 7. Difference between a OC4 and OC1, b OC5 and OC1, and c

OC5 and OC4. Dark-gray and light-gray bars indicate positive and
negative differences, respectively. Solid lines are contours of elevation
at an interval of 500 m
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considering the stringent accuracy requirement of the
first-order leveling and the fact that the effect is
systematic, density variation cannot be neglected in
the OC. In Table 1, free-air gravity anomalies are used
to compute the gravity anomaly gradients. The effect of
the gravity anomaly gradient on the OC is small, but
significant, at low elevations, and is large at high
elevations. Table 2 shows the statistics of errors in OC
if density variation and gravity anomaly gradient are
neglected [see Eqs. (14) and (16)]. Thus the difference
between OC5 and OC1 in Fig. 7b is largely due to the
gravity anomaly gradient. Figure 8 shows contours of
gravity anomaly gradient and error in gravity reduction
if gravity anomaly gradient is neglected (note: for the
latter, half of the free-air anomaly error in Fig. 8 will
be the mean gravity error). As expected, large gravity
anomaly gradients exist in the Central Range, with the
maximum reaching 0.02 mGal m)1. Here gravity
anomaly gradients introduce large errors in free-air
gravity anomaly and mean gravity. As an example, at
an elevation of 3 km a gravity anomaly gradient of
0.02 mGal m)1 will introduce an error of 30 mGal in
mean gravity [see Eq. (10)], and an error of 60 mGal in
the free-air gravity anomaly. The gravity anomaly
gradients in plains and foothills are relatively small
(typically 0.005 mGal m-1). Thus, for example, at an
elevation of 500 m a gravity anomaly gradient of 0.005
mGal m)1 will introduce an error of 1.25 mGal in
mean gravity and 2.5 mGal in free-air gravity anomaly,
which amounts to a sub-millimeter error in OC.

The orthometric height at a benchmark, Hp, is ob-
tained by adding the height at the origin of the vertical
control network, H0, and the cumulative orthometric
height differences between the origin and this bench-
mark, i.e.

Hp ¼ H0 þ
X

OHi ð31Þ

where OHi is the orthometric height difference between
two adjacent benchmarks. Thus the error of Hp will
come entirely from the cumulative error of OHi [Here
the shift in H0 due to the world vertical datum definition
(e.g. Rapp and Balasubramania 1992) will not be
discussed]. Figure 9 shows the cumulative errors along

Table 1. Statistics of ortho-
metric corrections (in mm)
between adjacent benchmarks
(separated by � 2 km) from
different methods of mean
gravity reduction

Method Maximum Minimum Mean Standard
deviation

Method 1 (Helmert) 69.01 )86.53 )0.04 8.68
Method 2 (Helmert with
variable density)

70.79 )87.71 )0.04 8.74

Method 3 (Helmert with
gravity anomaly gradient)

137.71 )118.38 )0.04 11.84

Method 4 (Helmert with variable
density and gravity anomaly gradient)

139.49 )119.56 )0.04 11.93

Method 5 (modified Mader) 125.10 )124.82 )0.04 13.90

Table 2. Statistics of absolute errors in orthometric height (in mm)
due to density variation and gravity anomaly gradient

Source of error Maximum Mean RMS

Density variation 3.18 0.11 0.27
Gravity anomaly gradient 68.70 0.93 4.16
Density variation and gravity
anomaly gradient

70.48 0.99 4.28

Fig. 8. Contours of the vertical gradient of free-air gravity anomaly
(top) and the error in the free-air gravity anomaly (bottom) due to
neglecting the gravity anomaly gradient
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four closed leveling circuits (see Fig. 3). Circuit (a) has
the largest cumulative OC error of 15 cm, occurring at
the highest elevation of about 3500 m. This suggests
that, for example, at the terrain peak of Circuit (a), the
orthometric height as computed from Eq. (31) will be in
error by 15 cm if density variations and gravity anomaly
gradients are not taken into account. Circuit (b) also has
a large cumulative error at the terrain peak. For a circuit
such as Circuit (a) that crosses a bell-shaped mountain,
the cumulative error is largest near the terrain peak.
After the terrain peak, the cumulative error starts to
decrease, and finally approaches zero when meeting the
starting benchmark of the circuit. Thus the cumulative
error will be nearly symmetric with respect to the peak
of a bell-shaped mountain. This can be explained by
Eq. (16): if HB is greater/smaller than HA, then the error
is positive/negative, respectively. For a bell-shaped
mountain, for every positive error there is a correspond-
ing negative error, thus the cumulative error will
approach zero when accumulated over the entire circuit.
Figure 9 shows a strong degree of symmetry in the
cumulative error, despite some small perturbations that
are due to high-frequency elevation and density varia-
tions. Because of such cancellation of error, a small
cumulative error along a closed circuit, for example as
implied by closure statistics, does not imply small errors
in OHs at the intermediate benchmarks; see more about
cumulative error in the discussion of misclosure below.

4.3 Terrain correction and mean gravity in the modified
Mader method

In the modified Mader method, the TC computation
was split into an inner zone effect and an outer-zone
effect as proposed by Forsberg (1984). The optimal

radii of the inner and outer zones were found to be 30
and 100 km, respectively, based on tests of accuracy
and computation efficiency. The 300 � 300 elevation grid
and the 3000 � 3000 elevation grid were used for the
inner- and outer-zone computations, respectively.
Figure 10 shows a comparison of TCs along the
leveling lines computed by Gaussian quadrature and
FFT. The program ‘tcfour’ (Forsberg 1984), based on
an approximated formula of the TC, was used to
compute the TC by FFT. Table 3 shows statistics of
TCs from Gaussian quadrature and their differences
with TCs from FFT. In a rugged terrain such as that
in Taiwan, these two algorithms yield different results,
especially in the Central Range. Even at low eleva-
tions, differences can be significant provided that the
surrounding terrain is complex. For example, one
leveling line is situated along the coastal highway in
northeastern Taiwan (Fig. 3), where the elevations are
low. On the western flank of this highway rise
mountains of over 2 km elevation, which create a
large terrain effect. As seen in Fig. 10, Gaussian
quadrature picks up this drastic change of terrain
better than the FFT does. In general, compared to the
FFT, Gaussian quadrature produces a TC that has a
larger magnitude and a higher spatial resolution. This
is because Gaussian quadrature makes no approxima-
tion of the given TC formula [Eq. (29)] and takes into
account the maximum possible detail that the given
elevation grid can provide. Note that an FFT method
based on the rigorous formula of TC can also achieve
high precision (see Tsoulis 2001).

In theory, of the five methods under study, the
modified Mader method should deliver the most accu-
rate OC (Heiskanen and Moritz 1967, p. 165). As shown
in Figs. 6 and 7, the modified Mader method (Method 5)
creates OCs that are substantially different from OCs

Fig. 9. Cumulative errors in or-
thometric height due to variable
density and gravity anomaly gra-
dient along four leveling circuits
(see Fig. 3)
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created by Methods 1 and 4. The difference is obviously
caused by the difference in mean gravity and the role of
the TC. Figure 11 shows the difference between mean
gravity values from Methods 5 and 4. The maximum,

maximum, mean, and standard deviation of the differ-
ences between G5 and G4 are 47.42, )51.40, 0.09, and
7.35 mGal, respectively. Large differences in mean
gravity occur at high elevations and along the coastal
highway in northeastern Taiwan. The pattern of differ-
ences in mean gravity is very similar to the pattern of
differences in the OC (cf. Figs. 7c and 11). These dif-
ferences in mean gravity are caused by many factors.
First, in Method 4, the reduction of mean gravity is
based on the simple Bouguer plate with the assumption
that free-air gradient is valid irrespective of the existence
of the mass above the geoid. In Method 5, the TC is
applied and the mass above the geoid is removed while
making the free-air reduction. Both Methods 4 and 5
take into account gravity anomaly gradients, but the
gradients used in these two methods are different:
Method 4 uses the free-air gravity anomaly gradient
while Method 5 uses the Bouguer gravity anomaly gra-
dient. As seen in Fig. 8, the free-air gravity anomaly
gradients are large at high elevations, where the Bouguer
gravity anomaly gradients (not shown in this paper) are
also large but with different signs. Large differences in
gravity anomaly gradient will cause large differences in
mean gravity. In fact, in Step 2 of the modified Mader
method, the free-air gravity anomaly gradient was tried
instead of the suggested Bouguer gravity anomaly gra-
dient, but the resulting mean gravity yielded even larger
differences with the mean gravity from Method 4.

4.4 Misclosures of leveling circuits and results of height
difference adjustments

As the OCs from the three different methods are
significantly different at high elevations and at locations
with complex terrains (e.g. coastal highway in north-
eastern Taiwan), a question arises as to which OC is the
most accurate in reality, or which OC should be used for
practical work in correcting geometric height differ-
ences. One way to answer this question is to compute
misclosures at closed leveling circuits. In theory the sum
of orthometric height differences over a closed circuit

Fig. 10. Terrain corrections (TCs) from a Gaussian quadrature,
b FFT, and c their difference

Table 3. Statistics of terrain correction (in mGal) from Gaussian
quadrature (TC) and FFT at first-order benchmarks

Maximum Minimum Mean Standard
deviation

TC 82.57 0.25 9.83 13.43
FFT 61.86 0.22 6.39 9.21
Difference 48.54 )26.02 3.56 7.22

Fig. 11. Difference in mean gravity between the modified Mader
method and the Helmert method with variable density and gravity
anomaly gradient
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will be zero. That is, the line integral along a closed
circuit satisfiesI

dH ¼ 0 ð32Þ

where dH is the differential orthometric height. Table 4
shows the misclosures of orthometric height differences
at the four leveling circuits shown in Fig. 3 for different
cases. The case with the uncorrected height difference
(i.e. geometric height difference) has the largest misclo-
sure in most circuits. In particular, the misclosure in
Circuit (a) is 117.8 mm, which is reduced to about
20 mm by any of the three OCs. Circuit (b) also receives
a large reduction of misclosure by adding the OC.
Curiously, the misclosure in Circuit (d) increases slightly
after applying the OC. The increase may be caused by
errors in OC and/or leveling. In fact, this increase is
approximately equal to the average standard deviation
of the estimated heights at benchmarks from LS
adjustment (see below). Since the misclosures from
different OCs differ only marginally, it is not possible to
determine which OC is the best based on misclosures
alone. However, the cumulative error in the OC will be
part of the misclosure and it will remain unknown in the
case of a bell-shaped terrain (see Sec. 4.2). Therefore,
again, a small misclosure at a closed circuit does not
necessarily mean small errors in orthometric height at
individual benchmarks.

LS adjustments were also made for the uncorrected
and corrected height differences at the first-order
benchmarks. The stochastic model used was the stan-
dard Gausse–Markoff model (Koch 1987). The weight
for each height difference was taken as the inverse dis-
tance between two benchmarks. In all adjustments, the
minimum constraint solution was used by fixing the
elevation at Benchmark K999 (see Fig. 3). Table 5
shows the statistics of standard deviations of adjusted

OHs and the a posteriori standard errors of unit weight
(r̂r0), which are descriptors of the stochastic model and
data quality for the adjustments. In the case of using the
same stochastic model, the smaller the a posteriori
standard error of unit weight, the better the data quality.
From Table 5, applying OCs indeed improves the
adjustment result significantly (see the uncorrected case
and the case with any of the three methods). The three
OCs yield almost identical results. This implies that it is
still not possible to determine which OC is the best based
on the adjustment results alone. These almost identical
results are attributed to the fact that large differences
among the three OCs exist only at a small portion of the
leveling lines (i.e. those at high elevations), and intro-
duce little change in the standard error of height and the
a posteriori standard error.

5 Conclusions

In this paper, a new formula for OC computation was
presented. The OC computation requires mean gravity
data along the plumb line. Five methods of mean
gravity computation were tested using gravity, leveling,
elevation, and density data. In one case, the Mader
method is modified to take into account rock density
variations and gravity anomaly gradients. The effects
of variable density and gravity anomaly gradient in the
Helmert method are found to be significant in com-
puting the OC. An approach based on Gaussian
quadrature is used to compute terrain effects. The five
methods all yield small OCs at low elevations (except
in the case where there are high mountains nearby) and
large OCs (>10 cm) at high (>2 km) elevations.
Furthermore, these methods produce results that are
almost the same at low elevations, but significantly
different (>15 cm) at high elevations. Applying the OC
reduces the misclosures of height differences over
closed leveling circuits and improves the overall
accuracy of a leveling network. The modified Mader
method is recommended for computing the OC pro-
vided that an elevation grid and free-air anomaly grids
are available.
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Sansò F, Rummel R (eds) (1997) Geodetic boundary value prob-
lems in view of the one centimeter geoid. Lecture Notes in Earth
Sciences, vol 65. Spinger, Berlin Heidelberg New York

Schwarz KP, Sideris M, Forsberg R (1990) The use of FFT tech-
niques in physical geodesy. Geophys J Int 100:485–514

Strang van Hees GL (1992) Practical formula for the computation
of orthometric, dynamic and normal heights. Z Vermess 11:727–
734

Torge W (1989) Gravimetry. Walter de Gruyter, Berlin
Tsoulis D (2001) Terrain correction computations for a densely

sampled DTM in the Bavarian Alps. J Geod 75:291–307
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