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Rules of selection for spontaneous coherent states in mesoscopic systems:
Using the microcavity laser as an analog study
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The selection rules for spontaneous coherent waves in mesoscopic systems are experimentally studied using
the transverse patterns of a microcavity laser and theoretically analyzed using the theori2pot@igrent
states. Comparison of the experimental results with the theoretical analyses reveals that an amplitule factor
should be included in the representation of the partially coherent states. The determination of the amplitude
factor A is found to be associated with the constraint of minimum energy uncertainty.
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Recently, the progress in modern semiconductor technoling the heat sink temperature. Although an ideal 2D square
ogy has made it possible to design nanostructure devicdsilliard has many possible eigenstates, only a few stationary
with quantum ballistic propertiefl]. The results of recent states are observed in experimental transverse patterns. As
studies of open square quantum dots show that the strikinghown in Fig. 1, only three types of transverse pattern are
phenomena of conductance fluctuations are associated witfsually observed by detuning the temperature from 280 to
wave patterns localized on classical periodic orps-4]. 240 K. Similar to the quantum flows in open square quantum
The general principles of pattern formation indicate thatyots [2—4], the observed transverse patterns of square-
small disturbances can cause the real system to select SOggaped VCSEL's are concentrated along classical periodic
states from the range available to the idealized perfect Sygsppits instead of being regular eigenstates of the perfect
tem[5,6]. Although there are mathematically many possiblesqyare billiard. The present result supports the idea that the
selections, the experimental results reveal that the wave paiqperties of the wave functions in mesoscopic structures can
terns associated _Wlth cIaSS|ca_I periodic orbits are often thgg analogously studied by designing optical structures with
persistent states in mesoscopic syst¢is9]. Therefore, 10 similar or identical functional form$13]. Recently, Doya
establish the relation between the quantum wave functiong 4 [14] introduced the paraxial approximation to establish
and the classical periodic orbits is a crucial phase in investizn analogy between light propagation along a multimode fi-
gating the quantum phenomena in MESOSCOPIC SySteMgyr and quantum-confined systems. It is believed that these

[10,11. In this work, we experimentally and theoretically gnz|0gies will continue to be exploited for understanding the
study the selection rules for the spontaneous coherent statgRysics of mesoscopic systems.

associated with the classical periodic orbits in mesoscopic Previously, we analytically constructed the wave func-

systems. _ o tions related to the primitive periodic orbip(q, #) in a 2D
In recent years, microwave cavities have been used tQqare billiard by using the representation of(2toherent

perform analog studies of transport in open quantum dot§iates, wherp andq are two positive integers describing the
[7-9]. More recently, we demonstrated that the transvers@,mper of collisions with the horizontal and vertical walls,

patterns of oxide-confined vertical-cavity surface-emittinggnq the phase factap (— 7< =) that is related to the
lasers(VCSEL's) reveal the probability density of the wave 4 positions of specular reflection poinf5]. As in the

functions corresponding to two-dimension&D) quantum Schwinger representation of the &) algebra, the wave
billiards [12]. Here we use square-shaped VCSEL's with 40

um oxide aperture to investigate the variations of the trans-

verse pattern with the heat sink temperature. The emissiot @
wavelength near the lasing threshold is normally close to the:.i‘}wwzﬁ"'i
peak gain wavelength, which shifts with temperat(@e2— 3.,/,“3;"‘ :\.:333.\-.
0.3 nm/K) at a faster rate than does the VCSEL cavity reso- ".!!'J/ﬁi.?.‘&.‘.}\,\.\,",m
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nance. The transverse-mode spacing can be deriveXias 5#{.\\\‘&‘?{.?9’/}//’7[;"’,‘.‘-‘.
~\%(4a%), where \~780 nm is the fundamental wave- VWL | (e
length anda is the length of the square boundary. Since thew"!

transverse-mode spacing is aroulid=~0.07 nm, the trans-
verse patterns of VCSEL's can be easily detuned by control- F|G. 1. The experimental near-field patterns of the VCSEL de-
vice near the lasing threshold at temperatures ar¢gand70-280,
(b) 260-270, andc) 240—260 K. The white lines superimposed on
*Author to whom correspondence should be addressed. FAXtop of the wave patterns indicate the related classical periodic or-
886-35 729134. Electronic address: yfchen@cc.nctu.edu.tw bits.
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function associated with high-order periodic orbifsd, ¢)
is analytically expressed §45]

N

I
K=0

WU yir) = (2/a)
VTS T

X sin

sir{q(N—K+1)%y},
1

wherea is the length of the square boundaly,represents
the order of the coherent state|s associated with the order
of the eigenstatesC) is the binomial coefficient, and the
parameterr is related to the phase factgr by 7=exp(¢).
The relationship between the paramegeand the periodic
orbits can be understood by using the identity sSitfe?
—e 9)/2i to rewrite Eq.(1) and applying the property of the
Dirichlet kernel A detailed discussion can be found in Ref.
[15]. Using Eq.(1) and |7|?=1, the ratio of the average
speeds along theandy axes in the classical limitN— =) is
found to bep/q. The result Of\/<VX2>/<Vy2>= p/q is consistent
with the requirement of classical periodic orbits. On the
other hand AH/(H) is inversely proportional tdN, where
(H) is the expectation value of the Hamiltonian afél is
the dispersion in energy obtained by computing

V(H?)—(H)2. Therefore, AH/(H)—0 as N—c«. This

i ™
p(+)?

asymptotic property indicates that the coherent states in Eq.
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theoretical calculations with the experimental results. Here-
after the amplitude factoA is considered in the range of
0.1-10 unless otherwise specified.

Comparison of the experimental results with the theoreti-
cal analyses reveals that the coherent state inEghould
be modified to be a partially coherent state that includes 3—7
nearly degenerate eigenstates. In fact, only a few nearly de-
generate eigenstates are already sufficient to localize wave
patterns on high-order periodic orbifd5]. Moreover, the
coherent state in Eq2) represents a traveling-wave prop-
erty. To make a comparison with experimental results, the
standing-wave representations can be obtained by replacing
the factore’ ¢ by sinK¢) or cosK¢). Accordingly, the par-
tially coherent state can be defined as

(2/a)
\PRI’,?\A(X:y;Ay@: Ko+d 2
> CRAX sin2(|<¢)}
K=Kgy—J
Ko+d

x 2 CRAKsin(K¢)
K=Ko—J

X sin

X
p(K+1) ?}

. Ty
X sin q(N—K+1)?

, ©)

(1) are stationary states in the classical limit. However, the

coherent state in Eq1) for mesoscopic systems, i.é\, is

whereK,=[N(A?/1+ A?)], the symbo[v] denotes the larg-

finite, is generally not a stationary state for the Hamiltonian€St integer<w, and the indexM =2J+ 1 represents the num-
of a perfect square billiard because the eigenstate comp&er of eigenstates used in the staltg;(x,y;A,¢). The

nents are not degenerate.

number of eigenstateM is somewhat restricted because

For mesoscopic systems, the experimental phenomena r&H/(H) is generally proportional to the indem for a given

veal that the parametershould be generalized dsexp(¢),
where the amplitude factok is a positive real value. With
r=Aexpld¢), Eq. (1) becomes

N

2/a .
WRAXY;A, @)= (—Z)N/z > JCNAKeKé
(1+A%)™ K=o

X
xsir{p(K+1)?}

X sin

Ty
q(N—K+1)?} (2
It can be found that the coherent states in E).have the

asymptotic behavior

WRAX,Y;A, @)

(2/a)sin(pmrx/a)sifq(N+1)wy/a] (A—0),
N{ (2/a)sin p(N+1)wx/a]lsin(gmy/a) (A—o).

Nevertheless, the amplitude factarin the range of 0.1-10

order N. In most cases, experimental results reveal that 3
<M<7. Note that the coefficier€}A?X is associated with

the relative probability amplitude of the eigenstate
(2/a)sin p(K+1)(mx/a)]sifg(N—K+1)(my/a)] and its value

is maximum forK =K. To be brief, the partially coherent
state is a superposition of a few eigenstates next to the eigen-
states of maximum probability in the standard (3)Urepre-
sentation.

As mentioned earlier, the partially coherent states in Eq.
(3) are also not stationary states for a perfect square billiard.
Nevertheless, the spontaneous symmetry breaking or weak
perturbation may cause the partially coherent state to be a
stationary state. Since the amplitude facddnas much to do
with the fine structure of the wave pattern, it is much more
informative to comprehend th& dependence of the energy
uncertainty AH/(H) for the partially coherent state
WYRU(XY;A,¢). Figure 2 shows thé\ dependence of the
energy uncertaintAH/(H) and several related patterns for
the partially coherent staté’é'(fS(x,y;A,OA?Tr). The value
of the phasep is determined by the best fit for experimental
results. It can be seen that the partially coherent state
W35dx,y;A0.47r) has a minimum energy uncertainty

has a great deal to do with the fine structure of wave pattern@roundA=2.15. More importantly, the wave pattern with the
It will be demonstrated later that the determination of theminimum energy uncertainty agrees very well with the ex-

amplitude factorA plays an important role in comparing the

perimental result depicted in Fig(a).
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FIG. 2. The calculated results of thedependence of the energy FIG. 4. Similar to Fig. 2 for\pgblix,y;A,o,45ﬂ); the calculated
uncertainty AH/(H) for the partially coherent state pattern with minimumAH/(H) corresponds to the experimental
‘I’%b%B(X,y;A,O.477T). Several calculated patterns for different val- result shown in Fig. ().
ues ofA are shown in the insets; the calculated pattern with mini-
mumAH/(H) corresponds to the experimental result shown in Fig.

1a) tems. Even so, the pump profile should be essentially uni-

form to guarantee that the partially coherent state is the
Simil | ‘ il h correct criterion for a VCSEL laser just above threshold.

oy nnar plots  lor ” partially - coherent  Stales — gjnce the partially coherent states also often appear in
W25,4X,y;A,0.55m) and Vg, Ax,y;A,0.45m) are shown in -y eakiy perturbed 2D square billiar@s, 6] and in the ballis-
Fl_gs_. 3 and 4, respecuyely. Here again the wave patt_erns Withe quantum dot at resonand@—4], we use the present
minimum AH/(H) are in good agreement with experimental moge| to analyze the resonant-energy states of an open
results shown in Figs. (b) and Xc). Therefore, it can be gquare quantum dot. It can be seen that the theoretical result
concluded that the partially coherent states with m|n|mur‘n\1,‘11b25(X y:2.15,0.57) shown in Fig. %b) agrees quite well

energy uncertainty in perfect systems usually become thﬁ/ith the representative data of R&4] shown in Fig. 5a).
eigenstates in those systems with small disturbances or tiny Although the specific origin of spontaneous symmetry

sy_mrgetry brl_eaking. In other _Wordfs, t?e wave Ifur;ction 0D+ eaking is still an open question, it is of great value to make
tained as a linear superposition of a few nearly degeneralg comparison between spontaneous and deliberate symmetry
eigenstates can provide a more physical description of a ph‘B’reakings with the present devices. We have fabricated VC-

nomenon than the true eigenstates in real mesoscopic SYSEL's with a ripple boundary to experimentally study the

influence of the degree of symmetry breaking. With a con-
siderable ripple boundary, the experimental patterns are al-
ways found to be ergodic. Intriguingly, the coexistence of
localized and ergodic states is observed in a device with a
moderate ripple boundary, as shown in Fig. 6. Even so, the
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FIG. 5. Comparison of the resonant-energy states of an open
FIG. 3. Similar to Fig. 2 fonPg'g%g(x,y;A,O.SEn); the calculated square  quantum  dot with the  theoretical result
pattern with minimumAH/{H) corresponds to the experimental \Ifigfs(x,y;Z.lS,O.E-r): (a) resonant pattern from Ref4]; (b) the
result shown in Fig. (b). calculated pattern.
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ness is large to a certain extent, the localized regime is sig-
nificantly narrowed and the wave function may become ut-
terly ergodic.

Finally, it is worthwhile to connect the present experimen-
tal results with similar phenomena discussed in other sys-
tems. As a rule, any system is always coupled to some envi-
ronment and therefore it is never really closed. Nazmitdinov
et al. [8] have used the effective Hamiltonian to calculate
wave functions and coupling coefficients to the environment
for the Bunimovich stadium with two attached leads. Their
study shows that two types of wave function exist in the
open quantum billiard. One type is the short-lived special
states that are localized around the classical paths; the other
is the long-lived trapped states that are distributed over the
whole cavity. Both types of wave function have been ob-
served in the present experiment. Even so, the selection of
the states in open systems strongly depends on the condition

FIG. 6. The experimental near-field pattern of the VCSEL de-of the coupling to the environment, as already mentioned in
vice with a moderate ripple boundary. Ref.[8]. In VCSEL devices, the coupling to the environment

mostly arises from the vertical mirror. In open quantum dots,
partially coherent states localized on the classical orbits arbowever, the coupling is usually through the attached leads.
generic and structurally stable in square-shaped VCSEL3Sherefore, the influence of the coupling strength on the lo-
without any deliberate symmetry breaking. In brief, a spon-calization of the wave functions would be somewhat dissimi-
taneous symmetry breaking is necessary to lead to the locdhr for different open systems.
ized states in a square billiard; however, a nonspontaneous In summary, the transverse pattern of a microcavity laser
one may drive the states into the ergodic regime. Althougthas been used to experimentally study the selection rules of
the quantitative analysis is difficult at the moment, the tran-spontaneous coherent waves in mesoscopic systems. With
sition from the localized to ergodic regime is basically con-the theory of SWW2) coherent states, the spontaneous trans-
sistent with the theoretical analysis of a ripple billidkj. A verse pattern of a microcavity laser can be described very
similar transition is also found in the theoretical study of awell. The constraint of minimum energy uncertainty is found
circular billiard with rough boundarigdl6]. It has been nu- to play an important role in selecting the spontaneous coher-
merically shown that the smaller the roughness, the wider thent states in mesoscopic systems. Moreover, the selection
localized regime, even though the state order entering theules are confirmed to be applicable to the resonant-energy
localized regime becomes higher. In opposition, if the roughstates of open square quantum dots.
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