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Rules of selection for spontaneous coherent states in mesoscopic systems:
Using the microcavity laser as an analog study
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The selection rules for spontaneous coherent waves in mesoscopic systems are experimentally studied using
the transverse patterns of a microcavity laser and theoretically analyzed using the theory of SU~2! coherent
states. Comparison of the experimental results with the theoretical analyses reveals that an amplitude factorA
should be included in the representation of the partially coherent states. The determination of the amplitude
factor A is found to be associated with the constraint of minimum energy uncertainty.

DOI: 10.1103/PhysRevE.68.026210 PACS number~s!: 05.45.2a, 03.65.Ge, 42.55.Sa, 73.23.Ad
no
ic
t
kin
w

a
so
sy
le
p
th

ion
st
em
ly
ta
p

o
rs
ng
e

40
ns
si
th

so

-
th

ro

are
ary
. As
are

to
um
re-
dic

fect
the
can
ith

sh
fi-
ese

the

c-

e
s,

AX

de-

n
or-
Recently, the progress in modern semiconductor tech
ogy has made it possible to design nanostructure dev
with quantum ballistic properties@1#. The results of recen
studies of open square quantum dots show that the stri
phenomena of conductance fluctuations are associated
wave patterns localized on classical periodic orbits@2–4#.
The general principles of pattern formation indicate th
small disturbances can cause the real system to select
states from the range available to the idealized perfect
tem @5,6#. Although there are mathematically many possib
selections, the experimental results reveal that the wave
terns associated with classical periodic orbits are often
persistent states in mesoscopic systems@7–9#. Therefore, to
establish the relation between the quantum wave funct
and the classical periodic orbits is a crucial phase in inve
gating the quantum phenomena in mesoscopic syst
@10,11#. In this work, we experimentally and theoretical
study the selection rules for the spontaneous coherent s
associated with the classical periodic orbits in mesosco
systems.

In recent years, microwave cavities have been used
perform analog studies of transport in open quantum d
@7–9#. More recently, we demonstrated that the transve
patterns of oxide-confined vertical-cavity surface-emitti
lasers~VCSEL’s! reveal the probability density of the wav
functions corresponding to two-dimensional~2D! quantum
billiards @12#. Here we use square-shaped VCSEL’s with
mm oxide aperture to investigate the variations of the tra
verse pattern with the heat sink temperature. The emis
wavelength near the lasing threshold is normally close to
peak gain wavelength, which shifts with temperature~0.2–
0.3 nm/K! at a faster rate than does the VCSEL cavity re
nance. The transverse-mode spacing can be derived asDl
'l3/(4a2), where l'780 nm is the fundamental wave
length anda is the length of the square boundary. Since
transverse-mode spacing is aroundDl'0.07 nm, the trans-
verse patterns of VCSEL’s can be easily detuned by cont
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ling the heat sink temperature. Although an ideal 2D squ
billiard has many possible eigenstates, only a few station
states are observed in experimental transverse patterns
shown in Fig. 1, only three types of transverse pattern
usually observed by detuning the temperature from 280
240 K. Similar to the quantum flows in open square quant
dots @2–4#, the observed transverse patterns of squa
shaped VCSEL’s are concentrated along classical perio
orbits instead of being regular eigenstates of the per
square billiard. The present result supports the idea that
properties of the wave functions in mesoscopic structures
be analogously studied by designing optical structures w
similar or identical functional forms@13#. Recently, Doya
et al. @14# introduced the paraxial approximation to establi
an analogy between light propagation along a multimode
ber and quantum-confined systems. It is believed that th
analogies will continue to be exploited for understanding
physics of mesoscopic systems.

Previously, we analytically constructed the wave fun
tions related to the primitive periodic orbit (p,q,f) in a 2D
square billiard by using the representation of SU~2! coherent
states, wherep andq are two positive integers describing th
number of collisions with the horizontal and vertical wall
and the phase factorf (2p<f<p) that is related to the
wall positions of specular reflection points@15#. As in the
Schwinger representation of the SU~2! algebra, the wave

:

FIG. 1. The experimental near-field patterns of the VCSEL
vice near the lasing threshold at temperatures around~a! 270–280,
~b! 260–270, and~c! 240–260 K. The white lines superimposed o
top of the wave patterns indicate the related classical periodic
bits.
©2003 The American Physical Society10-1
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function associated with high-order periodic orbits (p,q,f)
is analytically expressed as@15#

CN
p,q~x,y;t!5

~2/a!

~11utu2!N/2 (
K50

N

ACK
NtK

3sinFp~K11!
px

a GsinFq~N2K11!
py

a G ,
~1!

wherea is the length of the square boundary,N represents
the order of the coherent state,K is associated with the orde
of the eigenstates,CK

N is the binomial coefficient, and th
parametert is related to the phase factorf by t5exp(if).
The relationship between the parameterf and the periodic
orbits can be understood by using the identity sinz5(eiz

2e2iz)/2i to rewrite Eq.~1! and applying the property of th
Dirichlet kernel. A detailed discussion can be found in Re
@15#. Using Eq. ~1! and utu251, the ratio of the average
speeds along thex andy axes in the classical limit (N→`) is
found to bep/q. The result ofA^nx

2&/^ny
2&5p/q is consistent

with the requirement of classical periodic orbits. On t
other hand,DH/^H& is inversely proportional toN, where
^H& is the expectation value of the Hamiltonian andDH is
the dispersion in energy obtained by computi
A^H2&2^H&2. Therefore, DH/^H&→0 as N→`. This
asymptotic property indicates that the coherent states in
~1! are stationary states in the classical limit. However,
coherent state in Eq.~1! for mesoscopic systems, i.e.,N is
finite, is generally not a stationary state for the Hamilton
of a perfect square billiard because the eigenstate com
nents are not degenerate.

For mesoscopic systems, the experimental phenomen
veal that the parametert should be generalized asA exp(if),
where the amplitude factorA is a positive real value. With
t5A exp(if), Eq. ~1! becomes

CN
p,q~x,y;A,f!5

~2/a!

~11A2!N/2 (
K50

N

ACK
NAKeiKf

3sinFp~K11!
px

a G
3sinFq~N2K11!

py

a G . ~2!

It can be found that the coherent states in Eq.~2! have the
asymptotic behavior

CN
p,q~x,y;A,f!

;H ~2/a!sin~ppx/a!sin@q~N11!py/a# ~A→0!,

~2/a!sin@p~N11!px/a#sin~qpy/a! ~A→`!.

Nevertheless, the amplitude factorA in the range of 0.1–10
has a great deal to do with the fine structure of wave patte
It will be demonstrated later that the determination of t
amplitude factorA plays an important role in comparing th
02621
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theoretical calculations with the experimental results. He
after the amplitude factorA is considered in the range o
0.1–10 unless otherwise specified.

Comparison of the experimental results with the theor
cal analyses reveals that the coherent state in Eq.~2! should
be modified to be a partially coherent state that includes 3
nearly degenerate eigenstates. In fact, only a few nearly
generate eigenstates are already sufficient to localize w
patterns on high-order periodic orbits@15#. Moreover, the
coherent state in Eq.~2! represents a traveling-wave prop
erty. To make a comparison with experimental results,
standing-wave representations can be obtained by repla
the factoreiKf by sin(Kf) or cos(Kf). Accordingly, the par-
tially coherent state can be defined as

CN,M
p,q ~x,y;A,f!5

~2/a!

F (
K5K02J

K01J

CK
NA2K sin2~Kf!G1/2

3 (
K5K02J

K01J

ACK
NAK sin~Kf!

3sinFp~K11!
px

a G
3sinFq~N2K11!

py

a G , ~3!

whereK05@N(A2/11A2)#, the symbol@n# denotes the larg-
est integer<n, and the indexM52J11 represents the num
ber of eigenstates used in the stateCN,M

p,q (x,y;A,f). The
number of eigenstatesM is somewhat restricted becaus
DH/^H& is generally proportional to the indexM for a given
order N. In most cases, experimental results reveal tha
<M<7. Note that the coefficientCK

NA2K is associated with
the relative probability amplitude of the eigensta
(2/a)sin@p(K11)(px/a)#sin@q(N2K11)(py/a)# and its value
is maximum forK5K0 . To be brief, the partially coheren
state is a superposition of a few eigenstates next to the ei
states of maximum probability in the standard SU~2! repre-
sentation.

As mentioned earlier, the partially coherent states in
~3! are also not stationary states for a perfect square billia
Nevertheless, the spontaneous symmetry breaking or w
perturbation may cause the partially coherent state to b
stationary state. Since the amplitude factorA has much to do
with the fine structure of the wave pattern, it is much mo
informative to comprehend theA dependence of the energ
uncertainty DH/^H& for the partially coherent state
CN,M

p,q (x,y;A,f). Figure 2 shows theA dependence of the
energy uncertaintyDH/^H& and several related patterns fo
the partially coherent stateC30,5

1,2 (x,y;A,0.47p). The value
of the phasef is determined by the best fit for experiment
results. It can be seen that the partially coherent s
C30,5

1,2 (x,y;A,0.47p) has a minimum energy uncertaint
aroundA52.15. More importantly, the wave pattern with th
minimum energy uncertainty agrees very well with the e
perimental result depicted in Fig. 1~a!.
0-2
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Similar plots for partially coherent state
C29,3

3,1 (x,y;A,0.55p) and C80,7
1,1 (x,y;A,0.45p) are shown in

Figs. 3 and 4, respectively. Here again the wave patterns
minimumDH/^H& are in good agreement with experimen
results shown in Figs. 1~b! and 1~c!. Therefore, it can be
concluded that the partially coherent states with minim
energy uncertainty in perfect systems usually become
eigenstates in those systems with small disturbances or
symmetry breaking. In other words, the wave function o
tained as a linear superposition of a few nearly degene
eigenstates can provide a more physical description of a
nomenon than the true eigenstates in real mesoscopic

FIG. 2. The calculated results of theA dependence of the energ
uncertainty DH/^H& for the partially coherent state
C30,5

1,2 (x,y;A,0.47p). Several calculated patterns for different va
ues ofA are shown in the insets; the calculated pattern with m
mumDH/^H& corresponds to the experimental result shown in F
1~a!.

FIG. 3. Similar to Fig. 2 forC29,3
3,1 (x,y;A,0.55p); the calculated

pattern with minimumDH/^H& corresponds to the experiment
result shown in Fig. 1~b!.
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tems. Even so, the pump profile should be essentially u
form to guarantee that the partially coherent state is
correct criterion for a VCSEL laser just above threshold.

Since the partially coherent states also often appea
weakly perturbed 2D square billiards@5,6# and in the ballis-
tic quantum dot at resonance@2–4#, we use the presen
model to analyze the resonant-energy states of an o
square quantum dot. It can be seen that the theoretical re
C40,5

1,2 (x,y;2.15,0.5p) shown in Fig. 5~b! agrees quite well
with the representative data of Ref.@4# shown in Fig. 5~a!.

Although the specific origin of spontaneous symme
breaking is still an open question, it is of great value to ma
a comparison between spontaneous and deliberate symm
breakings with the present devices. We have fabricated V
SEL’s with a ripple boundary to experimentally study th
influence of the degree of symmetry breaking. With a co
siderable ripple boundary, the experimental patterns are
ways found to be ergodic. Intriguingly, the coexistence
localized and ergodic states is observed in a device wit
moderate ripple boundary, as shown in Fig. 6. Even so,

-
.

FIG. 4. Similar to Fig. 2 forC80,7
1,1 (x,y;A,0.45p); the calculated

pattern with minimumDH/^H& corresponds to the experiment
result shown in Fig. 1~c!.

FIG. 5. Comparison of the resonant-energy states of an o
square quantum dot with the theoretical res
C40,5

1,2 (x,y;2.15,0.5p): ~a! resonant pattern from Ref.@4#; ~b! the
calculated pattern.
0-3
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partially coherent states localized on the classical orbits
generic and structurally stable in square-shaped VCSE
without any deliberate symmetry breaking. In brief, a spo
taneous symmetry breaking is necessary to lead to the lo
ized states in a square billiard; however, a nonspontane
one may drive the states into the ergodic regime. Althou
the quantitative analysis is difficult at the moment, the tra
sition from the localized to ergodic regime is basically co
sistent with the theoretical analysis of a ripple billiard@5#. A
similar transition is also found in the theoretical study o
circular billiard with rough boundaries@16#. It has been nu-
merically shown that the smaller the roughness, the wider
localized regime, even though the state order entering
localized regime becomes higher. In opposition, if the rou

FIG. 6. The experimental near-field pattern of the VCSEL d
vice with a moderate ripple boundary.
lin

.
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ness is large to a certain extent, the localized regime is
nificantly narrowed and the wave function may become
terly ergodic.

Finally, it is worthwhile to connect the present experime
tal results with similar phenomena discussed in other s
tems. As a rule, any system is always coupled to some e
ronment and therefore it is never really closed. Nazmitdin
et al. @8# have used the effective Hamiltonian to calcula
wave functions and coupling coefficients to the environm
for the Bunimovich stadium with two attached leads. Th
study shows that two types of wave function exist in t
open quantum billiard. One type is the short-lived spec
states that are localized around the classical paths; the o
is the long-lived trapped states that are distributed over
whole cavity. Both types of wave function have been o
served in the present experiment. Even so, the selectio
the states in open systems strongly depends on the cond
of the coupling to the environment, as already mentioned
Ref. @8#. In VCSEL devices, the coupling to the environme
mostly arises from the vertical mirror. In open quantum do
however, the coupling is usually through the attached lea
Therefore, the influence of the coupling strength on the
calization of the wave functions would be somewhat dissim
lar for different open systems.

In summary, the transverse pattern of a microcavity la
has been used to experimentally study the selection rule
spontaneous coherent waves in mesoscopic systems.
the theory of SU~2! coherent states, the spontaneous tra
verse pattern of a microcavity laser can be described v
well. The constraint of minimum energy uncertainty is fou
to play an important role in selecting the spontaneous co
ent states in mesoscopic systems. Moreover, the selec
rules are confirmed to be applicable to the resonant-ene
states of open square quantum dots.
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