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Efficient algorithm on a nonstaggered mesh for simulating Rayleigh-Beard convection in a box
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An efficient semi-implicit second-order-accurate finite-difference method is described for studying incom-
pressible Rayleigh-Berd convection in a box, with sidewalls that are periodic, thermally insulated, or ther-
mally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the
solution of four Helmholtz equations and one Poisson equation, and these are solved by fast direct methods.
The method is numerically stable even though all field values are placed on a single nonstaggered mesh
commensurate with the boundaries. The efficiency and accuracy of the method are characterized for several
representative convection problems.
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I. INTRODUCTION degrees of freedom and long integration times together with
the need to repeat runs for different parameter values imply
Experiments over the last three decades have discoveradat efficient algorithms are essential for studying the large-
many fascinating and poorly understood examples of patteraspect-ratio regime.
formation in large-aspect-ratio Rayleigh+Bed convection Because of these computational challenges, there have
[1,2]. Because of the prominent role that these experimentbeen few simulations of three-dimensional Rayleigméd
play in understanding sustained nonequilibrium systgs convection with aspect ratios exceeding 10. Recent calcula-
and because many of the observed phenomena such as sgfians withI" as large as 64 have been carried out by Pesch
tiotemporal chaos are difficult to analyze mathematice8ly ~ and collaborators, who used a pseudospectral code on serial
there is a need to develop computer codes that can simulaghd parallel computers to study spiral defect chaos, rotating
these experimentquantitativelyso that theory and experi- convection, and other probleni§—8]. However, their code
ment can be compared with one another. Once validatedises periodic boundaries and so cannot take into account
such codes can further be used to explore regimes not easitjuantitatively the influence of lateral walls on the bulk dy-
attained by experiment such as low Prandtl number, and taamics. Arter and Newe[l9] and Tomita and Abg10] have
calculate quantities that are difficult to deduce from expericarried out simulations in large boxes with thermally insu-
mental data, such as mean flojs5] and fractal dimensions |ated no-slip sidewalls, the former in aX@.1.5 aspect-ratio
[6]. box, the latter in d"=18.84 square box. Xét al.[11] have
The regime of large aspect ratio (ratio of horizontal studied the transition to spatiotemporal chaos of a convecting
fluid width to fluid depth poses significant computational fluid in a I'=60 square cell, but with free-slip horizontal
challenges. Many numerical degrees of freedbasis func-  boundaries that are difficult to achieve experimentally. Fi-
tions or mesh poinjsare needed to represent the spatial feanally, a Caltech-Duke collaboration has recently reported re-
tures of the fluid and often the dynamics needs to be studieslults[12,13 obtained with a parallel spectral element code
over long times(many multiples of the horizontal thermal [14] for aspect ratios up to 30. Their code can treat quanti-
diffusion time 7,=I'?7,, where 7,=d?/x is the vertical tatively most geometries and lateral boundaries used by ex-
thermal diffusion time defined in terms of the fluid depth  perimentalists, including ram@d45], spoiler fins[16], and
and fluid thermal diffusivityx) to ensure that nontransient lateral walls of finite thickness and finite thermal conductiv-
behavior is being observed. Since the largest time step alty. However, the generality of the spectral element algorithm
lowed by numerical stability for explicit or semi-implicit al- makes it substantially more expensive to run than algorithms
gorithms (those most commonly used in Navier-Stokes cal-optimized for a simple geometry such as a box or a cylinder.
culations is typically 0.05r, or smaller, simulations in a In this paper, we introduce and analyze an efficient semi-
representativé =50 cell may require 10or more time steps  implicit finite-difference algorithm for studying incompress-
to eliminate a transient and then study the statistically staible Rayleigh-B@ard convection in a box, with lateral walls
tionary properties of the asymptotic dynamics. The manythat are periodic, thermally insulated, or thermally conduct-
ing. The code complements the more flexible spectral ele-
ment approachl12,13 by being more than an order of mag-
*Also at Duke University’s Center for Nonlinear and Complex nitude more efficient on a serial processor, for a box with
Systems. Email address: hsg@phy.duke.edu these boundary conditions. It is well suited for studying
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long-time dynamics of small- to moderate-aspect-ratio boxegonvection with an external forde These equations can be
[4] (I'=<20), with lateral boundaries that are close to those ofaritten in the dimensionless forii26]
many experiments, although not fully quantitatively accurate
since the finite thickness and finite thermal diffusivity of the aT(t,xy,2)=[—(v-V)T]+ V2T, (1)
lateral walls is not taken into account. R

The main advantages of our algorithm are the simplicity  dyv(t,X,y,z)=[—(v-V)v+oRTz+ of]+oV?v—Vp,

of implementation and its efficiency on a single processor. Its (2
simplicity arises from the use of a single mesh for all field

values. (This is called a “nonstaggered” or “collocated” V.v=0. 3
mesh in contrast to a “staggered” mesh for which the values ) ] )

19]). A nonstaggered mesh reduces the effort to write and tavhile thez Yariable denotes the vertical coordinate, with the
validate a codécompared to that using a staggered mesh unit vectorz pointing in the direction opposite to the gravi-
and facilitates porting the code to a distributed-memory partational acceleration. The field= (v ,vy ,v;) is the velocity
allel computer. Earlier work on Navier-Stokes integrators hadield at point §,y,z) at timet, while p andT are the pressure
suggested that nonstaggered mesh codes can be numericallyd temperature fields, respectively. The dimensionless pa-
unstable because of pressure oscillatids20. Our results  rameterss andR denote the Prandtl and Rayleigh numbers,
below show that an algorithm to integrate the Boussinesgespectively. The vector field(t,x,T,v) is some external
equations on a nonstaggered mesh can be numerically stabferce, e.g., a Coriolis forcé=2vx Q arising from a rigid

The use of a single nonstaggered mesh also helps to exetation of the convection cell with constant angular velocity

plain the efficiency of the algorithm. Using a standard— ()7 The terms grouped in brackets in Eq$) and (2)
operator-splitting and projection method together withare those containing nonlinear terms or linear terms with
second-order-accurate finite differen¢2$,22 on a uniform o\-order spatial derivatives, and will be integrated explic-
three-dimensional mesh, the advancement of the velocityjly py the operator-splitting method described below.

temperature, and pressure fields at each time step requires théywe would like to integrate Eq$1)—(3) in a box geometry
numerical solution of four Helmholtz equations and onegefined by the region

Poisson equation. Because these elliptic equations and their

boundary conditions arseparable these can be solved effi- r, ry, ry r 1 1
ciently using fast direct methods from the FISHPACK library T, SXS5 ., o Sys5, TpsIs5, 4
[23,24], with a complexity per problem ofO(N In(N)),

whereN is the total number of mesh points. Fast direct meth'wherel“x andT', are the aspect ratios in theandy direc-

ods are more efficient than most iterative methods on ggng respectively(the depth of the fluid has length).1A
single processdi25], and have the additional advantage thatpq_gjip velocity condition on all material walls is assumed
no internal parameters need to be adjusted to obtain conver-

gence. However, fast direct methods are not applicable to v=0, (5)
complex geometries, to problems with spatially varying pa-
rameters, or to complicated boundary conditions that lead tand the temperatur& is constant on the bottom and top
nonseparable equations. plates,

The remainder of this paper is organized as follows. In
Sec. Il, we discuss details of our algorithm, namely, how the
fields and equations are discretized and how the resulting T==
equations are solved. In Sec. lll, we discuss the convergence
resentative two- and three-dimensional convection problemsateral walls to be periodic, or to satisfy on each lateral wall
We confirm empirically the second-order accuracy of the soan arbitrary Dirichlet boundary conditiofe.g., a thermally
lution and examine how the largest time step allowed byconducting wall corresponding to a linear conducting profile
stability varies with Prandtl number and with Rayleigh num-of the formT=a+ bz, wherea andb are constanjs or an
ber. Finally, Sec. IV presents our conclusions and suggestgrpitrary Neumann conditiorfe.g., a thermally insulating
some avenues for further algorithmic improvements. Appli-ya with 9,T=0, whered, is the normal derivative to the
cations of the algorithm to study quasiperiodic dynamics a”%oundary at a given pointTo simplify the following discus-

'SpiFrzalfde[T% chaos in three-dimensional boxes can be foungion we will consider only the case of insulating sidewalls
in Refs.[4,5].

f s 6
or z—+§. (6)

N| =

d,T=0 on lateral walls, 7

[l. DETAILS OF THE ALGORITHM since the other cases involve just simple modifications. Al-
though the pressure fiefgformally has no associated bound-
ary condition since it does not satisfy a dynamic equation,

Our goal is to integrate the Boussinesq equations that dewe will be imposing a Neumann boundary conditionpas
scribe incompressible buoyancy-driven Rayleighs@  explained belowsee Eq(17)].

A. Equations and boundary conditions
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B. The time integration method vy, then forv,, and then fow,. The explicit steps advance

We next discuss the time integration method, since it§_he ye_locity fieldv" to an intermediate fiels* , and.then the
structure can be explained before having to specify a spatidnPlicit steps advance* to asecondntermediate field** .
representation for the fields. In Sec. Il C we discuss how thdf We denote byN;[T,v] the expressions in brackets of Eq.
fields and equations are discretized and the latter solved ué?) for i=x, y, andz, then each explicit step has the form
ing second-order-accurate finite differences on a uniform At
Spatial mesh. Ui*:l)in+_(3Ni[T,Vn]_Ni[T,Vn_1]). (11)

Our time integration method uses a standard operator- 2
splitting and projection methd®1,22, in which the nonlin- o , , )
ear terms containing lower-order or no spatial derivatives ar&!€Un's single-step method is again used at tige 0 to

avoid unavailable field values at time;= — At. Each field

integrated explicitly, then the linear diffusion operators are” ™ o St :
integrated implicitly, and finally the pressure terriVp is Vi 1S Next used as initial data for an implicit Crank-Nicolson

integrated to project the velocity field at the next time Stepstep.that yields a constant-coefficient Helmholtz equation for

into the space of divergence-free velocity fields. Operatothe fieldv™ :

splitting has two benefits. First, the evolution equationsTfor

and for the _veloc_ity components are decqupled from one (1_ U_Atvz)vi** =¥+ U_MVZUin_ (12)

another, which simplifies the overall algorithm and substan- 2 2

tially reduces the total computer memory needed. Second, .= | ] ) s

operator splitting allows larger time steps since the largest NiS is solved with the no-slip boundary conditiei* =0

time stepAt allowed by stability is bounded by a first power On all surfaces, Ed(5). o L .

of the spatial resolutiodx, rather than by a second power (4 An incompressible velocity field""* at timet,.; is

as would be the case for a fully explicit method. obtained from the field** by integrating the final operator
Let us assume that, at tith time stept,=nAt with n  Stép

=0, initial fields T" andv" are known that are consistent JV=—V 13

with the boundary conditions Eq&5)—(7). These fields are V= P, (13

then advanced to the future valug8™" andv"™* at time it initial data v** . followed by a projection method

th+1=t, At as follows. [22,28. We approximate the time derivative in E4.3) with
D T_he: nonlinear advgquve tgrmT[T,v]: —(v-V)Tof 4 first-order-accurate stencil,

Eq. (1) is integrated explicitly using a second-order-accurate

Adams-Bashforth method VAR Vo

1
AT =—§(Vp“+l+Vp“), (14)

At
T*=T"+ —(BN{[T"V"]=N;[T"" 1" 1), n=0, , ,
2 apply the divergence operator to both sides, and then use Eq.

(8 (3)in the formV-v"*1=0. This yields a Poisson equation

. : ) for the pressure fielg:
to produce an intermediate fielf*. Here T""! andv" ! P @

denote field values stored from the previous time dtep 2
=t,— At. For the first time stem=0 only, a second-order- V2pntl=—v2pn+ A—tV-v** . (15)
accurate single-step integrator, Heun's meth®d|, is used
in place of the Adams-Bashforth method to avoid the depenoncelo is known by solving Eq(15), we obtainv
dence on the unavailable field values at titae— At. Eq. (14) in the form '

(2) The intermediate field™ is then advanced to the tem-
perature fieldT"** at timet,, ; by usingT" as initial data
for an implicit Crank-Nicolson step applied to the diffusion %
term in Eq.(1):

"1 from

At
n+1:V** _7(Vpn+1+vpn)_ (16)

1 Although mathematically there is no boundary condition for
= (V2T v2rn), (99  p—and by discretizing first space and then time, a boundary
2 condition for p can be avoided as explained in Refs.

21,29,30—we will solve Eqg.(15) with the Neumann con-
This can be written as a constant-coefficient Helmholtz equa%ition ¢ a.(19

tion for the future fieldT"1:

Tn+l_-|—*
At

d,p" =0 onall walls, (17

since this allows us to use a fast direct method to solve Eq.

(15). There is substantial literature concerning the appropri-

and is solved with the boundary conditiof® and(7) ap- ateness and accuracy of the boundary conditiah [31,32.

plied to T"*1, Rather than review this literature, we simply point out that a
(3) Three similar pairs of explicit and implicit steps are Neumann pressure boundary condition has been shown by

then executed successively; first for the velocity componenprevious researchers to produce acceptably accurate results

At At
(1— 7V2)T”+1=T*+ - VAT, (10)
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for problems in which the fluid is confined by no-slip sur- the right side of the Helmholtz equation, E40), needs to
faces, and we show directly in Sec. Ill that our algorithm isbe evaluated on the Neumann boundaries for which(Bq.
second-order accurate in space and second-order accuratehiolds. The value ofV?T* can be approximated there to
time for several representative problems. second-order accuracy by using one-sided 4-point finite-

. . . ) ) difference approximations for the second-order derivatives,
The most time consuming part of this algorithm is, by far,e_g.
solving the four Helmholtz equations, Eq40) and(12) (for '
i=X, y, andz) and solving the Poisson equation, Ef5). _ _
4 ) g q 85 (2T 1o 2To— 5TTj+ 4T 55— T
x 17 lojk™

Ax? @

C. Discretization on a uniform mesh
The explicit and implicit steps of the preceding section—yith similar expressions fo#2T* atx=T, and ford?T* on
Egs. (8) and (10), Egs. (11) and (12), and Egs.(15) and ey = andy=T, boundaries. The divergenc%-\z** on
(16)—;:1re carried out by discretizing t_he fields and equationgpe right side of the pressure equation, Etp), can be ap-
on asinglenonstaggered mesh of points proximated to second-order accuracy using the Dirichlet data
g ; Eqg. (5) and interior field values by replacing E0) with
Xij=(1Ax,]4y kAz), (18) the following 3-point one-sided finite difference:

which is commensurate with the sides of the box @g. The

mesh indicesi(j k) satisfy oo —3(vy)ojk T 4(vx)1jk— (V) 25k
2AX
N, N N, N N N
—%Qs%, —%sjs7, _7Z$k$72- :4(Ux)ljk_(vx)2jk, (24
(19 2AX

The aspect ratios I, I'y) and the positive integers with similar expressions fo#yv, andd,v,. The advective
(N,,N,,N,) are specified as input to the code, and the corderivative—(v- V)T in Eq. (8) vanishes on these Neumann
responding spatial resolution®\X,Ay,Az) are then deter- walls sincev does, and so the explicit steps do not require
mined from the relationsAx=T";/N,, Ay=T,/N,, and special treatment.
Az=1/(N,). For large-aspect-ratio convection problems, Given the discretizations Eq&0)—(24), the explicit time
typically Ax=Ay>Az since thex and y directions are steps, Eqs(8) and (11), are easily evaluated at all interior
equivalent and there is a finer structure in the vertical direcpoints and on the Neumann boundaries. For the implicit
tion caused by the close opposing horizontal plates. steps, the right sides of Eqd.0) and(12) are also evaluated

At all mesh points, Eq(18), interior to the box, the first- on the interior mesh points and on the Neumann boundaries.
and second-order spatial derivatives are approximated usinghese right sides are then used as input to the FISHPACK
centered second-order-accurate 3-point finite-difference stei24] fast direct solversHwacRT in three dimensions or
cils. If ujj=u(x;) denotes the values of a fiel(x) at the ~ HWSCRT in two dimensions. Also provided as input to the
mesh points, then the partial derivatiggi atx;; is approxi- ~ FISHPACK solvers are the corresponding boundary condi-

mated by tions, Egs.(6) and(7) for T, Eq. (5) for the velocity compo-
nents, and Eq(17) for p. The FISHPACK solvers return
Ugi+1)jk — Ugi—1)jk second-order-accurate valuéwith respect to the spatial

[axulije=~ T 2Ax (20) resolution of T, v, andp on the meskx;j .

We conclude this section with the observation that the
with similar expressions fo#,u andd,u. The Laplacian ofi discrete velocity fieldv"*? obtained from the concluding
at x;j is approximated by the usual 7-point stencil step, Eq(16), is only approximately divergence-free even on

the mesh pointsqjy , i.e., V-v"*1=0(h?) whereh is the
larger of the spatial resolutiondx, Ay, and Az. This is
because the discrete approximation Ef)) for the pressure
gradient in Eq.(16) is not consistent with the discretization
Eq. (21) used to approximate the Laplaci& V on the left
(21 side of Eq.(15). The discrete Laplacian can be considered as
Ay? arising from the evaluation of pressure gradients from pairs
of nearest neighbor points as follows:

Ui +1)jk = 2Uijk + UG- 1)jk
AX?

[Vzu]ijk%

n Ui(j+ 1)k~ 2Uijk + Ui - 1)k

n Uij (k+ 1)~ 2Uijic + Uij k1)
AZ? '

(22) L1
[9xPijk :H([axp](i 12k~ [Pl —125) (25

Nonsymmetric finite differences are needed to evaluate

expressions on those boundaries for which a Neumann con- _ 1 [Pi+nik— Pijk _ Pijk— Pii-1)ik
dition holds (we will call these “Neumann boundariep” AX AX AX
since field values outside the domain are not available. Thus (26)
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In contrast, Eq(16) evaluates the pressure gradient at a point TABLE I. Estimated order of convergengg from Eq.(27), as
using a finite-difference Eq(20) that spans three mesh a function of the number of mesh poirts=T", /h, for a stationary
points. solution of a two-dimensional square box with periodic sidewalls.
The aspect ratiol'y,=2.016, Rayleigh numbeR=1725, and
Prandtl number=0.71. Results are presented for the temperature
field T(x,z) and for thez component of the velocity(x,z).

In this section, we discuss several tests that quantify the

IIl. ACCURACY AND EFFICIENCY OF THE ALGORITHM

accuracy of the above algorithm for a convecting fluid in a N Py for T pr for w
two-dimensional rectangular domain with periodic sidewalls 16 1.46 1.43
and in a three-dimensional rectangular domain with perfectly 32 1.80 1.79

insulating sidewalls, Eq(7). We first confirm the second-

order accuracy of the code with respect to the spatial and

time resolutions by studying how the temperature and veloc-

ity fields converge with increasing spatial and time resolu- pg=|092(

tions, respectively. We next show empirically how the maxi-

mum stable time step varies with the Rayleigh nunfkand

the Prandtl numbers. We then calculate the critical Ray- We first studied the convergence with respect to the spa-

leigh numberR,; and plot the Nusselt numbéd(R) as a tial meshh for a two-dimensional box with periodic side-

function of the Rayleigh numbeR, and obtain good agree- walls, for parameter valueE,=2m/q.=2.016, R=1725.0

ment with an analytical expressig84] and with a spectral ~1.01R,, ando=0.71. The initial conditions consisted of a

code[35]. Finally, we show the spatial structure of the fields small random perturbation about the linearly conducting

near onset, to allow comparison with experiméd6] and  state To=—1z, vo=(uy,Wo)=0, and these were integrated

with other codes. until a stationary state was attained consisting of two rolls at
We note that, on a workstation with a 667 MHz 21264Athe critical wave numbeg. . For this small cell, an integra-

64-bit Alpha processor, a square box with aspect r&tio tion time of &, was sufficient for the dynamics to become

=40 and spatial resolutiodAx=Ay=Az=1/8 takes about stationary. We then studied the temperature figjtk,z) and

4.8 s per time step oht=0.001t,. This corresponds to 80 the x component of the velocity fieldi,(x,z) for different

min per vertical diffusion time, and 90 days per horizontal spatial resolution®=I",/h=16, 32, 64, and 128. The time

diffusion time t,,, so this code is too slow to exploe  stepAt was set, respectively, to the valugds=0.01, 0.005,

>20 cells over time scales exceeding a horizontal diffusiorp.0025, and 0.001 25 since the operator splitting makes the

time. We discuss two ways of improving the efficiency of thelargest stable time step proportionaltoTable | summarizes

||u4g_u2g||). (28)

||u29_ ug”

code in our concluding comments in Sec. IV. the values of the limit Eq(27) and shows that indeed,
—2 ash—0, i.e., the code is asymptotically second-order
A. Second-order convergence with respect to the spatial accurate with respect to the spatial resolution
and time resolutions We have also studied the convergence with respect to the

. . time stepg for a three-dimensional box with perfectly insu-
We begin by showing that the order of convergepaaf lating si?jgewalls and for parameter Va|UF§£Fy:2¥ R

the code is asymptotically &econd ordegrin the limits of —1725.0-1.01R,, ando=0.71. The initial condition con-

sufficiently fine spa_ltial and time resqlutions. B.y dlefinition, sisted of small random thermal perturbations, and these were
the_ convergence with respect to S_pﬁ“a' resolution is of Ordeirntegrated up to 20 diffusion times at which point the state
P if_[Juy=Ueiacl =O(h?) in _the limit h—0, \{vhere ul became stationary. For various time resolutiogs At
= V2;ujj denotes the Euclidean norm of a fieldon the  _ g 01, 0.000 05, and 0.000 025, all with a space resolu-
spatial meshh=Ax= Az is the uniform spatial resolution in  tion of N=64. the convergence was foupasing Eq.(28)]
the x and z directions of a two-dimensional boxin(x,2)  {g hep=1.68. This provides evidence that the code is indeed

denotes a discrete numerical field on a mesh of resolition 5qymptotically second-order accurate with respect to the time
and UgyafX,2) is the unknown exact field on the spatial resolutiong.

mesh. By writing Up(X,2) = Ugyac{X,2) + C(X,2)hP in the
limit h—0, for some functiorC independent oh, we de-

duce that the ordep can be estimated by examining the B. Dependence of maximum stable time step on Rayleigh
quantity[37] and Prandtl numbers

Since an important practical feature of any production
ph=Io (M) 2 code is the largest time step that can be taken before numeri-
2\ lugn—upll ) cal instability occurs, we have studied the maximum stable
time step as a function of the Rayleigh and Prandtl numbers.
in the limith— 0. The estimate Eq27) involves field values A three-dimensional box with periodic sidewalls and aspect
at the three levels of resolutionh4 2h, andh, coarsest to ratio I'y=T"y=2 was used, with a spatial resolutialx
finest. A similar definition for the order of convergence with =16. The Euclidean norm of the temperature fi¢lH|, was
respect to time resolution can be made if the spatial neesh calculated for various values dft each time after a interval
is replaced by the time step=At, of 20 vertical diffusion times so that transients decayed. The
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10

» (a) wherea=—1.2 wheno=1, anda= —1.3 wheno=10.

' In Fig. 1(b), we plot the maximum stable time step as a
function of the Prandtl number for fixed Rayleigh numbers
R=2048 (square symbo)sand R=8192 (cross symbols
For R=2048, the maximum stable time step decreases to-
ward both small and large Prandtl numbers. Ret 8192,
the maximum stable time step decreases toward small
Prandtl numbers but is approximately constant at large
Prandtl numbers. The smaller time step needed at small
Prandtl numbers can be attributed to the more dynamical
nature of the convective flow at small Prandtl numbers, such
as the presence of spiral defect chf®3)].

Max. Stable At
o

s C. Estimate of the critical Rayleigh number R,

10 R/R 10 A linear stability analysis of the Boussinesq equations
about the linearly conducting profile between two infinite
. (o) horizontal no-slip plates shows that the critical Rayleigh
' ' numberR.~1707.76 with critical wave numbey.~3.117,
and that the values oR; and q. are independent of the
Prandtl numbers [2]. We tested these predictions and so
validated the code by using a two-dimensional box of aspect
ratiol",=2m/q.=2.016, with periodic sidewalls, for Prandtl
numbero=0.71. We used a uniform spatial resolutibn
=1/N=Ax=Az and varied the numbeX of mesh points.
The critical Rayleigh numbeR. was estimated as the
approximate value oR for which the growth rate. =\ (R)
) . of a small-amplitudg(0.01) random perturbation about the
—t ) ) ) linear profile interpolated to zero as a functionRfThus for
// a sufficiently tiny initial perturbation of the conducting pro-
file, there is a time interval over which ttevelocity com-
107 = X ponentw grows approximately exponentially

Max. Stable At
E;I

Iw(t,x,2)|~c(R)eM, (30)

FIG. 1. (a) Plot of the maximum stable time step as a function of ] o
Rayleigh number. The Prandtl number is kept constansatt ~ Where\ is the growth rate, andis independent of but can
(square symbojsand o= 10 (for cross symbols The cell has as- Vvary with R. For R>R., the growth rate is positive, faR
pect ratiol’,=T',=2 and periodic sidewalls. The mesh resolution is <R., the growth rate is negative, and interpolating between
Ax=1/16. Small random perturbations in the temperature field ar&known positive and negative values provides an estimate of
used as initial conditions. The simulation is run until 20 vertical R;, for whichA=0.

diffusion times, at which time the Euclidean nofli is then cal- Our protocol was to seR=R,=1725=1.01R; just
culated. The value oAt such that this norm becomes greater thanabove onset, set the initial velocity field to zerg
10° is defined as the maximum stable time stép. Plot of the =(ug,Wo)=0, and set the initial temperature fielh=—z

maximum stable time Step as a function of Prandtl number. The..l_ ST to a t|ny random perturba‘“om(x’z) Of the ||near
Rayleigh number was kept constantfat 2048 (square symbols  profile T= —z, with | 5T|<0.01. The initial conditions were

andR=8192(cross symbols The same aspect ratio, mesh resolu- theny integrated for a short time and the growth rate estimated
tion, and initial conditions as ifa) were used. from the formula

maximum stable time step was then defined as the value of N~ In(w(t,x,2)[l/[[w(ty,x,2)]) 31
At such that|T| remains bounded, i.€|T|<1C’. - t,—ty ’

In Fig. 1(a), we plot the maximum stable time step as a ) ] i
function of the Rayleigh number for the two Prandtl numberWheret, andt;<t, are two times during the exponential
valueso=1 (square symbojsand o= 10 (cross symbols ~ growth of the magnitude of thecomponent of the velocity
We see that the maximum stable time step decreases rapidi{¢!/d W. The calculation was then repeated with the same
with increasing Rayleigh number. This is to be expecteditial condition but forR=R_=1691=0.9R, to estimate a
since the magnitude of the velocity and temperature field§ecay rate\ .. The critical Rayleigh number was then esti-
increase with increasing. In fact, a best log-log fit to the Mated as the zero of the line joining the poir.(,A ;) and

data yields the relation (R-,\_). The estimated critical Rayleigh numbédRs as a
function of the number of mesh pointd, are summarized in
max At)xR?, (29 Table II. The values are correct to a relative error of better
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TABLE Il. Estimated critical Rayleigh number., based on
where the growth rate= o(R) linearly interpolates through zero.
The relative error is defined byrR(—1708)/1708.

N R. Relative error(%)
16 1693.0 0.9
32 1696.6 0.7
64 1698.5 0.5

than 1% for the finest spatial resolution, confirming the cor-
rectness and convergence of the discretization and of the
solution technique.

(@) 03 -05 0 05 1
1.3 T T T T X
FIG. 3. (a) Contour lines of the temperature fiek{x,z) ob-
1.257 1 served at time=12 in a two-dimensional box of aspect rafig
=2 with periodic sidewalls. The parameters have valles
1.2f : =2500,0=0.71,Ax=Az=1/16 (N=16), andAt=0.01.(b) Con-
tour lines of the temperature field observed in a simulation using the
2145} . same geometry and spatial resolution aganbut for R=10* and

time stepAt=0.0025.

r D. The Nusselt number versus Rayleigh number curvél (R)

1.08¢ ] Another way to characterize the accuracy of a convection
code is by the dimensionless Nusselt numbé#i,R,o),
which is the instantaneous global vertical heat transport

1750 1800 180 1900 1950 2000 through the fluid layer, normalized to the heat transport aris-
ing from thermal conduction alone. For the dimensionless
() variables used in Eq$l)—(3) above, the Nusselt number can
3 ' ' ' be expressed in the forfi26]
2.8f
26 N= 1+<W(T_ Tcond)>! (32)
2.4f 1 wherew is the z component of the velocity field an@.,,q
20| = —zis the temperature profile of the linear conducting state
S with v=0. The bracketg- - -) denote an average of a quan-
z 2 1 tity over the horizontal coordinates. Sufficiently close to on-
1.8} . set, numerical values df can be compared with an analyti-
16l cal expressioni34] that is valid asymptotically in the limit
R—-R.—0".

1.4 I We have evaluated E432) for the two-dimensional do-
1.2} 1 main with periodic sidewalls of the preceding section, with
) , , , , , parameter$’,=2.016,0=0.71, and\=16. Starting from a

2000 4000 6000 8000 10000 small perturbation of the linear profile, we integrated until a

Ra stationary state was attained, and then evaluated3®yfor

FIG. 2. (a) Comparison of numericgsquare symbojsand the-  the stationary state. Figure 2 shows hidvempirically varies
oretical (cross symbolsNusselt numbers versus Rayleigh number. with R, and we compare this curve with the analytical result
The numerical values come from time-independent two-of Schiiter et al.[34], and with numerical values obtained by
dimensional nonlinear stategt time t=12) with periodic side- Clever and Bussg35], who used a two-dimensional spectral
walls. The parameters have the vallgs=2, R=2500,0=0.71,  code with periodic sidewalls. The agreement is good in both
Ax=Az=1/16 (N=16), andAt=0.01. The initial state was a cases and confirms the correctness and accuracy of the code.
small random perturbation of the linear conducting profile. The the-
oretical values come from an asymptotic expang@fi. (b) Com-
parison of Nusselt number versus Rayleigh number obtained nu-
merically for our algorithm(squarey and for a spectral code of We conclude this section with a few examples of the spa-
Clever and Bussg35] (*). The agreement is better than 3%. tial structure of the fields obtained from the code to show

E. Spatial structure of the numerical solutions
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0.5

—0.5.

N s, O O O

w(x,0)
o

-2

)

-6
-8

-19 -0.5 0 0.5 1
X

FIG. 4. (8 Time-independent velocity field(x,z) at timet
=12 for R=2500, for the same geometry and resolution as Fig. 3.
The steady state consists of two convection rolls at the critical wave
number q.=3.117. (b) Vertical velocity componentw(x,z=0)
through the midline of the cell, indicating the rangevef

x

that the fields are physically reasonable when adequately re-
solved, and are qualitatively in agreement with other codes
and with experimenf36].

For 0=0.71, Fig. 3 shows contours of constant tempera-
ture T and for two values of the Rayleigh numbeR
=2500 in(a) andR=10" in (b). Warm fluid ascends in the
middle of the cell and descends as cooler fluid on both sides. y
As R increases, a thermal boundary layer forms at the top
and bottom plates, creating a finer spatial structure that will FIG. 5. (&) Weakly time-dependent temperature contours at the
require eventually a decrease in the vertical spatial mesh sizgidplane, T(x,y,z=0), at time t=200 obtained from a three-
Az. Figure 4a) shows the corresponding velocity field dimensional box of aspect ratlo,=I"y =16 with no-slip and insu-
=(u,w), while Fig. 4b) shows the vertical componemt lating boundary conditions, Eqé5) and (7). Parameter valu_es are
through the midline of the cell. The occurrence of two R=2500,0=0.71, Ax=Ay=Az=1/8, andAt=0.01. (b) Time-
square-shaped convection cells of opposite vorticity is irfi€Pendent temperature contours at the midplaite,y,z=0), for
good agreement with experimejas). the_ same geometry and resolutions as{ahbut for_ R=8§_00 for_

Figure 5 shows constant temperature contours in a threé/\_/hlch the rolls are upstal_ale to the oscillatory |nstat_)|llty, which
dmensional box wih nsulating Scewalls at time (1075 % % PERSSAUTg nes sore he ols, he he veres
=200t,, for parameterd’=16, R=2500, 0=0.71, andh ’ '

: is(N)y=1.44.
=Ax=Ay=Az=1/8, At=0.01. In agreement with experi-
ment [38] and with calculations on the Swift-Hohenberg
model of convectiofi39], the rolls are approximately normal fipples that propagate along the length of the rolls. The oc-
to the lateral walls and the pattern consists of two diagonallgurrence of the oscillatory instability and its spatial form are
opposite foci. For slightly higheR= 8500, Fig. b) shows in good agreement with the linear stability analysis of Busse
that the oscillatory instability commenced in the form of and collaborator$26] and with experiment.
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IV. CONCLUSIONS rays that represent the fields over the various processors, and,
econd, replacing the fast direct solvers with iterative meth-
finite-difference algorithm for integrating the Boussinesq ds for sparse matrices, Bgcapse of the simpler _data struc-
equations in two- and three-dimensional boxes, with sideE.lJr.eS apd reduced.comr'nun.lcatlon overhead 'assomated_ with a
walls that are periodic, thermally insulated, or the,rmally Con_flnlte_-dlfference dlscrt_at!zatlon, t_he parallellzeql algorithm
' ' will likely be more efficient for simple geometries and for

ducting. Our.approach is useful for S|mp_le geometries Suc.Igimple boundary conditions than the parallel spectral element
as a box, cylinder, torus, and annulus, with boundary condi:

. . ’ m[ethod of Refs[13,14.
tions such that various linear operators are separable so tha Because time integration algorithms involve sequential
fast_d_|rect met_hc_)ds can be applied. _The resulting algorithm I%teps, parallelizing a code allows a larger spatial domain, but
sufﬂqently effl_czlent that aspect ratios up i=20 can be not a longer observation time, to be studied for a fixed
studled.c.)n a single-processor workstation over several da_y mount of wall-clock time. A second helpful improvement
We verified that th? code was seconq-order accurat_e wit ould be to increase the efficiency of the time integration
respect to the spatial and_t_lme resolptlons, and that it 9a8VKethod close to the onset of convection so that larger time
good agreement for the cr|t|ca_l Rayleigh number and for thesteps can be taken for a given computational effort. A weak-
Nusselt numbgr Versus Rayleigh number curve near onset. ess of the operator splitting used in most convection
T_he most significant feature of our algqr[thm Is the use Ofgodes—ﬁnite—difference spectral, and spectral-element—is
a sm_gle nonsta}ggered mesh for discretizing the equat|on[§1at the explicit integration of the advection terms imposes a
and fields(velocity, temperature, and pressuréhe use of a bound on the time step of the for@e-Y2Ax whereC is a
single mesh simplifies the writing and validation of the code,Constant ande=(R—R,)/R, is the reduced Rayleigh num-
and faC|I|tate_s adding new physical terms such as a COUOI' er. This bound is indfape;dent of the spatial resolution and
force. The single mesh also gllowed the use of fast d'recdiverges less rapidly in the limié—0" than the physical
methods from the FISHPACK librafy24] to solve the Helm-

. . . . 71 . _
holtz and Poisson equations associated with the implicit parlﬂme scale, which is proportional te”~. It would be inter

of each time step. We found that numerical integrations OFtS;Ingir;to etszonrie L\jvehests((:arr] aa;nOge;gﬁ?fte'iatggeﬁg;C'r;te';?]g'd
the Boussinesq equations were stable on a single mesh ppIng q P

spite results of some previous papers that suggested that i%‘“] or a fully implicit method[42,43 may succeed in

nonstaggered Navier-Stokes code could be unstable becau wing "'?“ger time steps that are commensurate with the

of pressure oscillations. physical time scale while retaining the efficiency of the
Although the algorithm is useful and has been successI:-)resent code.

fully applied to several problem&,5], there are two ways

that the algorithm could be improved for the future study of

large-aspect-ratio Rayleigh-Bard convection. First is to

parallelize the code for a distributed-memory parallel com- We would like to thank Michael Cross, Paul Fischer, and

puter so that aspect ratios comparable to the largest expeidark Paul for helpful discussions, and the Department of

ments (56<I"'<100) could be studied. This is technically Energy for supporting this research under Grant No. DE-

straightforward and would involve, first, distributing the ar- FT02-98ER14892.

We have described and characterized a semi-implici
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