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Efficient algorithm on a nonstaggered mesh for simulating Rayleigh-Be´nard convection in a box
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An efficient semi-implicit second-order-accurate finite-difference method is described for studying incom-
pressible Rayleigh-Be´nard convection in a box, with sidewalls that are periodic, thermally insulated, or ther-
mally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the
solution of four Helmholtz equations and one Poisson equation, and these are solved by fast direct methods.
The method is numerically stable even though all field values are placed on a single nonstaggered mesh
commensurate with the boundaries. The efficiency and accuracy of the method are characterized for several
representative convection problems.
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I. INTRODUCTION

Experiments over the last three decades have discov
many fascinating and poorly understood examples of pat
formation in large-aspect-ratio Rayleigh-Be´nard convection
@1,2#. Because of the prominent role that these experime
play in understanding sustained nonequilibrium systems@2#
and because many of the observed phenomena such as
tiotemporal chaos are difficult to analyze mathematically@3#,
there is a need to develop computer codes that can sim
these experimentsquantitativelyso that theory and experi
ment can be compared with one another. Once valida
such codes can further be used to explore regimes not e
attained by experiment such as low Prandtl number, an
calculate quantities that are difficult to deduce from expe
mental data, such as mean flows@4,5# and fractal dimensions
@6#.

The regime of large aspect ratioG ~ratio of horizontal
fluid width to fluid depth! poses significant computationa
challenges. Many numerical degrees of freedom~basis func-
tions or mesh points! are needed to represent the spatial f
tures of the fluid and often the dynamics needs to be stu
over long times~many multiples of the horizontal therma
diffusion time th5G2tv , where tv5d2/k is the vertical
thermal diffusion time defined in terms of the fluid depthd
and fluid thermal diffusivityk) to ensure that nontransien
behavior is being observed. Since the largest time step
lowed by numerical stability for explicit or semi-implicit al
gorithms~those most commonly used in Navier-Stokes c
culations! is typically 0.05tv or smaller, simulations in a
representativeG550 cell may require 105 or more time steps
to eliminate a transient and then study the statistically
tionary properties of the asymptotic dynamics. The ma
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degrees of freedom and long integration times together w
the need to repeat runs for different parameter values im
that efficient algorithms are essential for studying the lar
aspect-ratio regime.

Because of these computational challenges, there h
been few simulations of three-dimensional Rayleigh-Be´nard
convection with aspect ratios exceeding 10. Recent calc
tions with G as large as 64 have been carried out by Pe
and collaborators, who used a pseudospectral code on s
and parallel computers to study spiral defect chaos, rota
convection, and other problems@6–8#. However, their code
uses periodic boundaries and so cannot take into acc
quantitatively the influence of lateral walls on the bulk d
namics. Arter and Newell@9# and Tomita and Abe@10# have
carried out simulations in large boxes with thermally ins
lated no-slip sidewalls, the former in a 16311.5 aspect-ratio
box, the latter in aG518.84 square box. Xiet al. @11# have
studied the transition to spatiotemporal chaos of a convec
fluid in a G560 square cell, but with free-slip horizonta
boundaries that are difficult to achieve experimentally.
nally, a Caltech-Duke collaboration has recently reported
sults @12,13# obtained with a parallel spectral element co
@14# for aspect ratios up to 30. Their code can treat qua
tatively most geometries and lateral boundaries used by
perimentalists, including ramps@15#, spoiler fins@16#, and
lateral walls of finite thickness and finite thermal conduct
ity. However, the generality of the spectral element algorit
makes it substantially more expensive to run than algorith
optimized for a simple geometry such as a box or a cylind

In this paper, we introduce and analyze an efficient se
implicit finite-difference algorithm for studying incompres
ible Rayleigh-Be´nard convection in a box, with lateral wall
that are periodic, thermally insulated, or thermally condu
ing. The code complements the more flexible spectral e
ment approach@12,13# by being more than an order of mag
nitude more efficient on a serial processor, for a box w
these boundary conditions. It is well suited for studyi
©2003 The American Physical Society05-1
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long-time dynamics of small- to moderate-aspect-ratio bo
@4# (G<20), with lateral boundaries that are close to those
many experiments, although not fully quantitatively accur
since the finite thickness and finite thermal diffusivity of t
lateral walls is not taken into account.

The main advantages of our algorithm are the simplic
of implementation and its efficiency on a single processor
simplicity arises from the use of a single mesh for all fie
values. ~This is called a ‘‘nonstaggered’’ or ‘‘collocated
mesh in contrast to a ‘‘staggered’’ mesh for which the valu
of different fields appear at different points in space@17–
19#!. A nonstaggered mesh reduces the effort to write an
validate a code~compared to that using a staggered mes!,
and facilitates porting the code to a distributed-memory p
allel computer. Earlier work on Navier-Stokes integrators h
suggested that nonstaggered mesh codes can be numer
unstable because of pressure oscillations@17,20#. Our results
below show that an algorithm to integrate the Boussin
equations on a nonstaggered mesh can be numerically st

The use of a single nonstaggered mesh also helps to
plain the efficiency of the algorithm. Using a standa
operator-splitting and projection method together w
second-order-accurate finite differences@21,22# on a uniform
three-dimensional mesh, the advancement of the velo
temperature, and pressure fields at each time step require
numerical solution of four Helmholtz equations and o
Poisson equation. Because these elliptic equations and
boundary conditions areseparable, these can be solved effi
ciently using fast direct methods from the FISHPACK libra
@23,24#, with a complexity per problem ofO„N ln(N)…,
whereN is the total number of mesh points. Fast direct me
ods are more efficient than most iterative methods o
single processor@25#, and have the additional advantage th
no internal parameters need to be adjusted to obtain con
gence. However, fast direct methods are not applicable
complex geometries, to problems with spatially varying p
rameters, or to complicated boundary conditions that lea
nonseparable equations.

The remainder of this paper is organized as follows.
Sec. II, we discuss details of our algorithm, namely, how
fields and equations are discretized and how the resu
equations are solved. In Sec. III, we discuss the converge
properties of the algorithm and its efficiency for several re
resentative two- and three-dimensional convection proble
We confirm empirically the second-order accuracy of the
lution and examine how the largest time step allowed
stability varies with Prandtl number and with Rayleigh nu
ber. Finally, Sec. IV presents our conclusions and sugg
some avenues for further algorithmic improvements. App
cations of the algorithm to study quasiperiodic dynamics a
spiral defect chaos in three-dimensional boxes can be fo
in Refs.@4,5#.

II. DETAILS OF THE ALGORITHM

A. Equations and boundary conditions

Our goal is to integrate the Boussinesq equations that
scribe incompressible buoyancy-driven Rayleigh-Be´nard
02670
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convection with an external forcef. These equations can b
written in the dimensionless form@26#

] tT~ t,x,y,z!5@2~v•“ !T#1¹2T, ~1!

] tv~ t,x,y,z!5@2~v•“ !v1sRTẑ1sf#1s¹2v2“p,
~2!

“•v50. ~3!

The variablesx and y denote the horizontal coordinate
while thez variable denotes the vertical coordinate, with t
unit vectorẑ pointing in the direction opposite to the grav
tational acceleration. The fieldv5(vx ,vy ,vz) is the velocity
field at point (x,y,z) at timet, while p andT are the pressure
and temperature fields, respectively. The dimensionless
rameterss andR denote the Prandtl and Rayleigh numbe
respectively. The vector fieldf(t,x,T,v) is some external
force, e.g., a Coriolis forcef52v3V arising from a rigid
rotation of the convection cell with constant angular veloc
V5V ẑ. The terms grouped in brackets in Eqs.~1! and ~2!
are those containing nonlinear terms or linear terms w
low-order spatial derivatives, and will be integrated expl
itly by the operator-splitting method described below.

We would like to integrate Eqs.~1!–~3! in a box geometry
defined by the region

2
Gx

2
<x<

Gx

2
, 2

Gy

2
<y<

Gy

2
, 2

1

2
<z<

1

2
, ~4!

whereGx and Gy are the aspect ratios in thex and y direc-
tions, respectively~the depth of the fluid has length 1!. A
no-slip velocity condition on all material walls is assumed

v50, ~5!

and the temperatureT is constant on the bottom and to
plates,

T56
1

2
for z57

1

2
. ~6!

The code allows the temperature on any opposing pai
lateral walls to be periodic, or to satisfy on each lateral w
an arbitrary Dirichlet boundary condition~e.g., a thermally
conducting wall corresponding to a linear conducting pro
of the formT5a1bz, wherea andb are constants!, or an
arbitrary Neumann condition~e.g., a thermally insulating
wall with ]nT50, where]n is the normal derivative to the
boundary at a given point!. To simplify the following discus-
sion, we will consider only the case of insulating sidewal

]nT50 on lateral walls, ~7!

since the other cases involve just simple modifications.
though the pressure fieldp formally has no associated bound
ary condition since it does not satisfy a dynamic equati
we will be imposing a Neumann boundary condition onp as
explained below@see Eq.~17!#.
5-2
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B. The time integration method

We next discuss the time integration method, since
structure can be explained before having to specify a sp
representation for the fields. In Sec. II C we discuss how
fields and equations are discretized and the latter solved
ing second-order-accurate finite differences on a unifo
spatial mesh.

Our time integration method uses a standard opera
splitting and projection method@21,22#, in which the nonlin-
ear terms containing lower-order or no spatial derivatives
integrated explicitly, then the linear diffusion operators a
integrated implicitly, and finally the pressure term2“p is
integrated to project the velocity field at the next time s
into the space of divergence-free velocity fields. Opera
splitting has two benefits. First, the evolution equations foT
and for the velocity componentsv i are decoupled from one
another, which simplifies the overall algorithm and subst
tially reduces the total computer memory needed. Seco
operator splitting allows larger time steps since the larg
time stepDt allowed by stability is bounded by a first powe
of the spatial resolutionDx, rather than by a second powe
as would be the case for a fully explicit method.

Let us assume that, at thenth time steptn5nDt with n
>0, initial fields Tn and vn are known that are consisten
with the boundary conditions Eqs.~5!–~7!. These fields are
then advanced to the future valuesTn11 and vn11 at time
tn115tn1Dt as follows.

~1! The nonlinear advective termNT@T,v#52(v•“)T of
Eq. ~1! is integrated explicitly using a second-order-accur
Adams-Bashforth method

T* 5Tn1
Dt

2
~3NT@Tn,vn#2NT@Tn21,vn21# !, n>0,

~8!

to produce an intermediate fieldT* . Here Tn21 and vn21

denote field values stored from the previous time steptn21
5tn2Dt. For the first time stepn50 only, a second-order
accurate single-step integrator, Heun’s method@27#, is used
in place of the Adams-Bashforth method to avoid the dep
dence on the unavailable field values at timet52Dt.

~2! The intermediate fieldT* is then advanced to the tem
perature fieldTn11 at time tn11 by usingTn as initial data
for an implicit Crank-Nicolson step applied to the diffusio
term in Eq.~1!:

Tn112T*

Dt
5

1

2
~¹2Tn111¹2Tn!. ~9!

This can be written as a constant-coefficient Helmholtz eq
tion for the future fieldTn11:

S 12
Dt

2
¹2DTn115T* 1

Dt

2
¹2Tn, ~10!

and is solved with the boundary conditions~6! and ~7! ap-
plied to Tn11.

~3! Three similar pairs of explicit and implicit steps a
then executed successively; first for the velocity compon
02670
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vx , then forvy , and then forvz . The explicit steps advanc
the velocity fieldvn to an intermediate fieldv* , and then the
implicit steps advancev* to asecondintermediate fieldv** .
If we denote byNi@T,v# the expressions in brackets of E
~2! for i 5x, y, andz, then each explicit step has the form

v i* 5v i
n1

Dt

2
~3Ni@T,vn#2Ni@T,vn21# !. ~11!

Heun’s single-step method is again used at timet050 to
avoid unavailable field values at timet2152Dt. Each field
v i

n is next used as initial data for an implicit Crank-Nicolso
step that yields a constant-coefficient Helmholtz equation
the fieldv i** :

S 12
sDt

2
¹2D v i** 5v i* 1

sDt

2
¹2v i

n . ~12!

This is solved with the no-slip boundary conditionv i** 50
on all surfaces, Eq.~5!.

~4! An incompressible velocity fieldvn11 at time tn11 is
obtained from the fieldv** by integrating the final operato
step

] tv52“p, ~13!

with initial data v** , followed by a projection method
@22,28#. We approximate the time derivative in Eq.~13! with
a first-order-accurate stencil,

vn112v**

Dt
52

1

2
~“pn111“pn!, ~14!

apply the divergence operator to both sides, and then use
~3! in the form“•vn1150. This yields a Poisson equatio
for the pressure fieldp:

¹2pn1152¹2pn1
2

Dt
“•v** . ~15!

Oncep is known by solving Eq.~15!, we obtainvn11 from
Eq. ~14! in the form

vn115v** 2
Dt

2
~¹pn111¹pn!. ~16!

Although mathematically there is no boundary condition
p—and by discretizing first space and then time, a bound
condition for p can be avoided as explained in Ref
@21,29,30#—we will solve Eq.~15! with the Neumann con-
dition

]npn1150 on all walls, ~17!

since this allows us to use a fast direct method to solve
~15!. There is substantial literature concerning the appro
ateness and accuracy of the boundary condition~17! @31,32#.
Rather than review this literature, we simply point out tha
Neumann pressure boundary condition has been shown
previous researchers to produce acceptably accurate re
5-3
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for problems in which the fluid is confined by no-slip su
faces, and we show directly in Sec. III that our algorithm
second-order accurate in space and second-order accur
time for several representative problems.

The most time consuming part of this algorithm is, by f
solving the four Helmholtz equations, Eqs.~10! and~12! ~for
i 5x, y, andz) and solving the Poisson equation, Eq.~15!.

C. Discretization on a uniform mesh

The explicit and implicit steps of the preceding section
Eqs. ~8! and ~10!, Eqs. ~11! and ~12!, and Eqs.~15! and
~16!—are carried out by discretizing the fields and equatio
on asinglenonstaggered mesh of points

xi jk5~ iDx, j Dy,kDz!, ~18!

which is commensurate with the sides of the box Eq.~4!. The
mesh indices (i , j ,k) satisfy

2
Nx

2
< i<

Nx

2
, 2

Ny

2
< j <

Ny

2
, 2

Nz

2
<k<

Nz

2
.

~19!

The aspect ratios (Gx ,Gy) and the positive integer
(Nx ,Ny ,Nz) are specified as input to the code, and the c
responding spatial resolutions (Dx,Dy,Dz) are then deter-
mined from the relationsDx5Gx /Nx , Dy5Gy /Ny , and
Dz51/(Nz). For large-aspect-ratio convection problem
typically Dx5Dy.Dz since the x and y directions are
equivalent and there is a finer structure in the vertical dir
tion caused by the close opposing horizontal plates.

At all mesh points, Eq.~18!, interior to the box, the first-
and second-order spatial derivatives are approximated u
centered second-order-accurate 3-point finite-difference s
cils. If ui jk5u(xi jk) denotes the values of a fieldu(x) at the
mesh points, then the partial derivative]xu at xi jk is approxi-
mated by

@]xu# i jk'
u( i 11) jk2u( i 21) jk

2Dx
, ~20!

with similar expressions for]yu and]zu. The Laplacian ofu
at xi jk is approximated by the usual 7-point stencil

@¹2u# i jk'
u( i 11) jk22ui jk1u( i 21) jk

Dx2

1
ui ( j 11)k22ui jk1ui ( j 21)k

Dy2
~21!

1
ui j (k11)22ui jk1ui j (k21)

Dz2
. ~22!

Nonsymmetric finite differences are needed to evalu
expressions on those boundaries for which a Neumann
dition holds ~we will call these ‘‘Neumann boundaries’’!
since field values outside the domain are not available. T
02670
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the right side of the Helmholtz equation, Eq.~10!, needs to
be evaluated on the Neumann boundaries for which Eq.~7!
holds. The value of¹2T* can be approximated there t
second-order accuracy by using one-sided 4-point fin
difference approximations for the second-order derivativ
e.g.,

@]x
2T* #0 jk'

2T0 jk* 25T1 jk* 14T2 jk* 2T3 jk*

Dx2
, ~23!

with similar expressions for]x
2T* at x5Gx , and for]y

2T* on
the y50 andy5Gy boundaries. The divergence“•v** on
the right side of the pressure equation, Eq.~15!, can be ap-
proximated to second-order accuracy using the Dirichlet d
Eq. ~5! and interior field values by replacing Eq.~20! with
the following 3-point one-sided finite difference:

@]xvx#0 jk'
23~vx!0 jk14~vx!1 jk2~vx!2 jk

2Dx

5
4~vx!1 jk2~vx!2 jk

2Dx
, ~24!

with similar expressions for]yvy and ]zvz . The advective
derivative2(v•“)T in Eq. ~8! vanishes on these Neuman
walls sincev does, and so the explicit steps do not requ
special treatment.

Given the discretizations Eqs.~20!–~24!, the explicit time
steps, Eqs.~8! and ~11!, are easily evaluated at all interio
points and on the Neumann boundaries. For the impl
steps, the right sides of Eqs.~10! and~12! are also evaluated
on the interior mesh points and on the Neumann bounda
These right sides are then used as input to the FISHPA
@24# fast direct solversHW3CRT in three dimensions or
HWSCRT in two dimensions. Also provided as input to th
FISHPACK solvers are the corresponding boundary con
tions, Eqs.~6! and~7! for T, Eq. ~5! for the velocity compo-
nents, and Eq.~17! for p. The FISHPACK solvers return
second-order-accurate values~with respect to the spatia
resolution! of T, v, andp on the meshxi jk .

We conclude this section with the observation that
discrete velocity fieldvn11 obtained from the concluding
step, Eq.~16!, is only approximately divergence-free even o
the mesh pointsxi jk , i.e., “•vn115O(h2) where h is the
larger of the spatial resolutionsDx, Dy, and Dz. This is
because the discrete approximation Eq.~20! for the pressure
gradient in Eq.~16! is not consistent with the discretizatio
Eq. ~21! used to approximate the Laplacian“•“ on the left
side of Eq.~15!. The discrete Laplacian can be considered
arising from the evaluation of pressure gradients from pa
of nearest neighbor points as follows:

@]x
2p# i jk5

1

Dx
~@]xp# ( i 11/2)jk2@]xp# ( i 21/2)jk! ~25!

5
1

Dx S p( i 11) jk2pi jk

Dx
2

pi jk2p( i 21) jk

Dx D .

~26!
5-4
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In contrast, Eq.~16! evaluates the pressure gradient at a po
using a finite-difference Eq.~20! that spans three mes
points.

III. ACCURACY AND EFFICIENCY OF THE ALGORITHM

In this section, we discuss several tests that quantify
accuracy of the above algorithm for a convecting fluid in
two-dimensional rectangular domain with periodic sidewa
and in a three-dimensional rectangular domain with perfe
insulating sidewalls, Eq.~7!. We first confirm the second
order accuracy of the code with respect to the spatial
time resolutions by studying how the temperature and ve
ity fields converge with increasing spatial and time reso
tions, respectively. We next show empirically how the ma
mum stable time step varies with the Rayleigh numberR and
the Prandtl numberss. We then calculate the critical Ray
leigh numberRc and plot the Nusselt numberN(R) as a
function of the Rayleigh numberR, and obtain good agree
ment with an analytical expression@34# and with a spectra
code@35#. Finally, we show the spatial structure of the fiel
near onset, to allow comparison with experiment@36# and
with other codes.

We note that, on a workstation with a 667 MHz 21264
64-bit Alpha processor, a square box with aspect ratioG
540 and spatial resolutionDx5Dy5Dz51/8 takes about
4.8 s per time step ofDt50.001tv . This corresponds to 80
min per vertical diffusion timetv and 90 days per horizonta
diffusion time th , so this code is too slow to exploreG
.20 cells over time scales exceeding a horizontal diffus
time. We discuss two ways of improving the efficiency of t
code in our concluding comments in Sec. IV.

A. Second-order convergence with respect to the spatial
and time resolutions

We begin by showing that the order of convergencep of
the code is asymptotically 2~second order! in the limits of
sufficiently fine spatial and time resolutions. By definitio
the convergence with respect to spatial resolution is of or
p if iuh2uexacti5O(hp) in the limit h→0, where iui
5A( i j ui j

2 denotes the Euclidean norm of a fieldu on the
spatial mesh,h5Dx5Dz is the uniform spatial resolution in
the x and z directions of a two-dimensional box,uh(x,z)
denotes a discrete numerical field on a mesh of resolutioh,
and uexact(x,z) is the unknown exact field on the spati
mesh. By writing uh(x,z)5uexact(x,z)1C(x,z)hp in the
limit h→0, for some functionC independent ofh, we de-
duce that the orderp can be estimated by examining th
quantity @37#

ph5 log2S iu4h2u2hi
iu2h2uhi D , ~27!

in the limit h→0. The estimate Eq.~27! involves field values
at the three levels of resolution 4h, 2h, and h, coarsest to
finest. A similar definition for the order of convergence wi
respect to time resolution can be made if the spatial mesh
is replaced by the time stepg[Dt,
02670
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pg5 log2S iu4g2u2gi
iu2g2ugi D . ~28!

We first studied the convergence with respect to the s
tial meshh for a two-dimensional box with periodic side
walls, for parameter valuesGx52p/qc52.016, R51725.0
'1.01Rc , ands50.71. The initial conditions consisted of
small random perturbation about the linearly conduct
stateT052z, v05(u0 ,w0)50, and these were integrate
until a stationary state was attained consisting of two rolls
the critical wave numberqc . For this small cell, an integra
tion time of 8tv was sufficient for the dynamics to becom
stationary. We then studied the temperature fieldTh(x,z) and
the x component of the velocity fielduh(x,z) for different
spatial resolutionsN5Gx /h516, 32, 64, and 128. The tim
stepDt was set, respectively, to the valuesDt50.01, 0.005,
0.0025, and 0.001 25 since the operator splitting makes
largest stable time step proportional toh. Table I summarizes
the values of the limit Eq.~27! and shows that indeedph
→2 ash→0, i.e., the code is asymptotically second-ord
accurate with respect to the spatial resolutionh.

We have also studied the convergence with respect to
time stepg for a three-dimensional box with perfectly insu
lating sidewalls and for parameter valuesGx5Gy52, R
51725.0'1.01Rc , ands50.71. The initial condition con-
sisted of small random thermal perturbations, and these w
integrated up to 20 diffusion times at which point the sta
became stationary. For various time resolutionsg5Dt
50.0001, 0.000 05, and 0.000 025, all with a space res
tion of N564, the convergence was found@using Eq.~28!#
to bep51.68. This provides evidence that the code is inde
asymptotically second-order accurate with respect to the t
resolutiong.

B. Dependence of maximum stable time step on Rayleigh
and Prandtl numbers

Since an important practical feature of any producti
code is the largest time step that can be taken before num
cal instability occurs, we have studied the maximum sta
time step as a function of the Rayleigh and Prandtl numb
A three-dimensional box with periodic sidewalls and asp
ratio Gx5Gy52 was used, with a spatial resolutionDx
516. The Euclidean norm of the temperature field,iTi , was
calculated for various values ofDt each time after a interva
of 20 vertical diffusion times so that transients decayed. T

TABLE I. Estimated order of convergenceph from Eq. ~27!, as
a function of the number of mesh pointsN5Gx /h, for a stationary
solution of a two-dimensional square box with periodic sidewa
The aspect ratioGx52.016, Rayleigh numberR51725, and
Prandtl numbers50.71. Results are presented for the temperat
field T(x,z) and for thez component of the velocityu(x,z).

N ph for T ph for w

16 1.46 1.43
32 1.80 1.79
5-5
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maximum stable time step was then defined as the valu
Dt such thatiTi remains bounded, i.e.,iTi,105.

In Fig. 1~a!, we plot the maximum stable time step as
function of the Rayleigh number for the two Prandtl numb
valuess51 ~square symbols! and s510 ~cross symbols!.
We see that the maximum stable time step decreases ra
with increasing Rayleigh number. This is to be expec
since the magnitude of the velocity and temperature fie
increase with increasingR. In fact, a best log-log fit to the
data yields the relation

max~Dt !}Ra, ~29!

FIG. 1. ~a! Plot of the maximum stable time step as a function
Rayleigh number. The Prandtl number is kept constant ats51
~square symbols! and s510 ~for cross symbols!. The cell has as-
pect ratioGx5Gy52 and periodic sidewalls. The mesh resolution
Dx51/16. Small random perturbations in the temperature field
used as initial conditions. The simulation is run until 20 vertic
diffusion times, at which time the Euclidean normiTi is then cal-
culated. The value ofDt such that this norm becomes greater th
105 is defined as the maximum stable time step.~b! Plot of the
maximum stable time step as a function of Prandtl number.
Rayleigh number was kept constant atR52048 ~square symbols!
andR58192 ~cross symbols!. The same aspect ratio, mesh reso
tion, and initial conditions as in~a! were used.
02670
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wherea521.2 whens51, anda521.3 whens510.
In Fig. 1~b!, we plot the maximum stable time step as

function of the Prandtl number for fixed Rayleigh numbe
R52048 ~square symbols! and R58192 ~cross symbols!.
For R52048, the maximum stable time step decreases
ward both small and large Prandtl numbers. ForR58192,
the maximum stable time step decreases toward sm
Prandtl numbers but is approximately constant at la
Prandtl numbers. The smaller time step needed at sm
Prandtl numbers can be attributed to the more dynam
nature of the convective flow at small Prandtl numbers, s
as the presence of spiral defect chaos@33#.

C. Estimate of the critical Rayleigh number Rc

A linear stability analysis of the Boussinesq equatio
about the linearly conducting profile between two infin
horizontal no-slip plates shows that the critical Raylei
numberRc'1707.76 with critical wave numberqc'3.117,
and that the values ofRc and qc are independent of the
Prandtl numbers @2#. We tested these predictions and
validated the code by using a two-dimensional box of asp
ratio Gx52p/qc52.016, with periodic sidewalls, for Prand
number s50.71. We used a uniform spatial resolutionh
51/N5Dx5Dz and varied the numberN of mesh points.

The critical Rayleigh numberRc was estimated as th
approximate value ofR for which the growth ratel5l(R)
of a small-amplitude~0.01! random perturbation about th
linear profile interpolated to zero as a function ofR. Thus for
a sufficiently tiny initial perturbation of the conducting pro
file, there is a time interval over which thez-velocity com-
ponentw grows approximately exponentially

iw~ t,x,z!i'c~R!elt, ~30!

wherel is the growth rate, andc is independent oft but can
vary with R. For R.Rc , the growth rate is positive, forR
,Rc , the growth rate is negative, and interpolating betwe
known positive and negative values provides an estimat
Rc , for which l50.

Our protocol was to setR5R15172551.01Rc just
above onset, set the initial velocity field to zero,v0
5(u0 ,w0)50, and set the initial temperature fieldT052z
1dT to a tiny random perturbationdT(x,z) of the linear
profile T52z, with udTu<0.01. The initial conditions were
then integrated for a short time and the growth rate estima
from the formula

l1'
ln~ iw~ t2 ,x,z!i /iw~ t1 ,x,z!i !

t22t1
, ~31!

where t2 and t1,t2 are two times during the exponentia
growth of the magnitude of thez component of the velocity
field w. The calculation was then repeated with the sa
initial condition but forR5R25169150.99Rc to estimate a
decay ratel2 . The critical Rayleigh number was then es
mated as the zero of the line joining the points (R1 ,l1) and
(R2 ,l2). The estimated critical Rayleigh numbersRc as a
function of the number of mesh points,N, are summarized in
Table II. The values are correct to a relative error of bet
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e
l

e

-
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than 1% for the finest spatial resolution, confirming the c
rectness and convergence of the discretization and of
solution technique.

TABLE II. Estimated critical Rayleigh numberRc , based on
where the growth rates5s(R) linearly interpolates through zero
The relative error is defined by (Rc21708)/1708.

N Rc Relative error~%!

16 1693.0 0.9
32 1696.6 0.7
64 1698.5 0.5

FIG. 2. ~a! Comparison of numerical~square symbols! and the-
oretical ~cross symbols! Nusselt numbers versus Rayleigh numb
The numerical values come from time-independent tw
dimensional nonlinear states~at time t512) with periodic side-
walls. The parameters have the valuesGx52, R52500, s50.71,
Dx5Dz51/16 (N516), and Dt50.01. The initial state was a
small random perturbation of the linear conducting profile. The t
oretical values come from an asymptotic expansion@34#. ~b! Com-
parison of Nusselt number versus Rayleigh number obtained
merically for our algorithm~squares! and for a spectral code o
Clever and Busse@35# ~* !. The agreement is better than 3%.
02670
-
he

D. The Nusselt number versus Rayleigh number curveN„R…

Another way to characterize the accuracy of a convect
code is by the dimensionless Nusselt numberN(t,R,s),
which is the instantaneous global vertical heat transp
through the fluid layer, normalized to the heat transport a
ing from thermal conduction alone. For the dimensionle
variables used in Eqs.~1!–~3! above, the Nusselt number ca
be expressed in the form@26#

N511^w~T2Tcond!&, ~32!

wherew is the z component of the velocity field andTcond
52z is the temperature profile of the linear conducting st
with v50. The bracketŝ•••& denote an average of a qua
tity over the horizontal coordinates. Sufficiently close to o
set, numerical values ofN can be compared with an analyt
cal expression@34# that is valid asymptotically in the limit
R2Rc→01.

We have evaluated Eq.~32! for the two-dimensional do-
main with periodic sidewalls of the preceding section, w
parametersGx52.016,s50.71, andN516. Starting from a
small perturbation of the linear profile, we integrated unti
stationary state was attained, and then evaluated Eq.~32! for
the stationary state. Figure 2 shows howN empirically varies
with R, and we compare this curve with the analytical res
of Schlüteret al. @34#, and with numerical values obtained b
Clever and Busse@35#, who used a two-dimensional spectr
code with periodic sidewalls. The agreement is good in b
cases and confirms the correctness and accuracy of the c

E. Spatial structure of the numerical solutions

We conclude this section with a few examples of the s
tial structure of the fields obtained from the code to sh

.
-

-

u-

FIG. 3. ~a! Contour lines of the temperature fieldT(x,z) ob-
served at timet512 in a two-dimensional box of aspect ratioGx

52 with periodic sidewalls. The parameters have valuesR
52500,s50.71,Dx5Dz51/16 (N516), andDt50.01. ~b! Con-
tour lines of the temperature field observed in a simulation using
same geometry and spatial resolution as in~a! but for R5104 and
time stepDt50.0025.
5-7
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that the fields are physically reasonable when adequately
solved, and are qualitatively in agreement with other co
and with experiment@36#.

For s50.71, Fig. 3 shows contours of constant tempe
ture T and for two values of the Rayleigh number,R
52500 in ~a! andR5104 in ~b!. Warm fluid ascends in the
middle of the cell and descends as cooler fluid on both sid
As R increases, a thermal boundary layer forms at the
and bottom plates, creating a finer spatial structure that
require eventually a decrease in the vertical spatial mesh
Dz. Figure 4~a! shows the corresponding velocity fieldv
5(u,w), while Fig. 4~b! shows the vertical componentw
through the midline of the cell. The occurrence of tw
square-shaped convection cells of opposite vorticity is
good agreement with experiment@36#.

Figure 5 shows constant temperature contours in a th
dimensional box with insulating sidewalls at timet
5200tv , for parametersG516, R52500, s50.71, andh
5Dx5Dy5Dz51/8, Dt50.01. In agreement with exper
ment @38# and with calculations on the Swift-Hohenbe
model of convection@39#, the rolls are approximately norma
to the lateral walls and the pattern consists of two diagon
opposite foci. For slightly higherR58500, Fig. 5~b! shows
that the oscillatory instability commenced in the form

FIG. 4. ~a! Time-independent velocity fieldv(x,z) at time t
512 for R52500, for the same geometry and resolution as Fig
The steady state consists of two convection rolls at the critical w
number qc53.117. ~b! Vertical velocity componentw(x,z50)
through the midline of the cell, indicating the range ofw.
02670
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ripples that propagate along the length of the rolls. The
currence of the oscillatory instability and its spatial form a
in good agreement with the linear stability analysis of Bus
and collaborators@26# and with experiment.

.
e

FIG. 5. ~a! Weakly time-dependent temperature contours at
midplane, T(x,y,z50), at time t5200 obtained from a three
dimensional box of aspect ratioGx5Gy516 with no-slip and insu-
lating boundary conditions, Eqs.~5! and ~7!. Parameter values ar
R52500, s50.71, Dx5Dy5Dz51/8, andDt50.01. ~b! Time-
dependent temperature contours at the midplane,T(x,y,z50), for
the same geometry and resolutions as in~a! but for R58500 for
which the rolls are unstable to the oscillatory instability, whi
shows up as propagating ripples along the rolls. The time-avera
Nusselt number̂N&52.27 is larger than for~a!, for which the value
is ^N&51.44.
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IV. CONCLUSIONS

We have described and characterized a semi-imp
finite-difference algorithm for integrating the Boussine
equations in two- and three-dimensional boxes, with si
walls that are periodic, thermally insulated, or thermally co
ducting. Our approach is useful for simple geometries s
as a box, cylinder, torus, and annulus, with boundary con
tions such that various linear operators are separable so
fast direct methods can be applied. The resulting algorithm
sufficiently efficient that aspect ratios up toG'20 can be
studied on a single-processor workstation over several d
We verified that the code was second-order accurate
respect to the spatial and time resolutions, and that it g
good agreement for the critical Rayleigh number and for
Nusselt number versus Rayleigh number curve near ons

The most significant feature of our algorithm is the use
a single nonstaggered mesh for discretizing the equat
and fields~velocity, temperature, and pressure!. The use of a
single mesh simplifies the writing and validation of the cod
and facilitates adding new physical terms such as a Cor
force. The single mesh also allowed the use of fast dir
methods from the FISHPACK library@24# to solve the Helm-
holtz and Poisson equations associated with the implicit
of each time step. We found that numerical integrations
the Boussinesq equations were stable on a single mesh
spite results of some previous papers that suggested th
nonstaggered Navier-Stokes code could be unstable bec
of pressure oscillations.

Although the algorithm is useful and has been succe
fully applied to several problems@4,5#, there are two ways
that the algorithm could be improved for the future study
large-aspect-ratio Rayleigh-Be´nard convection. First is to
parallelize the code for a distributed-memory parallel co
puter so that aspect ratios comparable to the largest ex
ments (50,G,100) could be studied. This is technical
straightforward and would involve, first, distributing the a
lui

in
e

al

de

re
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rays that represent the fields over the various processors,
second, replacing the fast direct solvers with iterative me
ods for sparse matrices. Because of the simpler data s
tures and reduced communication overhead associated w
finite-difference discretization, the parallelized algorith
will likely be more efficient for simple geometries and fo
simple boundary conditions than the parallel spectral elem
method of Refs.@13,14#.

Because time integration algorithms involve sequen
steps, parallelizing a code allows a larger spatial domain,
not a longer observation time, to be studied for a fix
amount of wall-clock time. A second helpful improveme
would be to increase the efficiency of the time integrati
method close to the onset of convection so that larger t
steps can be taken for a given computational effort. A we
ness of the operator splitting used in most convect
codes—finite-difference, spectral, and spectral-element
that the explicit integration of the advection terms impose
bound on the time step of the formCe21/2Dx whereC is a
constant ande5(R2Rc)/Rc is the reduced Rayleigh num
ber. This bound is independent of the spatial resolution
diverges less rapidly in the limite→01 than the physical
time scale, which is proportional toe21. It would be inter-
esting to explore whether a more sophisticated explicit tim
stepping technique such as a matrix exponential met
@40,41# or a fully implicit method@42,43# may succeed in
allowing larger time steps that are commensurate with
physical time scale while retaining the efficiency of th
present code.
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@18# M. Perić, R. Kessler, and G. Scheuerer, Comput. Fluids16,

389 ~1988!.
@19# S.W. Armfield, Comput. Fluids29, 1 ~1991!.
5-9



.

ss
or

rs,

ch.

.V.

-

CHIAM, LAI, AND GREENSIDE PHYSICAL REVIEW E68, 026705 ~2003!
@20# E. Dormy, J. Comput. Phys.151, 676 ~1999!.
@21# J.V. Kan, SIAM ~Soc. Ind. Appl. Math.! J. Sci. Stat. Comput

7, 870 ~1986!.
@22# J.B. Bell, P. Colella, and H.M. Glaz, J. Comput. Phys.85, 257

~1989!.
@23# P.N. Swarztrauber and R.A. Sweet, SIAM~Soc. Ind. Appl.

Math.! J. Numer. Anal.10, 900 ~1973!.
@24# P. Swarztrauber and R. Sweet, Technical report, NCAR~un-

published!, web documentation: www.scd.ucar.edu/c
software/fishpack. Source code available from www.netlib.

@25# E.F.F. Bottaet al., Appl. Numer. Math.24, 439 ~1997!.
@26# F.H. Busse, Rep. Prog. Phys.41, 1929~1978!.
@27# D. Kincaid and W. Cheney,Numerical Analysis, 2nd ed.

~Brooks, Pacific Grove, CA, 1996!.
@28# A.J. Chorin, J. Comput. Phys.2, 12 ~1967!.
@29# J.K. Dukowicz and A.S. Dvinsky, J. Comput. Phys.102, 336

~1992!.
@30# J.B. Perot, J. Comput. Phys.108, 51 ~1993!.
@31# S.A. Orszag, M. Israeli, and M.O. Deville, J. Sci. Comput.1,

75 ~1986!.
@32# P.M. Gresho and R.L. Sani, Int. J. Numer. Methods Fluids7,

1111 ~1987!.
02670
/
g

@33# S.W. Morris, E. Bodenschatz, D.S. Cannell, and G. Ahle
Phys. Rev. Lett.71, 2026~1993!.

@34# A. Schlüter, D. Lortz, and F. Busse, J. Fluid Mech.23, 129
~1965!.

@35# R.M. Clever and F.H. Busse, J. Fluid Mech.65, 625 ~1974!.
@36# K.R. Kirchartz and J.H. Oertel, J. Fluid Mech.192, 249

~1988!.
@37# D.A. Anderson, J.C. Tannehill, and R.H. Pletcher,Computa-

tional Fluid Mechanics and Heat Transfer~Hemisphere, New
York, 1984!.

@38# G.P. Gollub, A.R. McCarriar, and J.F. Steinman, J. Fluid Me
125, 259 ~1982!.

@39# H.S. Greenside and W.M. Coughran, Jr., Phys. Rev. A30, 398
~1984!.

@40# R.A. Friesner, L.S. Tuckerman, B.C. Dornblaser, and T
Russo, J. Sci. Comput.4, 327 ~1989!.

@41# M. Hochbruck, C. Lubich, and H. Selhofer, SIAM J. Sci. Com
put. ~USA! 19, 1552~1998!.

@42# C. Liu and Z. Liu, J. Comput. Phys.106, 92 ~1993!.
@43# M.C. Cross, M. Louie, and D. Meiron, Phys. Rev. E63,

045201~2001!.
5-10


