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The graph representation G(M) of a multistage switching
network M is well known. Lea [IEEE Trans Commun 38
(1990), 529–538] observed that link-disjoint paths in M
correspond to node-disjoint paths in G(M). He proposed
G(M) as a network by treating nodes as crossbars to
transfer the node-disjoint property to the crosstalk-free
property essential for photonic networks using direc-
tional couplers as components. However, such a net-
work has its peculiarities and is not commonly used. In
this paper, we will show how to take advantage of this
correspondence to construct nonblocking crosstalk-
free networks using the vertical stacking method. Our
construction simplifies the proofs of many existing re-
sults, as well as establishing some new results. © 2003
Wiley Periodicals, Inc.
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1. INTRODUCTION

As an electronic switching network has electronic cross-
bars for its switching components, a photonic switching
network has directional couplers as counterparts. Function-
ally, a directional coupler is similar to a 2 � 2 crossbar in
the sense that it has two states: The “straight” state has input
1 connected to output 1 and input 2 to output 2, while the
“cross” state has input 1 connected to output 2 and input 2
to output 1 (see Fig. 1).

Due to the popularity of directional couplers as compo-
nents, photonic switching networks often use 2 � 2 switch-
ing elements. In particular, the class of Log2(N, k, p)
networks covers the whole spectrum of extra-stage banyan
networks, including the banyan network at one extreme
with no extra stage and the Benes network at the other

extreme with the maximum number of extra stages (these
networks are to be defined later). Log2(N, k, p) networks
are often used as the underlying networks for photonic
switching.

A major disadvantage of directional couplers is the
crosstalk problem, namely, when a directional coupler car-
ries two signals, even by different channels, the signals may
still spill over between the channels and produce unwanted
noise. Many studies have been done to design photonic
switching networks with directional couplers but no
crosstalk, that is, only one signal is allowed to go through a
coupler.

A network is strictly nonblocking if, regardless of how
existing connections are routed, a new connection can al-
ways be routed by a path link-disjoint with all existing
paths. It is wide-sense nonblocking if the above can be
achieved under a routing algorithm. It is rearrangeable if
link-disjoint paths exist for any set of connections (routed
simultaneously). The network is called crosstalk-free
strictly nonblocking (wide-sense nonblocking, rearrange-
able) if node-disjoint replaces link-disjoint.

A popular method of constructing nonblocking networks
is to vertically stack up enough copies of a blocking net-
work and, essentially, to identify their inputs and outputs [2,
3, 5, 6, 8, 9]. On the other hand, Lea [5] observed that
link-disjoint paths in M correspond to node-disjoint paths in
its graph version. In this paper, we will show how to take
advantage of this correspondence to construct nonblocking
crosstalk-free networks using the vertical stacking method.
Our construction simplifies the proofs of many existing
results, as well as establishing some new results.

2. THE EXTRA-STAGE INVERSE BANYAN
NETWORK AND ITS GRAPH VERSION

A banyan network of order n has N � 2n inputs, 2n

outputs, and n stages, while each stage has 2n�1 2 � 2
crossbars. To describe the linking pattern between two
adjacent stages, it is convenient to label the N/ 2 crossbars in
each stage by the binary numbers 0, 1, . . . , N/ 2 � 1.
Then, the bipartite graph between stages i and i � 1
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connects crossbars which agree in all bits except perhaps bit
i (see Fig. 2).

Let BY�1(n, k) denote the multistage network obtained
by adding k extra stages to the n-stage inverse banyan
network where the linking pattern of the k extra stages is a
mirror image of the first k stages. The networks BY�1(3, 1)
and BY�1(3, 2) are shown in Figure 3. BY�1(n, n � 1) is
also known as the Benes network of order 2n and denoted
by B(n).

Shyy and Lea [8] introduced the Log2(N, k, p) network
constructed by vertically stacking p copies of BY�1(n, k),
N � 2n, and adding an extra stage of N inputs and an extra
stage of N outputs, where input (output) i is connected to
input (output) i of each BY�1(n, k). Figure 4 illustrates the
Log2(4, 1, 3) network which is also known as a Cantor
network [2]. Hwang [3] extended Log2(N, k, p) networks to
Logd(N, k, p) networks by replacing the 2 � 2 crossbars
with d � d crossbars.

A multistage network, though looking very much like a
graph by treating its crossbars as nodes, is not a graph since
the inputs and outputs of the network are dangling links
from nodes not connecting to other nodes. But there is a
well-known graph representation G(M) of a network M
obtained by treating the network links as nodes of G(M); an
arc between two nodes in G(M) represents that the two
corresponding links can be connected through a switch in
M. Figure 5 illustrates a network and its graph representa-
tion.

A network is called unitary if each input crossbar has one
input and each output crossbar one output. In fact, we can
even remove the unique input (output) and treat the input
(output) switch itself as the input (output). Note that by
treating each node in G(M) as a switch then G(M) can also
be viewed as an unitary network, which Lea [5] called a
bipartite graph network. It is easily seen that if M has s
stages then G(M) has s � 1 stages, and if M is d-nary
(every crossbar is d � d), then G(M) is also d-nary, except
that every input (output) switch has exactly one input (out-
put). Lea [5] observed the following:

Lemma 1 (the basic lemma). If M is a strictly nonblock-
ing (wide-sense nonblocking, rearrangeable) network, then
G(M) is a crosstalk-free strictly nonblocking (wide-sense
nonblocking, rearrangeable) network.

Proof. Since a node in G(M) corresponds to a link in
M, two link-disjoint paths in M become two node-disjoint
paths in G(M). ■

The problem with using G(M) as a photonic network is
that it is not a network commonly studied in the literature so
we do not know its other properties besides being crosstalk-
free. Furthermore, if M is a d-nary network using d � d
crossbars as components, then G(M) is also d-nary except
that input switches and output switches are unitary. There-
fore, we propose a different approach by studying the well-
known Logd(N, k, p) network for its crosstalk-free prop-
erties. While Logd(N, k, p) is not the graph representation
of some network, we show that it is closely related to a
G(M) and its crosstalk-free property can be derived from
the latter. This work is made much easier by the recent work
of Hwang and Yen [4] who characterized G(M) for any bit
permutation network M (including all extra-stage banyan-
type networks). Let M* denote M with inputs and outputs
removed from input switches and output switches. In par-
ticular, Hwang and Yen [4] proved

Lemma 2. BY�1(n � 1, k)* � G(BY�1(n, k)) for 0 � k
� n � 1.

Traditionally, the Benes network is defined only for an
odd number of stages. Padmanabhan and Netravali [7]
showed that the same expansion scheme also works for an
even numbers of stages, which they called dilated Benes
networks, denoted by DB(n) (see Fig. 6).

It is easily seen that DB(n) � BY�1(n, n � 2). Hence,

Corollary 3. DB(n)* � G(B(n � 1)).

Note that Lemma 2 does not include representing B(n)*
� BY�1(n, n � 1)* as G(M) for some M. To do this, we

FIG. 1. Two states of a directional coupler.

FIG. 2. An inverse banyan network of order 4.

NETWORKS—2003 21



need to add a dummy stage in the middle of B(n � 1)
which connects the two outputs of a crossbar to the two
inputs of a crossbar in the next stage. B(n), after this
addition will be denoted by AB(n). It is easily verified that

Lemma 4. B(n � 1)* � G(AB(n)).

Figure 7 gives an illustration of Lemma 4.

3. THE MAIN RESULTS

Let p-M denote the network similar to Log2(N, k, p)
except replacing BY�1(n, k) with M. Suppose that M is
d-nary for some d and G( p-M) has stages 1 to s. Since p-M
is unitary, each stage-2 (stage-(s � 1)) crossbar has one
input (output) in G( p-M). Hence, G( p-M) cannot be rep-
resented as p-M� for some d-nary M� and we cannot apply
Lemma 1 directly to p-M type networks. We will remedy
this situation:

Consider a request from input i to output j. The channel
graph of (i, j) is the union of all paths from i to j. We say
the (i, j) connection is link(node)-blocked if every path
from i to j contains a busy link (node).

For convenience, we define the following quantities to
indicate the degree of “blockingness” of a given network M:
(1) Suppose that t is the number of paths of the (i, j)

channel graph and s is the maximum number of (i, j) paths
being link(node)-blocked by paths of other (disjoint) input–
output pairs. Then, the link(node)-blockingness of the (i, j)
connection in M is defined as s/t. (2) The link(node)-
blockingness of M is the maximum link(node)-blockingness
over all (i, j) pairs. Note that an (i, j) path may be blocked
more than once when we compute s. For example, Figure 8
shows the channel graph of (1, 1) in BY3

�1(2, 1). There are
four paths blocking the (1, 1) paths, with two of them
blocking the top path.

It is clear that (s/t � 1) - M is (crosstalk-free) strictly
nonblocking if the link (node)-blockingness of M is s/t,
since at most s/t copies are blocked for any request. Note
that if only a fraction of a copy is blocked then the (i, j)
connection can still be made through that copy. The reason
that we keep the fraction instead of rounding it down is to
maintain accuracy in multiplication. The following theorem
derives strictly nonblocking crosstalk-free networks p-M�
from strictly nonblocking networks p-M where M� and M
are d-nary:

Theorem 5. For two d-nary networks M1 and M2 with M*2
� G(M1), if the link-blockingness of M1 is b1, then p2-M2 is
a strictly nonblocking crosstalk-free network for p2 � db1
� 2(d � 1) � 1.

Proof. By Lemma 1, the link-blockingness of M1 be-
ing b1 means that the node-blockingness of M*2 is b1 too.

FIG. 3. Two inverse banyan networks.

FIG. 4. The Log2(4, 1, 3) network. FIG. 5. A network M and its graph G(M).
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Consider a connection ( x, y) in p2-M2 going through the
input switch i and output switch j of M2. Then, in M2, paths
not from the input switch i nor to the output switch j can
contribute at most db1 to the node-blockingness of the ( x,
y) connection in M2. Suppose this is not true. Since these
paths can be d-colored [1] such that all paths from a given
input switch or output switch are colored differently, there
exists one color whose paths contribute more than b1 to the
node-blockingness of the ( x, y) connection in M2, namely,
the link-blockingness of the (i, j) connection in M1 is more
than b1, a contradiction. Finally, at most d � 1 connections
going through input switch i (output switch j) can contrib-
ute d � 1 to the node-blockingness of the ( x, y) connection
in M2. Therefore, the node-blockingness of M2 is not
greater than db1 � 2(d � 1), which means there are at
most db1 � 2(d � 1) copies such that the ( x, y)
connection cannot be made, that is, p2-M2 is crosstalk-free
strictly nonblocking if p2 � db1 � 2(d � 1) � 1. ■

Corollary 6. For two binary networks M1 and M2 with M*2
� G(M1), if the link-blockingness of M1 is b1, then p2–M2 is
a strictly nonblocking crosstalk-free network for p2 � 2b1
� 3.

Figure 9 illustrates the concept of Corollary 6.

Theorem 7. For two d-nary networks M1 and M2 with M*2
� G(M1), if p1-M1 is a rearrangeable multistage network,
then p2-M2 is a rearrangeable crosstalk-free network for p2

� dp1.

Proof. Let R denote the bipartite graph where nodes
are input and output crossbars in M2 and a link between
nodes i and j implies a request from an input of switch i to
an output of switch j. Then, R has maximum degree d and
it is well known [1] that R can be d-colored. The subgraph
of each color can be routed by p1-M2. Hence, dp1-M2

suffices for routing R. ■

We first show that many existing results about nonblock-
ing crosstalk-free networks can be obtained through the
results of this section.

Theorem 8 (Padmanabhan and Netravali [7]). The uni-
tarized dilated Benes network is crosstalk-free rearrange-
able.

Proof. This follows from Corollary 3 and the well-
known fact [1] that the Benes network is rearrangeable. ■

Theorem 9 (Vaez and Lea [9]). Log2(2n, 0, p) is
crosstalk-free strictly nonblocking if

p � �2�n�2�/ 2 � 1 for n even,
3 � 2�n�1�/ 2 � 1 for n odd.

Proof. Theorem 9 follows from Lemma 2, Corollary 6,
and the fact [8] that the link-blockingness of BY�1(n�1, 0)
is no more than

�3 � 2�n�3�/ 2 � 2 for n � 1 even,
2n/ 2 � 2 for n � 1 odd.

■

FIG. 8. The link-blockingness of BY3
�1(2, 1) is 4/3.

FIG. 6. Dilated Benes networks, DB(2) and DB(3).

FIG. 7. B(3)* as a graph.
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Theorem 10 (Vaez and Lea [9]). Log2(2n, k, p) is
crosstalk-free strictly nonblocking for 0 � k � n � 2 if

p � �2k � 2�n�k�2�/ 2 � 1 for n � k even,
2k � 3 � 2�n�k�1�/ 2 � 1 for n � k odd.

For k � n � 1, the condition becomes p � 2n � 1.

Proof. For 0 � k � n � 2, Theorem 10 follows from
Lemma 2, Corollary 6, and the fact [8] that the link-block-
ingness of BY�1(n�1, k) is no more than

�k � 3 � 2�n�k�3�/ 2 � 2 for n � k � 1 even,
k � 2�n�k�/ 2 � 2 for n � k � 1 odd.

For k � n � 1, that is, the Cantor network constructed
with B(n), Theorem 10 follows from Lemma 4, Corollary 6,
and the fact that the link-blockingness of AB(n � 1) is no
more than n � 2 [since AB(n � 1) is equivalent to B(n
� 1)]. ■

Next, we give some new results:

Theorem 11. Log2(2n, k, p) is crosstalk-free rearrange-
able if p � 2(n�k�1)/2�1 for 0 � k � n � 1.

Proof. For 0 � k � n � 2, Theorem 11 follows from
Lemma 2, Theorem 7, and the fact that Log2(2n�1, k, p) is
a rearrangeable crossbar network [6] if p � 2(n�k�1)/ 2.

For k � n � 1, that is, the Cantor network constructed
with B(n), Theorem 11 follows from Lemma 4, Theorem 7,
and the fact that p-AB(n � 1) is a rearrangeable crossbar
network if p � 1 [since AB(n � 1) is equivalent to B(n
� 1)], where 2(n�(n�1)�1)/ 2�1 � 2. ■

Theorem 12. Logd(dn, k, p) is crosstalk-free strictly non-
blocking for 0 � k � n � 2 if

p � �2k�d � 1� � 2d�n�k�/ 2 � 1 for n � k even,
2k�d � 1� � �d � 1�d�n�k�1�/ 2 � 1 for n � k odd.

Proof. This follows from Theorem 5 and the fact de-
rived by Hwang [3] that the link-blockingness of BYd

�1(n�1,
k) is no more than

�
2k�d � 1�

d
� �d � 1�d�n�k�3�/ 2 � 2 for n � k � 1 even,

2k�d � 1�

d
� 2d�n�k�2�/ 2 � 2 for n � k � 1 odd.

■

FIG. 9. The concept of Corollary 6. (a) In p1-BY�1 (3), request (0, 0) and existing connections (1, 2) and (4,
1) blocking (0, 0) in their planes. (b) In G(BY�1(3)), paths (1, 2) and (4, 1) intersect nodes lying on path (0, 0).
(c) In BY�1(4)*, two routes intersect switches lying on a connection from input switch 0 to output switch 0. (d)
Connections (2, 8) (3, 9) (8, 4) (9, 5) (1, 2) and (4, 1) can node-block the (0, 0) connection.
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