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Intelligent scheduling controller for shop floor control systems:

a hybrid genetic algorithm/decision tree learning approach

C.-T. SU{* and Y.-R. SHIUEz

This work develops an intelligent scheduling controller (ISC) to support a shop
floor control system (SFCS) to make real-time decisions, robust to various
production requirements. Selecting near-optimal subset system attributes (or
features) based on various production requirements to construct ISC knowledge
bases is a critical issue because of the existence of much shop floor information in
an SFCS. Accordingly, this work developed a learning-based ISC methodology to
acquire knowledge of a dynamic dispatching rule control mechanism. The
proposed approach integrates genetic algorithms (GAs) and decision trees
(DTs) learning to evolve a combinatorial optimal subset of features from possible
shop floor information concerning a DT-based ISC knowledge classifier. A GA is
employed to search the space of all possible subsets of a large set of candidate
features. For a given feature subset, a DT algorithm is invoked to generate a DT.
Applying the GA/DT-based knowledge learning mechanism to the experimental
results demonstrates that the use of an optimal subset of system attributes to
build scheduling knowledge bases enhanced generalization ability of the learning
bias above that in the absence of an attribute selection procedure, in terms of
prediction accuracy of unseen data under various performance criteria.
Furthermore, simulation results indicate that the GA/DT-based ISC improves
system performance in the long run over that obtained with classical DT-based
ISC and the heuristic individual dispatching rule, according to various perfor-
mance criteria.

1. Introduction

In the 21st century, many manufacturing enterprises implement computer-
integrated manufacturing (CIM) and flexible manufacturing technology to increase
manufacturing productivity, improve customer service and enhance product quality.
However, the shop floor control system (SFCS) will play a key role in the success of
CIM and flexible manufacturing technology (Jones and Saleh 1990, Smith et al.
1996).

Previous works (Jones and Saleh 1990, Cho and Wysk 1995, Smith et al. 1996,
Chang et al. 1998) have suggested that the SFCS function can be hierarchically
decomposed into planning, scheduling and execution tasks. Planning has been
described as selecting the tasks to be performed by the manufacturing system.
Scheduling then identifies a good dispatching rule for these planned tasks based
on the system’s status and performance criteria. The execution function performs
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scheduling tasks through directly interfacing with physical equipment. Information
flow within a controller during normal operation occurs in a top-down fashion from
planning, through scheduling, to execution. When an exception or error occurs, the
recovery information flow is reversed. Therefore, some researchers (Cho and Wysk
1993, Chiu and Yih 1995, Park et al. 1997) have claimed that developing an efficient
scheduling mechanism is the core of operating an SFCS to satisfy various
performance criteria.

A sophisticated scheduling task in SFCSs, involves possess the following char-
acteristics (Cho and Wysk 1993, 1995, Park et al. 1997, Chen and Yih 1999):

. It can run in real-time mode to conform to the response requirements of the
execution module in the SFCS.

. It provides a learning mechanism that is robust against various part mix ratios
and changes in the production requirements in the target environment.

. It possesses a system attribute-selection mechanism to identify near-optimal
subsets of system attributes (information) from many types of shop floor
information and then enhance the generalization ability for of ISC knowledge
bases.

Most currently researched works do not possess all of the above. However, these
essential characteristics are especially evident in the development of identifying near-
optimal subsets of system attributes to construct a scheduling knowledge base in
SFCS. This study designs an intelligent scheduling controller (ISC) in the scheduling
function of SFCS to satisfy the above characteristics.

The use of a decision tree (DT) learning approach in adaptive dispatching
mechanisms to improve the production of a manufacturing system has produced
outstanding outcomes in recent research (Shaw et al. 1992, Park et al. 1997, Kim et
al. 1998, Arzi and Iaroslavitz 2000, Shiue and Su 2003). The method approximates
the numerically or symbolically valued target function that is robust to noisy data
and capable of learning disjunctive expressions. Knowledge is finally presented in the
form of a decision tree.

Selecting suitable system information based on various production requirements
to construct an ISC knowledge base in DT-based learning is a crucial research issue
due to the existence of a large amount of shop floor information in SFCS. Using too
many attributes to learn a concept causes overfitting of training data in DT-based
learning and degrades the generalization ability of an ISC knowledge base. Besides,
omitting one important system attribute will greatly influence the learning and may
harm the ability of the ISC to classify knowledge.

Genetic algorithms (GAs) represent a parallel, iterative optimization technique
that facilitates efficient probabilistic searching in high dimensional space (Goldberg
1989). The problem of selecting attributes in SFCS is well suited to formulation as an
optimization problem. Given a set of f-dimensional input SFCS attributes, the task
of GA is to find a transformed set of SFCS attributes in a d-dimensional space
ðd < f Þ that maximizes given performance criteria.

This paper seeks to develop an ISC to support an SFCS. It introduces a hybrid
learning methodology that integrates GAs and DT learning to select a combinatorial
optimal subset of features from possible shop floor information for a DT-based ISC
knowledge classifier to support real time decision-making, that is robust against
various production requirements, and to select an optimal subset of system informa-
tion from large sets of shop floor information.
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2. Review of related research

2.1. Overview of machine learning approaches to ISC and their limitations
Scheduling decisions are typically implemented through intelligently dynamic

dispatching rules on the basis of current system status at each time decision point
over a series of scheduling period horizons to meet the prerequisites for ISC in the
SFCS (Cho and Wysk 1993, 1995). The advantage of using intelligent dispatching
rules is that they can quickly give fast, acceptable solution and conform to operation
characteristics in the SFCS. Basically, two machine-learning approaches to solving
problems with the adaptive dispatching mechanism exist: artificial neural networks
(ANN) approach and DT learning approach (Priore et al. 2001).

ANNs as learning tools have demonstrated an ability to capture the general
relationship between variables that are difficult or impossible to relate to each
other analytically by learning, recalling and generalizing from training patterns or
data. In applying the ANNs’ approach to adaptive dispatching mechanisms (Cho
and Wysk 1993, Sun and Yih 1996, Arzi and Iaroslavitz 1999), the ANN established
for a set of training samples each of which consists of a vector of system attribute
values and corresponding dispatching rules that are generated by simulation can
suggest a preference indicator of all dispatching rules for a given system status.
The reasons for not using ANN as a learning tool in this study are as follows:

. ANN does not respond more quickly than DT learning for various production
requirements in the SFCS. Even if the recall process is fast, the training of
ANN tends to be time-consuming and relatively slow.

. Proposed GA-based attribute selection procedure cannot be applied in a
neural network-based classifier because the neural network architecture and
parameters are empirically determined and cannot be obtained beforehand.

The major advantages of the DT learning approach in constructing ISC can be
stated as follows:

. Learned function can be represented by either a DT or sets of if–then rules to
improve readability by humans. It can also be easily coded into an ISC
mechanism.

. Concept (knowledge) learned from training examples not only accurately clas-
sifies the given examples, but also accurately predicts the unseen (test) exam-
ples.

. DT learning methods are robust against errors in classifying the training exam-
ples and errors in the attribute values that describe these examples.

These capabilities of DT learning methods satisfy the needs generated by the
dynamic nature of a manufacturing environment. Therefore, the DT-based learning
approach used for ISC is applicable to decision problems in SFCS. Such problems,
in which training examples are classified into one of a discrete set of possible cate-
gories (scheduling rules), are often called ‘supervised classification problems’.

The Interactive Dichotomimizer 3 (ID3) algorithm (Quinlan 1986, 1987) and its
successor, C4.5 (Quinlan 1993), are the primary foci of research in the field of DT
learning. Generalization is an important ability specific to DT learning that predicts
unseen data with high accuracy, according to concepts learned from training
examples (Mitchell 1997). Figure 1 shows the generalization ability in DT learning.
Real shop floor information data in the examples are sometimes misclassified or have

2621Intelligent scheduling controller for shop floor control systems
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incorrect attribute values. Hence, further refinement is required to handle noise data
and thus enhance the generalization ability of DTs.

So far most research work (Quinlan 1986, 1987, Mingers 1989a, b) has focussed
on the impact of generalization ability in DT learning on the choice of attribute
selection measure and post-pruning method where the hypothetical attributes are
limited and given in advance. However, a problem remains about how to select
appropriate attributes to describe the training examples and represent knowledge
bases in the early stage due to the existence of many various types of attributes in
SFC systems. If too many irrelevant or redundant attributes are used to describe the
training examples, longer DTs will be created to fit the training examples and thus
the generalization ability of knowledge bases will be detrimentally affected.

2.2. Attribute selection
Concerned with selecting attributes in the ISC problem domain, Chen and Yih

(1999) presented an FSSNCA (feature subset selection based on nonlinear
correlation analysis) algorithm that consists of two stages: filter and search. The
filter stage can eliminate irrelevant and redundant features to define a good starting
place for a search of a feature subset space. The search stage searches using feedback
from the selected learning classifier to optimize the subset of the features to the
chosen learning algorithm. However, Cover (1974) pointed out that even when
such an independence of features was assumed and the features were selected
based on individual merit, a simplified model cannot guarantee the optimality of a
selected feature subset.

Shiue and Su (2003) presented an approach based on weights of ANNs to
identify the important attributes for DT-based learning adaptive dispatching
mechanism. Their primary conclusion was that the scheduling knowledge base
that uses a set of selected attributes was superior in choosing desired dispatching
rules under unknown production conditions than a knowledge base built that
includes other sets of attributes. A weakness of the approach is that the attribute
reduction process attributes still has redundant attributes in SFCS and cannot
guarantee selection of a near-optimal subset of attributes to build a knowledge base.

Siedlecki and Sklansky (1988) gave an overview of combinatorial feature
selection methods and described the limitations of methods such as probabilistic
measures of class separable ability, the branch and bound search algorithm, and
artificial intelligence (AI) for selecting features in the design of a classifier. They

2622 C.-T. Su and Y.-R. Shiue
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Figure 1. DT learning from examples and its generalization ability.
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demonstrated the unfeasibility of tackling a large-scale problem (by considering a 20-
element selection problem in the large-scale domain). They described the potential
benefits of Monte Carlo approaches such as simulated annealing and the GA to
handle large-scale problems. A direct approach to use GAs for attribute selection
was introduced by some researchers (Siedlecki and Sklansky 1989, Raymer et al.
2000). In their work, a GA was used to find an optimal binary vector. Each resulting
subset of features was evaluated according to its classification accuracy on a set of
unseen data using a K nearest neighbour classifier. Accordingly, embedding GAs
used to select optimal features in DT learning are worthy of study in designing ISC
methodology.

3. ISC framework and problem description

3.1. Overview of ISC operation
In this study, an ISC links the planning and execution functions in SFCS. It

receives information such as part type, part routing, part mix ratio, planned
scheduling time horizon, and performance criteria from the production requirement
and the planning function in SFCS. It then sends an output control command to the
execution function that interfaces with physical equipment. Under this operating
architecture (figure 2), the ISC plays an important role in operating the SFCS to
meet various production requirements and the quick response requirement of an
execution module in the SFCS. The major task in ISC is identifying a good
dispatching rule for these planned tasks, according to the current system status
and performance measures in a prespecified control interval. The following section
uses an FMS to illustrate the concept of an ISC operating scheme.

3.2. Description of problem
The case study involves a modification of the model used by Montazeri and Van

Wassenhove (1990). The case involves three machine families; three load/unload
stations, three AGVs, an input buffer and a central WIP buffer with sufficient
capacity to prevent deadlock, and a computer-controlled local area network. The
first two machine families have two machines and the third has a single machine.
Eleven different types of parts are produced in this model and their processing times
are identical to those used by Montazeri and Van Wassenhove. Several operating
assumptions are as listed below.

. Raw materials for each type part are readily available.

. Each job order arrives randomly at FMS and consists of only one part with an
individual due date.

. Part with a pallet travels to each machine or load/unload station to achieve
operational flexibility, and the part-type match for one specific pallet problem
is ignored.

. Each machine can execute only one job order at a time.

. Each machine is subject to random seed failures.

. Processing times are assumed to be predetermined.

. Idle machine in a family has a higher priority than other machines to process a
part. If no machine in the family is idle, then the part goes to the least utilized
machine.

. When the part finishes each step of the process, it must return to one of
available load/unload stations for reorientation. Otherwise, it will go to central

2623Intelligent scheduling controller for shop floor control systems
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WIP buffer to wait for next operation (part reorientation in load/unload sta-
tions).

. AGV can carry only one part at a time and move only in a counterclockwise
direction.

. All material movements that do not involve the AGV system are assumed to be
negligible.

Based on this case study, the ISC is responsible for generating a series of
dispatching strategy commands to the execution function that interfaces with
physical components of FMS in this study. The part with the highest priority is

2624 C.-T. Su and Y.-R. Shiue
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Figure 2. Shop floor control system generic function structure.
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chosen for immediate processing within this shop, when the machines (or load/
unload stations) are available. Intelligently and dynamically evaluating the current
status of the shop floor system, using the ISC execution, and then selecting the most
appropriate dispatching rule for the next scheduling period will lead to improve the
performance of the system in the long run.

A robust learning-based ISC mechanism must be developed to enhance
knowledge representation in a scheduling function to reflect various production
requirements for SFCS and thus attain the goals stated above. Moreover, selecting
near-optimal subsets of system attributes to improve the generalization ability of the
knowledge base is another crucial research issue in the ISC problem domain since
essential attributes are uncertain in SFCS.

4. Overview of the proposed learning-based ISC mechanism methodology

A learning-based ISC mechanism methodology is developed to obtain knowledge
for a dynamic dispatching rule control mechanism by means of a hybrid GA/DT
approach with the ability to select attributes and thus efficiently solve ISC problems.
Figure 3 shows the architecture of the proposed learning-based ISC mechanism
methodology in SFCS. The proposed ISC knowledge learning mechanism learns
from training examples to evolve an optimal subset of discriminatory attributes
for ISC, based on various performance criteria. Eventually, scheduling knowledge,
represented as a decision tree in a dynamic dispatching rule control mechanism,
sends the best dispatching strategy control command to the execution function layer.

In this architecture, the simulation-based training example generation
mechanism collects a set of training examples provided as inputs for learning the
concept. The input data of this phase include physical system and product
specifications, product data; process plans database and training example
specifications (to be described in Section 5). These are all used to build a simulation
model for off-line learning training examples. In learning the knowledge phase, a GA
is used to search the space of all possible subsets of a large set of system features. For
a given feature subset, the DT learning algorithm is invoked to generate a DT. The
performance of the DT in classifying unseen data is used to measure the fitness of the
given feature set, which, in turn, is used by the GA to evolve superior feature sets.
This GA/DT process iterates until a feature subset is found with satisfactory
classification performance. Then, the DT learning algorithm learns the whole set
of training examples with a near-optimal subset of system attributes to generate
the ISC knowledge base and build a dynamic dispatching rule control mechanism.

In the dynamic dispatching rule control phase, the control mechanism in the
form of a decision tree triggers a signal in a fixed control interval (determined by
a preliminary simulation run based on various performance measures). The control
mechanism then inputs the current system status from the execution layer, linked to
the shop floor by physical system components, into the dynamic dispatching rule
control mechanism for on-line scheduling control.

Under this architecture, the ISC can easily identify an optimal subset of system
attributes to build sound ISC knowledge and enhance the generalization ability of a
learning bias. Furthermore, the ISC can significantly improve the performance of the
SFCS over that of the classical DT-based learning ISC in the absence of an attribute
selection procedure under various performance criteria in the long run.

The following sections focus on two areas of this system—a simulation-based
training example generation mechanism that will influence the quality of knowledge

2625Intelligent scheduling controller for shop floor control systems
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representation for ISC, and a scheduling knowledge learning mechanism as the core
mechanism of ISC.

5. Simulation-based training example generation mechanism

A set of training examples is provided as system information to learn the concept
representing each class. A given training example consists of a vector of attribute
values and the corresponding class. It is known that the relative effectiveness of a
dispatching rule will heavily depend on the status of the system, given by
performance criteria. Hence, in order to build the scheduling knowledge base,
training examples in ISC must have enough information to reveal this property.

2626 C.-T. Su and Y.-R. Shiue
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In the ISC knowledge base, a set of training examples can be represented by

triplet {PM;F ; do}, where PM is the user-defined management performance

measures; F is the subset of system features, and do is the optimal control strategy

(dispatching rule) under such performance criteria and system status.

Three kinds of performance criteria are typically studied in scheduling problem

domain: throughput based, flow time based, and due date based. Table 1 presents the

three performance criteria used in this study.

2627Intelligent scheduling controller for shop floor control systems

Performance criteria Description

TP throughput
MF mean flow time
NT number of the tardy parts

Table 1. Performance criteria.

System attribute Description

Nj number of the jobs in the system
MeUM mean utilization of machines
SdUM standard deviation of machine utilization
MeUL mean utilization of load/unload stations
MeUB mean utilization of pallet buffers
MeUA mean utilization of AGVs
MiOT minimum imminent operation time of candidate jobs within the system
MaOT maximum imminent operation time of candidate jobs within the system
MeOT mean imminent operation time of candidate jobs within the system
SdOT standard deviation of the imminent operation time of candidate jobs

within the system
MiPT minimum total processing time of candidate jobs within the system
MaPT maximum total processing time of candidate jobs within the system
MePT mean total processing time of candidate jobs within the system
SdPT standard deviation of the total processing time of candidate jobs within

the system
MiRT minimum remaining processing time of candidate jobs within the system
MaRT maximum remaining processing time of candidate jobs within the system
MeRT mean remaining processing time of candidate jobs within the system.
SdRT standard deviation of the remaining processing time of candidate jobs

within the system
MiST minimum slack time of candidate jobs within the system
MeST mean slack time of candidate jobs within the system
SdST standard deviation of the slack time of candidate jobs within the system
MaTA maximum tardiness of candidate jobs within the system
MeTA mean tardiness of candidate jobs within the system
SdTA standard deviation of the tardiness of candidate jobs within the system
MaWL maximum workload in front of any machine/station within the system
ToWL total workload in front of any machine/station within the system
MeSO mean sojourn time of candidate jobs within the system
SdSO standard deviation of the sojourn time of candidate jobs within the

system
MeTD mean time now until due data of candidate jobs within the system
SdTD standard deviation of the time now until due data of candidate jobs

within the system

Table 2. SFCS attributes.
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This work seeks to identify essential system attributes under various performance
criteria. Therefore, all possible system attributes are exhaustively examined. Table 2
lists the 30 candidate attributes examined in this study. The criteria for selecting
system attributes are based on both earlier research (Cho and Wysk 1993, Park et al.
1997, Chen and Yih 1999, Arzi and Iaroslavitz 2000), which used machine learning
to develop scheduling knowledge bases, and the case environment considered in this
research.

The need for dynamic dispatching rules arises from the fact that no single dis-
patching rule has been proven to be optimal than all other rules under a variety of
shop configurations and operating conditions (Blackstone et al. 1982, Baker 1984,
Montazeri and Van Wassenhove 1990, Sabuncuoglu 1998). Consequently, excessive
efforts in studying the best dispatching heuristics in various environments are
unnecessary. Table 3 specifies nine dispatching rules that were found effective in
terms of the three performance criteria in this study. The mathematical definition
in performance criteria, system attributes, and dispatching rules are equivalent to
those used by Shiue and Su (2003).

Training examples must constitute a comprehensive initial knowledge base that
represents a broad range of possible system states (Arzi and Iaroslavitz 2000). A
multipass simulation (Wu and Wysk 1989) approach is used as a tool in the training
example collection mechanism, which is utilized to collect training examples
including the state variable of the system attribute recorded at the beginning of
scheduling decision point and the performance measure of each dispatching rule
recorded at the end of a scheduling decision point. This training examples collection
mechanism offers the advantage of being able to provide various patterns of job
arrivals that represent a breadth of possible system states to learn the concept for the
ISC knowledge learning mechanism. Moreover, some training examples generated
by the training examples collection mechanism can be used as unseen data to
determine the optimal subset of shop floor information.

6. Architecture of a hybrid GA/DT-based knowledge learning mechanism

Figure 4 shows the proposed approach that consists of two modules: a GA
module and a DT learning module. A GA module is used to search the spaces of
possible subsets of a large set of candidate shop floor system attributes, to determine
an optimal subset of system attributes according to various performance measures,
whereas the DT learning module generates training examples that were applied to

2628 C.-T. Su and Y.-R. Shiue

Dispatching rule Description

FIFO select the job according to the rule of first in first out
SPT select the job with the shortest processing time
SIO select the job with the shortest imminent operation time
SRPT select the job with the shortest remaining processing time
CR select the job with the minimum ratio between time now until

due-data and its remaining processing time
DS select the job with minimum slack time
EDD select the job with the earliest due-data
MDD select the job with the minimum modified due-data
MOD select the job with the minimum modified operation due-date

Table 3. Dispatching rules.
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evaluate the fitness of a given subset of system attributes determined by the GA
module. This GA/DT process iterates until a feature subset is obtained with the best
performance in classifying unseen data, and the corresponding DT module is
obtained with an optimal subset of system attributes to generate the ISC knowledge
base.

A more concise algorithm for the ISC knowledge learning mechanism follows.

Step 1. Initialize GA and DT module parameters.
Set g ¼ 0, where g is the current generation.

Step 2. Initialize a random population of individuals, PðgÞ, which represents a
population of candidate subsets of the attributes in SFCS at generation g.

Step 3. Assign PðgÞ to a collection of training examples, S, denoted, SpðgÞ.
Step 4. Evaluate initial SpðgÞ.

Step 4.1. Use the DT algorithm to build DTs for all SPðgÞ in DT module.
Step 4.2. Obtain the performance of the DT algorithm in classifying

unseen data as a fitness function for all SPðgÞ in DT module,
and then feed this performance into GA module.

Step 5. While the termination criteria are false, performs Steps 6–10 (Evolution
Cycle).

Step 6. Set g ¼ gþ 1:

2629Intelligent scheduling controller for shop floor control systems
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DT knowledge
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Figure 4. Architecture of the GA/DT-based knowledge learning mechanism.
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Step 7. Select SPðgÞ from SPðg�1Þ in GA module.
Step 8. Crossover SPðgÞ in GA module.
Step 9. Mutate SPðgÞ in GA module.
Step 10. Evaluate Sp(g).

Step 10.1. Use the DT algorithm to build DTs for all SP(g) in DT module.
Step 10.2. Obtain the performance of the DT algorithm in classifying

unseen data as a fitness function for all SP(g) in DT module,
and then feed this performance into GA module.

Step 11. While termination criterion is true. For optimal SPðgÞ, using the DT algo-
rithm generates an ISC knowledge base in the DT module.

6.1. GA optimization attribute selection module
A GA is used here to evolve the optimal subset of system information used as the

input attributes for the DT-based ISC knowledge learning mechanism. GAs involve
five basic procedures: encoding the problem parameters, generating the initial
population, setting the fitness function, applying genetic operators based on an
objective function to create a new population, and determining termination criteria.
Each of these procedures is discussed below in relation to the algorithm considered
here.

6.1.1. Chromosomal representation
A chromosome in a GA is a sequence of symbols that represents an individual or

candidate solution to a problem. These symbols are often encoded as numbers.
In the application of a GA to determine optimal subset attributes for SFCS, each

chromosome represents a subset of attributes. A GA is employed to find the optimal
binary chromosome, where each bit is associated with an attribute of the SFCS
(figure 5). The dimension of the string corresponds to the number of studied attri-
butes in the training examples. If the f-th bit of chromosome equals ‘1’, then the f-th
attribute is allowed to participate in learning scheduling knowledge; if the bit equals
‘0’, then the corresponding attribute does not participate in learning scheduling
knowledge.

6.1.2. Initial population and choice of fitness function
The collection of individuals in each iteration is the population. For the initial

population, the value of each bit of the string is randomly generated as either ‘1’ or
‘0’.

The percentage of correct classifications of unseen data is the fitness function that
represents a measure used to judge the performance of the DT-based scheduling
knowledge learning mechanism. The fitness function is given by:
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30 bits 

0  1  1  0                                            1  1 

Attribute 2 is included in knowledge learning classifier 

Attribute 1 is not included in knowledge learning classifier 

Figure 5. Chromosome structure of system attributes.
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fv ¼ nc

nu
� 100; ð1Þ

where nc is the number of unseen data correctly classified by the DT, and nu is the
total number of unseen data.

6.1.3. Genetic operators
Genetic operators modify individuals within a population to produce a new

individual for testing and evaluation. Historically, crossovers and mutation have
been the most important and best understood genetic operators.

The crossover operator takes two chromosomes to produce two new
chromosomes by swapping some bits, thereby enlarging the search space and
accelerating the process of reaching the optimal solution. In this study, a
chromosome is represented by a binary string as in feature selection. Hence, cross-
over can be performed by arbitrarily choosing a point called the crossover point, at
which two chromosomes exchange their parts to create two new chromosomes. The
mutation operator increases the variability of the population, and then provides a
solution with an opportunity to escape the local optimal area and search other
terrains for a global optimum. During the mutation process, the GA module scans
each bit and generates a random number for each bit in the interval of 0 to 1 for each
chromosome.

Choosing crossover and mutation rates as control parameters can involve solving
a complex nonlinear optimization problem. Furthermore, the settings of these rates
depend critically on the nature of the problem domain. In this work, the population
size, crossover rate and mutation rate of the GA optimization attribute selection
module are set as 100, 0.6, and 0.001, respectively, which values are based on the
suggestions from DeJong (1975). All the strings are randomly generated.

6.1.4. Creation of a new population
Selection is an operation that determines the combination that performs GA

operators. In this hybrid system, selection is performed by the roulette wheel
method. The probability that a chromosome selected for inclusion in the mating
pool is proportional to its fitness. After the crossover and mutation operations, a
new population is generated and then evaluated using the fitness function.

Only a desired, predefined number of the best chromosomes survive to the next
generation since the population size is finite. In this study, an elitist strategy (De Jong
1975) is incorporated into the selection process, forcing the GA to retain the best
10% of individuals. The fittest 10 individuals in each generation survive to the
succeeding generation. This strategy prevents oscillation of the fitness function
with each generation and significantly improves the performance of the GA.

6.1.5. Termination criteria
Two termination criteria are used: the best fitness remains the same for defaulted

generations and the maximum number of generations is reached. The best fitness
remains unchanged for the defaulted generations to determine whether the popula-
tion has converged, and the maximum number generations of is considered to pre-
vent use of excessive computer time. If either the best fitness remains the same for
defaulted generations or a predefined number of generations is reached. Then, the
GA process stops and the chromosome with the best fitness value, which contains an

2631Intelligent scheduling controller for shop floor control systems
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optimal subset of system attributes. Otherwise, the GA module performs selection,
crossover and mutation operations to generate a new population.

6.2. DT knowledge learning/evaluation module
The DT module has two primary functions. These are evaluating the fitness of

the GA module and generating the DT-based ISC knowledge base. After the initial
population is generated, each chromosome in the population representing a subset of
SFCS information attributes is fed in the form of training examples into the DT
module to evaluate fitness to determine the optimal subsets of system attributes in
terms of various measures of performance. When one termination criterion is
reached in the GA optimization module, and the corresponding DT module generate
the ISC knowledge base. Knowledge is finally presented in the form of a decision tree
and uses for dynamic dispatching control mechanism.

The DT learning algorithm, C4.5, applied here has become a standard learning
tool for building the DTs used in supervised classification problem domains. C4.5 is
an extended form of ID3 with some additional specific characteristics such as the
ability to handle continuous attribute values, noise data, alternative measures for
selecting attributes, and pruning DTs.

Rule induction in C4.5 has three phases: first, an initial, large rule tree is created
from the sets of examples according to attribute selection measures; second, this tree
is pruned by removing the branches with little statistical validity, and third, the
pruned tree is processed to improve its understandability. The generalization ability
of C4.5 can be enhanced through the first two phases even if the classifications of the
training examples or the attribute values that describe these examples contain errors.
Besides, according to various problem domain characteristics, C4.5 can be tuned by
some parameters. Each of these aspects involved in the first two phases is discussed
below in relation to this work.

6.2.1. Constructing decision trees
In the tree creation phase, C4.5 is a greedy algorithm that grows the tree from the

top-down, selecting at each node the attribute that best classifies the local training
examples. This process continues until the tree perfectly classifies the training
examples or until all attributes have been tested. The system attributes in SFCS
include some characteristics such as continuous value attributes and a bias in
favour of features with more values. C4.5 introduces a gain ratio to avoid a bias
toward the attributes with many values over those few values. Besides, C4.5 can
dynamically define new discretely valued attributes that partition the continuous
attribute value into discrete set intervals (called threshold values). Appendix A
gives a more detailed description.

6.2.2. Pruning decision trees
The tree creation phase can lead to difficulties when the data includes noise.

When DT classifies such data, the resulting tree tends to be very large. However,
the number of branches reflects the probability of occurrence of particular data
rather than underlying relationships. These relationships are very unlikely to occur
in further examples. In this situation, the DT creation algorithm will produce trees
that overfitting the training examples. A few training examples collected as noisy
data may not generate suitable ISC knowledge. The Post-pruning DTs approach can
identify the least reliable branches and remove them.

2632 C.-T. Su and Y.-R. Shiue
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C4.5 can be tuned by two parameters during DT pruning: the minimal number of
examples represented at any branch of any feature-value test (m parameter) and the
confidence level of pruning (c parameter). Appendix B gives a more detailed descrip-
tion.

7. Experiment

7.1. Constructing a simulation model and generating training examples
A discrete event simulation model is used to generate training examples and

verify the presented methodology. The simulation model is built and executed
using SIMPLEþþ (2000) object-oriented simulation language, and is run on a
Pentium IV 1.5G MHz PC in the Windows 2000 system.

Several parameters are determined by a preliminary simulation run. The time
between the arrivals of various jobs is exponentially distributed with a mean of 31
min. The period after which each job is due to be completed, is randomly assigned
from six to ten times the total processing time and is uniformly distributed. The
maximum number of pallets (jobs) that are allowed to be handled by the FMS
system is 100. Table 4 shows five product-mix ratios considered to achieve various
conditions with respect to machine loading and shifting of the bottleneck. The
proportions of part types varied continually every 20 000 min.

Forty random seeds were used and 1000–5000 min (1000 min for one unit) were
chosen from the beginning in simulation clock (after a warm-up period) to generate
200 different patterns of job arrivals and thus generate training examples. The warm-
up period for each run was 10 000 min, followed by 10 multipass scheduling periods,
each of which was from 2000 to 10 000 min (1000 min for one unit) depending on a
trial and error process in each performance criterion. A total of 2000 training
examples were collected.

7.2. Optimal subset of system attributes determined by the GA/DT-based approach
The proposed GA/DT-based approach in the GA module was implemented

using a program written by the authors, coded in Visual Cþþ and linked to See5
(C4.5 commercial windows version) by a batch file mode. Tables 5 and 6 show the
primary parameter settings of the GA/DT-based approach for the ISC knowledge

2633Intelligent scheduling controller for shop floor control systems

Part ID

Part-mix ratios (%)

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

1 11.00 14.00 6.00 9.00 14.00
2 11.00 14.00 6.00 9.00 14.00
3 11.00 15.00 6.00 9.00 14.00
4 12.00 10.00 15.00 8.00 15.00
5 6.00 12.00 15.00 13.00 7.00
6 8.00 8.00 9.00 12.00 5.00
7 8.00 5.00 8.00 3.00 5.00
8 7.00 3.00 8.00 9.00 4.00
9 7.00 3.00 7.00 8.00 4.00

10 2.50 1.00 4.00 1.00 6.00
11 16.50 15.00 16.00 19.00 12.00

Table 4. Part-mix ratios.
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building used in this study. Table 7 shows the results of optimal subset of system
attributes according to each performance criterion.

This study has two goals. The first to investigate whether the selected optimal
subset of attributes can generate more effectively generalization ability in ISC
knowledge bases; the other is to determine whether using the optimal subset of
attributes can yield superior production performance with respect to each criterion
than in the absence of an attribute selection procedure. Hence, two experiments were
conducted, and are described below.

7.3. Verifying experiment 1 design and results
The experiment described below is performed to examine whether the proposed

GA/DT-based ISC can be more robustly generalization ability than the classical DT-
based ISC (without feature selection procedure) in various scenarios.

First, two groups of attribute subsets are designed for the training examples, one
of which includes all 30 attributes and the other of which includes an optimal subset
of system attributes selected by GA/DT-based knowledge learning mechanism.
Second, the 2000 training examples are divided arbitrary into a learning set and
an unseen set by a series of 15 runs. Each run uses a different random seed. Each
set contains 1000 training examples. Finally, the learning set is used to build ISC
knowledge bases. The unseen set is used only to estimate the generalization ability

2634 C.-T. Su and Y.-R. Shiue

GA parameter Value

Population size 100
Crossover rate 0.6
Mutation rate 0.001
Elitism strategy 0.1
maximum generation 500
Best fitness remains the same for generation 10

Table 5. GA parameters.

See5 patameter Definition Value

m minimum number of instances represented by a node 2
c confidence level for pruning 25
S training data percentage 50

Table 6. See5 parameters.

Performance criteria Optimal subset of system attributes
No. of attributes

selected

TP {MeUB, MaPT, SdPT, MeTA} 4
MF {SdOT, MaPT, MeRT, SdRT} 4
NT {Sd PT, SdST, MaTA, MeTA, ToWL} 5

Table 7. Results of selected attributed for each performance criterion.
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after the attribute has been selected and the ISC knowledge base has been
constructed. Figure 6 shows the results of the experiment.

These results were then analysed by statistical independent samples t-test for each
criterion to detect a statistically significant difference between the GA/DT-based and
the Classical DT-based approach. Table 8 summarizes the results which show sig-
nificant differences (p ¼ 0:0000) in generalization ability between using and not using
the feature selection procedure to build ISC knowledge bases, as measured by
various performance criteria.
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Figure 6. Accuracy of GA/See5 versus See5 using different random seeds of sampling under
various performance criteria.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
38

 2
7 

A
pr

il 
20

14
 



7.4. Verifying experiment 2 design and result

A stream of arriving jobs, was generated in a simulation of 160 000 min using a

different set of random seeds to investigate whether the proposed GA/DT-based ISC

is more effective based on various performance measures in the long run than the

classical DT-based ISC and the single heuristic rule in various scenarios. The

performance of GA/DT-based ISC was compared with that of classical DT-based

ISC and individual dispatching rules were compared using 30 random seeds, based

on three performance criteria. Table 9 shows the mean and standard deviation of 30

simulation runs under different scheduling strategies. The proposed approach has

been shown to be able to achieve better results, as measured by all performance

criteria, because of superior efficiency.

A paired-sample t-test was performed to examine whether the proposed GA/DT-

based ISC provides evidence significantly superior to that provided by the classical

DT-based ISC and individual dispatching strategies (due to the use of common

random number seeds which are not independent in this study). The null hypothesis

is that the mean values of all the scheduling strategies are equal. An overall

significance level of 95% was selected for this analysis. Table 10 summarizes the

results of the paired-sample t-test.

The paired sample t-test shows that the hypothesis is rejected at a significance

level of 95% for all control strategies. Therefore, the proposed approach out-

performs classic DT and the other dispatching strategy.
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TP MF NT

Mean SD Mean SD Mean SD

GA/DT-based 0.7157 0.0076 0.6567 0.0123 0.6825 0.0104
DT-based 0.5496 0.0214 0.5347 0.0222 0.5154 0.0181
P 0.0000 0.0000 0.0000

SD, standard deviation.

Table 8. Summary of generalization ability of the GA/See5 versus See5 approach.

Scheduling
strategy

TP MF NT

Mean SD Mean SD Mean SD

GA/DT-based 5248.7333 19.8771 1066.4833 206.4070 383.0667 83.4489
DT-based 5246.7667 19.8124 1151.1685 270.7587 468.0333 106.8649
FIFO 5226.9000 56.9648 1769.9067 541.3510 3096.5667 771.5670
SPT 5243.5337 22.7000 1086.0193 221.6849 419.7667 94.3371
SIO 4236.9667 37.8709 1237.8833 286.8156 768.9000 650.3615
SRPT 5245.5000 22.5048 1165.3360 358.7010 431.5333 105.9941
CR 5200.7333 48.9412 1669.0660 304.9825 2057.6667 728.3847
DS 5219.9667 72.8117 1163.1480 346.7107 958.6000 886.2119
EDD 5231.4000 56.2915 1536.2867 585.8137 2306.0333 1115.0344
MDD 5227.8000 63.8692 1532.5973 590.4579 2315.8667 1124.5156
MOD 5226.3000 66.3762 1550.0260 577.1296 2318.4000 1105.3951

Table 9. Comparison of the mean and SD between GA/DT and the other scheduling
strategy (min).
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8. Conclusions

A successful ISC for supporting an SFCS would facilitated real time decision-
making, be robust to various production requirements and select a near-optimal
subset of system information from a large amount of shop floor information to
establish ISC knowledge. This work introduces a hybrid learning methodology
that integrates GAs and DT learning to select a combinatorial optimal subset of
features from potential shop floor information for use by a DT-based ISC knowl-
edge base classifier.

The following inferences can be drawn.

. Many types of shop floor information exist in SFCS. However, considering a
few essential system attributes is adequate for building a knowledge base in
ISC.

. Some classical DT learning approaches such as C4.5 (or See5) have provided
several measures for selecting attributes in the tree creation phase and for rule
post-pruning to enhance the generalization ability in learning bias. However,
these DT learning approaches to constructing DT knowledge bases are usually
not considered when some irrelevant and redundant attributes exist in the
problem domain. The generalization ability of DT learning still deteriorates.
Besides, the performance under various production criteria may be worse than
that of the heuristic individual dispatching rules in the long run.

. By the GA/DT-based knowledge learning mechanism, the experimental results
show that the use of the optimal subset of system attributes to build scheduling
knowledge bases delivers better generalization ability than without an attribute
selection procedure in terms of the accuracy of prediction on unseen data
under various performance criteria.

. Proposed GA/DT-based ISC offers an intelligently dynamic dispatching rule
control mechanism that evaluates the current status of SFCS, and then sends
the most appropriate dispatching rule to the execution function of SFCS for
the next scheduling period. The results of the simulation reveal that will lead to
better system performance than that of the classical DT-based learning ISC
under various performance criteria in the long run.

Some potential directions for improvement and future work are clear. First, the
neural network architecture and parameters are empirically determined and unable
resolve beforehand. Integrating the GA-based attribute selection approach with the
neural network based ISC knowledge classifier is an area for future research. Second,
the various presentation data concerning system attributes in SFCS may influence
the selection of the optimal subset of features. This problem can be effectively
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Performance
measure P

DT FIFO SPT SIO SRPT CR DS EDD MDD MOD
TP 0.0007 0.0072 0.0000 0.0378 0.0001 0.0000 0.0115 0.0304 0.0299 0.0268
MF 0.0045 0.0000 0.0096 0.0000 0.0264 0.0000 0.02020 0.0000 0.0000 0.0000
NT 0.0000 0.0000 0.0000 0.0016 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

Table 10. Comparison of the paired-sample t-test between GA/DT and the other dispatching
strategy.
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addressed by a sensitivity analysis and more experimental study. Moreover, how to
improve the generalization ability of ISC knowledge bases in continuously
changing product mix ratios is another important area for further research. A
possible research direction will incorporate on-line learning mechanism that
integrates reinforcement learning methodology such as Q Learning, temporal
difference learning (Mitchell 1997) and transient state detection algorithm (Ishii
and Talavage 1991, Moses 1999) in ISC to solve this problem.

Acknowledgements

This paper was supported in part by the National Science Council, ROC, under
Contract NSC-91-2213-E-009-072.

Appendix A: C4.5 creates DTs methods used in this study

Quinlan (1986) used an evaluation function called information gain to measure
how well a given attribute separates the training examples according to the target
classification. In order to define information gain precisely, he defined a measure
used in information theory called entropy that characterizes the impurity of a
collections of examples:

EntropyðSÞ ¼ �
X

d2D
PðdÞ log2PðdÞ; ð2Þ

where S is a collection of examples, D is the set of class labels and is the dispatching
rules used in this study, and PðdÞ is the proportion of S belonging to class d.

The information gain is simply the expected reduction in entropy caused by
partitioning the examples according to their features. Hence, the information gain is:

GainðS; f Þ ¼ entropyðSÞ �
X

v2Vf

PsðvÞentropyðSvÞ; ð3Þ

where f is a feature relative to a collection of examples S, Vf is the set of all possible
values for feature f, and Sv is the subset of S for which feature f has value v (i.e.
Sv ¼ fs 2 Sj f ðsÞ ¼ vgÞ. PSðvÞ is the probability that S belong to feature value v. The
probability is estimated from relative frequency of the training set.

There is a natural bias in the information gain that favours tests with many
outcomes. One way to avoid difficulty is to select decision attributes based on
some measure that has been used successfully in the gain ratio. The gain ratio
measure penalizes attributes by incorporating the normalizing factor called split
information, which is sensitive to how broadly and uniformly the attribute splits
the data. The following equations define split information:

SIðS; f Þ ¼ �
X

v2Vf
PðvÞ log2 PðvÞ: ð4Þ

The gain ratio measure is defined in terms of the earlier information gain, as well as
split information:

Gain ratioðS; f Þ ¼ gainðS; f Þ
SIðS; f Þ : ð5Þ

C4.5 can easily handle continuous value attributes incorporated into the learned tree.
This can be accomplished by dynamically defining new discrete valued attributes that
partition the continuous attribute value into a discrete of intervals (called threshold
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values). For a collection of examples S, the set of all possible values for feature f are
sorted on the values to give the sequence v1; v2; . . . ; vt�1; vt. Each pair of values vs,
vsþ1 suggest a possible threshold:

vth ¼
vs þ vsþ1

2
: ð6Þ

Equation (6) divides a collection of examples S for feature f into two subsets, those
with a value of f above and below the threshold, respectively. Hence, there are t� 1
possible splits on f all of which are examined. The gain ratio of this section can then
be investigated as above.

Based on above-mentioned, C4.5 creates DTs in this study involves the following
steps:

Step 1. Initialization

Initialize GA and See5 parameters.
A set of training examples, S, is given.
Set F is a list of features that may be tested by the learned DT.

Step 2. For each feature f 2 F uses equations (2–6) calculates an initial value of gain
ratio. Select feature f that results in the maximum gain ratio in information
to serve Tf as the target feature whose value is to be predicted by DT

Step 3. Let EXTf
vth

is the subset of examples that have threshold value vth for Tf .
For each EXTf

vth creates a new branch tree.

Step 4. For each EXTf
vth use equations (2–6) to calculate a gain ratio, perform Steps

5–7.
Step 5. If EXTf

vth
gain ratio ¼ 1 is true, perform Step 6. Otherwise, perform Step 7.

Step 6. This value vth for Tf branch becomes a leaf node.
Step 7. F ¼ F � Tf .

Below this value vth for Tf branch creates new branches for F.
Step 8. Repeat Steps 2–7. Continue the procedure until all subtrees are of a single

class and the system entropy is zero.

Appendix B: C4.5 prune DTs method used in this study

The m parameter determines the minimum number of instances represented by a
node. A higher value of m leads to an increasing level of abstraction and thus less
recoverable information about individual instances. Setting m > 1 (the defaulted
value is m ¼ 2), allows C4.5 to avoid creation of long paths that involve a minority
of obscure individual instances that are most likely represent noise.

The c parameter denotes the confidence level of pruning, which ranges from 0 to
100%. No pruning occurs if setting value c ¼ 100% is set (the defaulted value is
25%). As more pruning is performed, less information about the individual example
is remembered in the abstracted decision tree. The origin of this parameter comes
from Quinlan’s (1987) pessimistic error pruning method for pruning DTs. A
pessimistic error pruning method aims to avoid the requirement for a separate test
data set. As has been seen, the misclassification rates produced by a tree on its
training data are overly optimistic. If used for pruning, they produce overly large
trees. Quinlan suggests using the continuity correction for the binomial distribution
to obtain a more realistic estimate of the misclassification rate. For a more detailed
description about estimated pessimistic misclassification rate, see Quinlan (1987).
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For easy of computation, C4.5 uses the following equation to calculate the number
of predicted misclassifications of N training examples at leaf:

N �UCF ðE;NÞ; ð7Þ
where E is the number of training examples misclassification at leaf, CF is confidence
level (i.e. c parameter), and UCF ðE;NÞ is the upper limit error probability of a leaf
covering N training examples with E training examples misclassification.

If the presence of a leaf node leads to a higher predicted number of errors than its
absence through a tuned c parameter, then it is pruned from the tree. C4.5 therefore
prunes DTs involved following six steps.

Step 1. For each non-leaf node in the bottom layer replaced by a leaf, count the
number of misclassifications in the training examples and calculate the
predicted number of errors at the leaf.

Step 2. For each non-leaf node in the bottom layer if a subtree is kept, count the
number of misclassifications in the training examples and calculate the
predicted number of error for each leaf. Then, sum over the predicted
number of errors.

Step 3. IF a leaf predicted a given number of errors in Step 1 is less than the subtree
kept in Step 2 is true, perform Step 4. Otherwise, perform Step 5.

Step 4. Replace subtree with a leaf.
Step 5. Keep subtree.
Step 6. Repeat Steps 1–5. Until further pruning would increase predicted misclassi-

fication rate.
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