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Abstract

The Maximum Bene"t Chinese Postman Problem (MBCPP) is a practical generalization of the classical Chinese Postman
Problem (CPP), which has many real-world applications. In this paper, we consider the MBCPP on undirected networks, and
show that the MBCPP is more complex than the Rural Postman Problem (RPP). We present a su6cient condition for the
MBCPP solution to cover the whole network, and provide an upper bound. Based on the upper bound, we propose an e6cient
solution procedure to solve the MBCPP approximately. The proposed algorithm applies the minimal spanning tree and the
minimal-cost matching algorithms, which performs well on problems satisfying the su6cient condition.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are many generalizations of the well-known Chi-
nese Postman Problem (CPP). Examples include the Ru-
ral Postman Problem (RPP) [1], the Hierarchical Postman
Problem (HPP) [2], the k-person Chinese Postman Problem
(k-CPP) [5], the Capacitated Arc Routing Problem (CARP)
[3], and many others.

The Maximum Bene"t Chinese Postman Problem
(MBCPP) is another interesting generalization of the CPP,
in which each edge on the network is associated with a
service cost for the traversal with service, a deadhead cost
for the traversal with no service, and a set of bene"ts. Each
time an edge is traversed a bene"t is generated. The objec-
tive of the MBCPP is to "nd a postman tour traversing a
selected set of edges with the total net bene"t maximized.
Such a generalization re?ects the real-world situations more
closely than the classical CPP. Applications directly related
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to the MBCPP include routing of street sweepers, snow-
plows, spraying roads with salt, inspection of streets for
maintenance, and reading of electric meters.

The problem may be brie?y de"ned as follows. Given an
undirected network G(V; E), with V representing the set of
nodes, and E representing the set of edges. For each edge
(i; j)∈E, we are given a non-negative service cost csij for
the edge traversal with service, and a non-negative deadhead
cost cdij for the edge traversal with no service, which we
expect csij¿ cdij . We are also given a set of non-negative
bene"ts bijrij from node i to node j for the rijth traversal,
where rij = 1; 2; : : : ; nij .

To re?ect real situations more closely, we assume that
the bene"t bijrij is non-increasing in rij . The net cost of the
rijth traversal of the edge (i; j), therefore, can be explicitly
expressed as cijrij = c

s
ij − bijrij for rij = 1; 2; : : : ; nij , with the

index nij = max{rij | bijrij ¡ cdij}, and bij(nij+1) = 0. The net
cost for rij¿ nij + 1, is therefore cijrij = cdij . That is, for
the traversal of the deadhead edges, no bene"t is generated.
Then, the MBCPP is to "nd a postman tour, starting from
the depot, traversing a set of edges in E, and returning to
the same depot with total net cost minimized (or total net
bene"t is maximized).
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Malandraki and Daskin [4] have investigated the MBCPP
on directed networks. Their cost/bene"t structure, however,
is more restricted than one we consider here.

2. Problem complexity

In the following, we present a linear transformation, which
converts the Rural Postman Problem (RPP) into a special
case of the MBCPP. Hence, the MBCPP is more complex
than the RPP.

2.1. The transformation

Consider a (totally) undirected RPP network G(V; E; ER)
with ER representing the set of required edges. For each
edge (i; j) with distance dij , (1) if (i; j)∈ER, de"ne the
service cost and the deadhead cost as csij = c

d
ij = dij , bene"t

bij1 =2dij+ �, bij2 =dij− �, and bijrij =0, for rij¿ 3, where
� is a su6ciently small number less than one, and (2) if
(i; j)∈E−ER, de"ne the service cost and the deadhead cost
as csij=c

d
ij=dij , bene"t bij1=dij−�=(4m), bij2=dij−�=(2m),

and bijrij = 0 for rij¿ 3, where m = |E| = the number of
edges in E.

Clearly, for (i; j)∈ER the net cost can be calculated as
cij1 =−(dij + �), cij2 = �, and cijrij = dij , for rij¿ 3. On the
other hand, for (i; j)∈E−ER, the net cost can be calculated
as cij1 = �=(4m), cij2 = �=(2m), and cijrij = dij for rij¿ 3.
If we denote the transformed network as G′(V; E; ER), then,
we can show the following theorem.

Theorem. The optimal RPP solution over the original net-
work G(V; E; ER) is equivalent to that of the MBCPP over
the transformed network G′(V; E; ER) with equal solution
values.

We "rst note that minimizing the total net cost cijrij =
csij − bijrij is obviously equivalent to maximizing the total
net bene"t −cijrij = bijrij − csij . Let |ER| be the number of
edges in ER. If the MBCPP solution over the transformed
network G′(V; E; ER) traverses all the edges in ER exactly
twice without traversing any edge in E−ER, then the total net
bene"t is

∑
(i; j) d(i; j)+ |ER|� for (i; j)∈ER. If the MBCPP

solution over the transformed networkG′(V; E; ER) traverses
all the edges in ER exactly twice without traversing any
edge in E − ER, then the total net bene"t is

∑
(i; j) d(i; j) +

|ER|�−|ER|�=∑
(i; j) d(i; j) for (i; j)∈ER. Since traversing

one edge in ER for the second time reduces the total net
bene"ts by �, any MBCPP solution would attempt not to
traverse the edges in ERfor more than once.

Further, traversing over any edge in E − ER would only
reduce the total net bene"t by either �=(4m) for the "rst
time traversal, or �=(2m) for the second time traversal, any
MBCPP solution would attempt to minimize the cost in-
curred from traversing the edges in E−ER in order to max-
imize the total net bene"t. Noting that the sum of the edge

cost (corresponding to the "rst time traversal) from ER is a
constant, it is then clear that the optimal MBCPP solution
over the transformed network G′(V; E; ER) is an Euler cy-
cle covering the edges in ER with minimal distance (cost),
hence is equivalent to the optimal RPP solution over the
original network G(V; E; ER).

3. A special case CPP

Consider a special case of MBCPP with the traversal cost
of edge (i; j) de"ned as csij = c

d
ij = dij (length of the edge

(i; j)), and bene"t de"ned as bij1 = dij + c0; bij2 = dij − c1,
and bijrij = 0, for rij¿ 3, where c0; c1 are constants with
c0¿c1¿ 0. The net bene"t for traversing each edge for the
"rst time is c0, and the second time is −c1.

If the postman traverses each edge on the networkG(V; E)
exactly once, then the total net bene"t can be calculated as
|E|c0. On the other hand, if the postman traverses all the
edges in the network exactly twice, then the total net bene"t
is |E|(c0−c1). Since traversing any edge in E for the second
time reduces the total net bene"t, theMBCPP solution would
attempt not to traverse the edges in E for the second time.
Consequently, minimizing the cost from traversing the edges
for the second time would certainly maximize the total net
bene"t. As a result, the MBCPP with the de"ned cost/bene"t
structure reduces to the classical CPP.

4. Solution properties

We note that in the special case of MBCPP presented
above, the condition of bij1 +bij2¿cij1 +cij2 is satis"ed for
all edges. Such condition is su6cient for the MBCPP solu-
tion to cover all the edges on G(V; E), but not vice versa.
In fact, if the MBCPP solution does not cover the whole
network, then adding two copies of the edges currently
not in the solution would certainly increase the total net
bene"t.

If the condition of bij1 + bij2¿cij1 + cij2 is not satis"ed,
the MBCPP solution may or may not cover the whole net-
work, as shown in the following examples. Fig. 1 depicts an
MBCPP with solution covering the whole network. Fig. 2
depicts an MBCPP with solution not covering the whole net-
work. In both cases, the condition of bij1 + bij2¿cij1 + cij2
is not satis"ed for some edges.

For the special case considered in Malandraki and Daskin
[4], the condition assumed (with bene"t bij2 = 0 for the
second time traversal) does not guarantee the MBCPP so-
lution to cover all the edges in the network (see Example
2). Hence, the MBCPP does not reduce to the CPP in that
setting.

Example 1. Consider the MBCPP depicted in Fig. 1 with
six nodes and six edges. The edge traversal cost is de"ned
as csij = c

d
ij = dij , and bene"t bijrij = dij + 1, rij ¡ 3; bijrij =
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Fig. 1. An MBCPP example with solution covering the whole
network.
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Fig. 2. An MBCPP example with solution not covering the whole
network.

dij , rij¿ 3, for all (i; j)∈{(2; 3); (3; 4); (4; 5); (5; 6); (6; 2)}
except for the edge (1, 2) with edge traversal cost de"ned
as cs12 = c

d
12 =1, and bene"t b12rij =0 for all rij . The optimal

solution covers the whole network with total net bene"t 8.
We note that the condition bij1 + bij2¿cij1 + cij2 is not
satis"ed for edge (1, 2).

Example 2. Consider the MBCPP depicted in Fig. 2 with
seven nodes and eight edges. The edge traversal cost is de-
"ned as csij = cdij = 1, and bene"t bij1 = 2; bij2 = 0, for
(i; j)∈{(2; 3); (3; 4); (4; 5); (5; 6); (6; 2)}, and bij1=2; bij2=
1, for edge (1, 2). For edges (4, 7) and (5, 7), the traversal
cost is cs12 =c

d
12 =1, and the bene"t is bijrij =5=4 for rij ¡ 2,

and bijrij = 0 for rij¿ 2. The optimal postman tour is (1, 2,
3, 4, 5, 6, 2, 1), with a total net bene"t of 6, while the edges
(4, 7) and (5, 7) are not traversed in the postman tour.

We note that the condition of bij1 + bij2¿cij1 + cij2 is
not satis"ed for edges (4, 7) and (5, 7) in Example 2. If all
the edges in the network must be covered, then the postman
tour becomes (1, 2, 3, 4, 7, 5, 4, 5, 6, 2, 1), with a total net
bene"t of 6+ 1=4+ 1=4− 1= 6− 1=2. The total net bene"t
obtained in this case, is obviously not maximal.

4.1. An upper bound

If the postman only services the edges (traversals) with
positive net bene"t, bijrij − csij ¿ 0, without traversing any
other edges with traversal yielding bijrij − csij ¡ 0, then the
total net bene"t obtained is maximal. Those traversals may
not form a complete postman tour, but the total net bene"t
generated certainly provides an upper bound on the solution.
It is straightforward to verify that for the MBCPP described
in Example 1, an upper bound on the total net bene"t can
be found as 10. For the MBCPP described in Example 2, an
upper bound can be found as 6 + 1=2.

To form a complete postman tour (Euler cycle), additional
edge traversals may be required, which results in a reduc-
tion on the total net bene"t. If such net bene"t reduction is
signi"cant, the MBCPP solution may choose not to service
some of those edge traversals with bijrij − csij ¿ 0, in order
to maximizes the total net bene"t. This is true, in particular,
for cases where those edges (traversals) with positive net
bene"t do not form a connected network.

5. A solution algorithm

Since the MBCPP is more complex than the RPP which is
NP-complete, then it must be di6cult to solve the problem
exactly. Based on the solution properties discussed above,
we present an e6cient algorithm, which solves the MBCPP
approximately. The algorithm expands the original network
by replacing each edge with a set of edges of positive net
bene"t. Minimal spanning tree (MST) and matching algo-
rithms are then applied to generate a complete postman tour.

5.1. The algorithm

Step 1: (Network expansion) Replace each edge (i; j) by
a set of new edges with net cost cijrij = c

s
ij − bijrij , where

rij = 1; 2; : : : ; qij , to qij =max{rij|cijrij = csij − bijrij ¡ 0}, to
obtain an expanded network G∗.

Step 2: (Minimal spanning tree) If G∗ is connected,
then proceed to Step 3. Otherwise, let G∗ be a set of
disconnected components {Ct}. De"ne the distance be-
tween every pair of components as D(Ct(i); Ct( j)) =
minx;y{spl(x; y)|x∈Ct(i); y∈Ct(i); }, where spl(x; y) is the
least-cost path over the network GT consisting of edges
with traversal cost cij(qij+1) for edges in G∗ and cijrij = c

d
ij

for edges not in G∗. Let ET be the minimum spanning tree
(MST) solution over GT. Note that if G∗ is connected, then
ET =?.

Step 3: (Minimal cost matching) Identify the set of
odd-degree nodes, S, on the G∗ ∪ ET, and construct a
matching network GM on S with distance between the
nodes de"ned as the least-cost path over the network with
edge traversal cost cij(qij+1) for edges in G∗ − ET, cij(qij+2)

for edges in G∗ − ET, and cijrij = c
d
ij for edges not in G

∗.
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Find the minimal-cost matching solution EM over GM. The
resulting network, G∗ ∪ ET ∪ EM, is the MBCPP solution.

Step 4: (Bene"t maximization) Find cycles with negative
net bene"t if they exist. Remove those cycles from G∗ ∪
ET∪EM if the removal does not separate the remaining graph
into disconnected components.

If we apply the algorithm to the two MBCPP examples
described above, both optimal solutions can be obtained,
which is 8 for the problem in Example 1, and 6 for the prob-
lem in Example 2. Note that in Example 2, the cycle (7, 5, 4)
with negative net bene"t −1=2 is found and removed from
the solution (1, 2, 3, 4, 7, 5, 4, 5, 6, 2, 1) generated from
Step 3. For problems with cost/bene"t satisfying the su6-
cient condition of bij1 + bij2¿cij1 + cij2, the algorithm pro-
ceeds with Step 1 and Step 3 (without the MST segment),
which generates a solution covering the whole network.
Hence, the algorithm is expected to work well on problems
with cost/bene"t satisfying the su6cient condition. In par-
ticular, if the expanded network G∗ is an even graph, the
solution found is optimal.

5.2. Discussion

The cycles with negative net bene"t are removed from the
solution G∗ ∪ET ∪EM generated in Step 3, to maximize the
total net bene"t. Those cycles can be found by repeatedly
proceeding with (1) identifying a path in ET ∪ EM, and (2)
"nding a path in G∗ with minimal net bene"t, between the
two end nodes of the identi"ed path in ET ∪ EM, to form
closed cycles.

In general, if the net bene"t reduction in traversing the
edges in ET ∪EM is signi"cant, then the improvement made
by removing the cycles (Step 4) would be signi"cant. The
MBCPP solution, in that case, chooses not to service some of
the edges in G∗ (with positive net bene"t) in order to max-
imize the total net bene"t. EKective strategies in identifying
paths in ET ∪ EM, and choosing the corresponding paths in
G∗ to form closed cycles, are essential to the maximization
of the total net bene"t, and will be investigated further.

6. Computational examples

Consider the MBCPP depicted in Fig. 3 with 15 nodes
and 26 edges. The depot is at node 1. Table 1 displays
the edge traversal costs for the edges. For simplicity of the
computation, we assume that csij=c

d
ij=cij . We proceed with

Step 1 of the algorithm to obtain the expanded network G∗,
with the edge traversal net bene"ts shown in Table 2. Since
the expanded network G∗ is connected, we proceed with
Step 3 to identify the set of odd-degree nodes S on G∗ by
checking Table 2 to obtain S={6; 7; 11; 12; 13; 15}, and "nd
the minimal-cost matching solution. The network G∗ ∪ EM

obtained in Step 3 is shown in Fig. 4.
Following Step 4 we "nd three cycles with negative net

bene"t, including the cycle (7, 4, 6, 4, 7) with a net bene"t

depot12
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Fig. 3. The 15-node example.

Table 1
Traversal costs of the edges on the network

Edge cij Edge cij

(1, 2) 18 (7, 9) 10
(1, 4) 15 (8, 10) 13
(2, 3) 16 (8, 9) 4
(2, 4) 7 (8, 11) 10
(3, 5) 11 (9, 11) 10
(3, 9) 15 (9, 15) 5
(4, 5) 17 (10, 12) 8
(4, 6) 18 (11, 12) 18
(4, 7) 8 (11, 14) 8
(4, 8) 9 (12, 13) 11
(5, 9) 9 (12, 14) 13
(6, 10) 11 (13, 14) 6
(7, 8) 10 (14, 15) 18

Table 2
The edge traversal net bene"ts of the edges on G∗

Edge bijrij − csij Edge bijrij − csij

(1, 2) 9, 7, 4, 1 (7, 9) 11, 8, 4
(1, 4) 8, 6, 4, 2 (8, 10) 14, 7, 3
(2, 3) 9, 6, 3, 2 (8, 9) 4, 3
(2, 4) 3, 2 (8, 11) 9, 4, 1
(3, 5) 6, 3, 1 (9, 11) 8, 5, 2
(3, 9) 12, 10, 5 (9, 15) 5, 3
(4, 5) 11, 7, 4, 2 (10, 12) 3, 1
(4, 6) 10, 6, 3, 2 (11, 12) 15, 10, 5
(4, 7) 7, 3, 2 (11, 14) 7, 4
(4, 8) 6, 3, 1 (12, 13) 11, 8, 3
(5, 9) 10, 8, 4 (12, 14) 9, 6, 2
(6, 10) 10, 7, 3 (13, 14) 6, 3
(7, 8) 6, 5, 2 (14, 15) 3, 2, 1
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Fig. 4. The network G∗ ∪ EM.

Table 3
Number of edge traversals in the solution

Edge Traversal Edge Traversal

(1, 2) 4 (7, 9) 3
(1, 4) 4 (8, 10) 3
(2, 3) 4 (8, 9) 2
(2, 4) 2 (8, 11) 3
(3, 5) 3 (9, 11) 2
(3, 9) 3 (9, 15) 1
(4, 5) 3 (10, 12) 2
(4, 6) 3 (11, 12) 3
(4, 7) 3 (11, 14) 2
(4, 8) 3 (12, 13) 2
(5, 9) 3 (12, 14) 3
(6, 10) 3 (13, 14) 2
(7, 8) 3 (14, 15) 3

of −22, the cycle (12, 13, 12) with a net bene"t of −8,
and the cycle (11, 9, 15, 9, 11) with a net bene"t of −10.
The resulting network obtained by removing the three cycles
from the network G∗ ∪ EM is the desired solution, which
has a total net bene"t of 403.

The number of traversals on each edge is tabulated in
Table 3, and the total net bene"t generated on each edge
is displayed in Table 4. We note that the solution does not
cover the edge traversals (4, 6), (4, 7), (11, 12), (12, 13), and
(14, 15) with positive net bene"ts 2, 2, 5, 3, and 1, re-
spectively. The corresponding solution covering those edge
traversals has a total net bene"t of 363.

Table 4
Total net bene"ts on each edge in the solution

Edge Bene"t Edge Bene"t

(1, 2) 21 (7, 9) 23
(1, 4) 20 (8, 10) 24
(2, 3) 20 (8, 9) 7
(2, 4) 5 (8, 11) 14
(3, 5) 10 (9, 11) 13
(3, 9) 27 (9, 15) 5
(4, 5) 22 (10, 12) 4
(4, 6) 19 (11, 12) 30
(4, 7) 12 (11, 14) 11
(4, 8) 10 (12, 13) 19
(5, 9) 22 (12, 14) 17
(6, 10) 20 (13, 14) 9
(7, 8) 13 (14, 15) 6

7. Conclusions

In this note, we considered the MBCPP, an interesting
generalization of the classical Chinese postman problem, on
the undirected networks. We showed that the MBCPP is
more complex than the RPP by presenting a linear transfor-
mation converting the RPP into a special case of theMBCPP.
Hence, the MBCPP includes the CPP and the TSP as special
cases.

We also discussed some solution properties, and presented
a su6cient condition for theMBCPP solution to cover all the
edges on the network. Based on those solution properties,
we proposed an e6cient algorithm to solve the MBCPP
approximately, and presented an example to illustrate the
proposed algorithm.
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