
A new development environment for an event-based

distributed system

Tsun-Yu Hsiaoa,*, Nei-Chiung Perngb, Winston Loc,
Yue-Shan Changd, Shyan-Ming Yuana

aDepartment of Computer and Information Science, National Chiao-Tung University. No. 1001, Ta-Hsueh Road, Hsin-Chu, Taiwan, ROC
bDepartment of Computer Science and Information Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road,

Taipei, Taiwan, ROC
cDepartment of Computer Science and Information Engineering, Tung-Hai University, 181 Taichung-kang Rd., Sec. 3, Taichung, Taiwan, ROC

dDepartment of Electronic Engineering, Minghsin University of Science and Technology, Hsin-Chu, Taiwan, ROC

Abstract

The rapid growth of data exchange on the Internet has created many critical problems that require an answer. Traditional data

exchange systems based on client/server communication models are less scalable and incur especially high maintenance cost in

the data exchange domain. For these reasons, many researchers have switched their interest to asynchronous communication

models. Although Message-Oriented Middleware (MOM) is a middle-tier infrastructure that links operating systems and

applications, such asynchronous communication APIs supported by middleware vendors are usually hard to use. For these

reasons, in this study, we present a new development environment for asynchronous communication platforms which we term

Ghostwriter. The keyword for our development environment is ‘easy’, that is, easy to use, easy to develop, and easy to deploy.

Therefore, many researchers have switched their interest to asynchronous communication models. In addition, learning about

and implementing the functions of the asynchronous communication’s clients in Ghostwriter environment is simple. Other

benefits are a lower technical learning curve, help for concentrate on system design, has easily reusable components, and easily

integrated applications.

D 2003 Elsevier Science B.V. All rights reserved.

Keywords: Event-based; Middleware; Development environment

1. Introduction

Data exchange between applications in computer

networks has become more and more popular, but

such exchange on the rapidly expanding Internet has

brought to light many unsolved issues. Generally,

Internet data exchange systems are based on tradi-

tional client/server (peer-to-peer) architecture. Many

models of Client/Server paradigm middleware,

known as remote-invocation-based middleware that

binds the complexities from the programming con-

text, have recently become available. For example,

we have Microsoft’s DCOM/COM+ [16,22], OMG’s

(Object Management Group) CORBA (Common

0920-5489/03/$ - see front matter D 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0920-5489(03)00007-2

* Corresponding author.

E-mail addresses: tyhsiao@cis.nctu.edu.tw (T.-Y. Hsiao),

neil@rtlab.csie.ntu.edu.tw (N.-C. Perng), winston@mail.thu.edu.tw

(W. Lo), ysc@must.edu.tw (Y.-S. Chang), smyuan@cis.nctu.edu.tw

(S.-M. Yuan).

www.elsevier.com/locate/csi

Computer Standards & Interfaces 25 (2003) 345–355

Object Request Broker Architecture) [12], and EJB

(Enterprise Java Bean) [9,19,20], which are all based

on client/service (request/response) architecture.

However, these communication models are less

scalable and incur especially high maintenance costs

in the data exchange domain. For these reasons,

many researchers in search of better Internet com-

munications in this field have switched to asynchro-

nous communication models (sometimes termed

event-based or messaging-based communication

models).

A communication infrastructure based on the

asynchronous model has the advantage of being

loosely coupled, many-to-many communication. Fur-

thermore, such a model is usually considered more

scalable than the traditional synchronous model. In

general, an asynchronous communication model is

part of a middleware set-up, which is the middle-tier

infrastructure that links operating systems and appli-

cations [10]. The model also separates the under-

lying environment from applications and presents

application programmers and users with a homoge-

nous interface. The use of middleware in the devel-

opment of large-scale systems is very common in

enterprise data exchange systems [24]. Middleware

that uses asynchronous communication as its under-

lying mechanism is termed Message Oriented Mid-

dleware (MOM). Many MOM-like platforms or

standards are available, e.g., TIB/Rendezvous [23],

ELVIN [5], Gryphon [7], SIENA [18], SOAP

[17], the Java Message Service (JMS) [21], and the

CORBA Event Service and Notification Service [13,

14]. The JMS and the CORBA Event/Notification

service, which are standard platforms in industry, have

as their main objective an API that provides a reliable

and flexible service for exchanging messages asyn-

chronously between inter- or intra-enterprise applica-

tions.

However, many programmers choose not to use

asynchronous communication models as data ex-

change platforms, for the simple reason that event-

based programming is a difficult and complex work.

The development of asynchronous data exchange

programs requires a lot of domain knowledge about

an event-based distributed system. Some research has

revealed that protocols developed without program-

ming models in mind lead to low-level service imple-

mentation that proves very cumbersome in use

[6,8,15]. Remote-invocation-based middleware is

intuitive but ties applications to rigid client/server

communication. Moreover, standard messaging-based

services, for example, the CORBA Event/Notification

Service and the JMS, have different and complex

APIs that programmers must get used to. For these

reasons, such as in Ref. [2]; in this paper, we present a

new development environment for an asynchronous

communication platform, which we term Ghostwriter.

First, we extract the key ideas from various

event-based middlewares. Then, we analysis the

functions that the software development team will

have to handle, including the system administration,

the application programming, and the middleware

configuration. We use this analysis of the functions

to design the Ghostwriter architecture. Next, we

define Event Markup Language (EventML) Docu-

ment Type Definition (DTD) [25] files, which help

the system administrator to define the roles of the

applications that will be part of the Ghostwriter

development process. Application programmers need

only concern themselves with the data logic and

how messages are sent and received in their pro-

grams. They need know nothing about event-based

programming APIs or models. We also define the

development flow for Ghostwriter and how to facil-

itate rapid deployment of applications onto the

middleware.

The remainder of the paper is organized as follows:

Section 2 discusses the design concepts of the Ghost-

writer system. Section 3 presents the system architec-

ture. In Section 4, we describe what has been done

with Ghostwriter and discuss plans for future work on

improving the Ghostwriter environment. Section 5

contains Conclusions.

2. The design concepts for the system

We entitle our system Ghostwriter. In ordinary

usage, a ghostwriter is someone who is employed to

write under someone else’s name, that is, one who

does the hard work for someone who does not wish to

or cannot do it himself. Our Ghostwriter is thus a

development environment that provides an easy

means for system programmers who do not wish to

or cannot create for themselves programs in an event-

based distributed system.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355346

2.1. The main concept of the Ghostwriter engine

As mentioned above, most Internet program com-

munication still uses custom, socket-based, HTTP

solutions. We believe that event-based distributed

systems are more efficient data exchange models than

traditional ones. However, many programmers choose

not to use event-based programming models as the

underlying mechanism because of the difficulties they

present, in particular, because of the amount of knowl-

edge about the domain that they demand from the

programmer wishing to develop data exchange pro-

grams.

The keyword to describe the Ghostwriter develop-

ment environment is ‘easy’, i.e., easy to use, easy to

develop, easy to deploy. It is also easy to learn, to

explore, and to implement the functions of Ghost-

writer clients. There are several additional benefits

with the infrastructure: a lower technical learning

curve; help with concentrating on the system design;

easily reusable components; easy integration with

application. We describe these benefits below, respec-

tively.

2.1.1. Lowering the technical learning curve

In the Ghostwriter development environment, pro-

grammers program data exchange logic just like

writing a single function call. They need only know

the type of incoming parameters to handle and return

the data in a predefined format. Thus, they handle the

data logic and leave the rest to Ghostwriter. What the

system does is to provide a shell, which is a class

containing the abstract methods, such as send and

receive. A client application inherits this class and

implements the abstract methods. The communication

issues are already written into the shell. The applica-

tion programmers are not even aware of the existence

of the middleware.

2.1.2. Help with concentrating on the system design

Ghostwriter handles all the network communica-

tions for distributed computing, including socket and

port management, protocols, semantics, and message

transportation. In other words, application developers

do not need to concern their client applications with

the communication infrastructure. The same is true for

system analysts, who need only to learn a little event-

based communication knowledge. As a result, they do

not need to write complicated system specifications.

This simplicity helps the application developer to

write clients. The role of programmers and system

analysts is discussed in Section 2.2.

2.1.3. A sophisticated system of cooperation

Although in team work it is always import ant for

individuals to do their separate task well, it is equally

important for them to work well in cooperation. The

best way is to assign tasks clearly. For this reason,

Ghostwriter separates the whole system development

into three parts: system administration, application

programming, and communication configuration. In

huge software development, cooperation is the best

way to decrease working time. Ghostwriter is capable

of sophisticated cooperation. It assigns the work into

five roles: end users, application engineers, system

analysts, middleware providers, and Ghostwriter pro-

viders. We describe these five roles in Section 2.2.

2.1.4. Easily reusable components

When customer requirements change, they need to

change the underlying middleware. For example, an

enterprise may wish to switch from the JMS to the

CORBA Event Service. In that case, the action of

updating the Ghostwriter program should not involve

rewriting the whole system and applications, which

would be unreasonable. In our system, all the devel-

opers need to do is to choose another Ghostwriter

engine suitable to the new middleware. Furthermore,

the Ghostwriter client applications need no rewriting.

It is said that distributed systems are capable of

location transparency, but Ghostwriter is even more

capable of middleware transparency. No matter what

middleware enterprise is chosen, Ghostwriter treats it

in the same manner.

2.1.5. Easily integrated applications

Another important goal of using middleware is

enterprise application integration (EAI). In an interna-

tional enterprise, since many legacy applications work

perfectly well everyday, it is not reasonable to rewrite

them for a new task that is only slightly different. The

features in our middleware mean that we need only

add a wrapper to an application to make it operable in

a new system. Ghostwriter is a client of middleware,

so it has all the capabilities that middleware owned.

Developers can integrate the application in two ways;

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355 347

either integrate it directly into the underlying middle-

ware or wrap it in a Ghostwriter client.

2.2. Separate the different tasks

Building an event-based system is a large under-

taking with many problems to be solved. We believe

that there are considerations: system administration,

application programming, and communication config-

uration.

2.2.1. System administration

Usually, once the system requirements are clarified,

the next step is to specify suitable system architecture.

For instance, decisions must be made on how many

event channels (or the JMS topic) are to be used and

how many clients are programmed. At this stage,

system analysts configure the settings into an

EventML file, which we now describe in more details.

There may be senior engineers who prefer to

analyze the system deployment rather than do the

trivial coding work. There may be system analysts

who only concern themselves with business logic. In

addition, there may be employees in the marking

department that may know about customer/enterprise

requirements, but do not have the talent to write client

applications. Although such people can do nothing in

terms of traditional software development, with

Ghostwriter they can write simple EventML files to

accomplish the system administration.

2.2.2. Application programming

Data logic, which is the most important part in the

client application, is written by application engineers.

We consider the engineers, who write the codes, to

handle what messages are received and what are

messages sent. Complicated network programming,

such as sockets, middleware, and event-based distrib-

uted system should be transparent from engineers.

Moreover, engineers do not need to know the detail of

the communication technology, that is, whether it is

the CORBA event/notification service or the JMS.

Data logic is the only thing needed at this application-

programming phase.

End user is the top role in Ghostwriter system. An

end user is the one who uses the application above the

communication system. For instance, nurses and doc-

tors are the end users of a health care monitoring

system and the investors are the end users of a

financial analysis system.

2.2.3. Communication configuration

The system administration uses business logic to

configure a system, and the application programming

uses data logic to program a client application. Those

two phases are both separate from communications,

so we must have some component to handle the

communication configuration. Those who are familiar

with network environment configure the physical

communication. As already stated, our research

presents an infrastructure, which is a development

environment for event-based distributed system. Any-

one who understands the concept of Ghostwriter

system can implement his own Ghostwriter engine.

In our research, we use Middleware products from

providers such as JavaORB and SonicMQ. There are

many other products that use the CORBA Event/

Notification and Java Message Service standard. The

Ghostwriter provides a suitable engine for enterprise

use, such as the CORBA version Ghostwriter engine

or the JMS version (Fig. 1).

2.3. XML and CORBA mapping

This section describes our XML definition, which

corresponds to the general characteristics of event-

Fig. 1. Roles and tasks in the Ghostwriter development environ-

ment.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355348

based middleware. First, we extract the key ideas from

various event-based middlewares. Then, we define the

DTD of an EventML file that features the general

characteristic of event-based middleware. In the

EventML DTD, we give an example definition of a

client subscribing or publishing to a channel. The

system administrator can use an EventML to describe

the application’s role in the data exchange environ-

ment, and the ghostwriter application can join for data

exchange.

2.3.1. Extract the key ideas from event-based

middleware

Nowadays, many event-based models have been

defined, but all of them share the same central ideas.

There is absolutely nothing new in the technologies

pertaining to the CORBA Event/Notification Service,

the Java Message Service, or anything similar. They

are simply slightly different variations of applications

that we are familiar with.

For this reasons, we did not design EventML to

exactly match all the middlewares. Instead, we extract

the key ideas from those event-based distributed

systems. We believe that there are four key ideas in

the event-based model: channels, clients, the relation-

ships between channels and clients, and communica-

tion models.

Although there is a comfortable overlap between

the JMS and the CORBA Notification Service com-

munication models and their capabilities, there are

several differences (Table 1).

We select CORBA and Java solutions for compar-

ison because the CORBA Event/Notification Server

and Java Message Service are well-known standard

models of asynchronous communication. The Notifi-

cation Service is a new, improved version of the Event

Service, but both are still very similar.

Comparing the Notification Service and the JMS,

the first has a pull/push model of communication–

the second is only a push model; the first has a

publish/subscribe model–the second is both a pub-

lish/subscribe model and a point-to-point model.

Last, they both have channel management object.

But in event service, there is no channel management

object.

The Notification Service supports a message,

which is a structured event that is defined in IDL.

The JMS supports six different message formats with

different message bodies. Both services have filtering

mechanisms.

2.3.2. Details of the EventML

After extracting the key ideas and comparing the

difference, we designed the EventML (Fig. 2).

The < EventML>tag is the root which has two

parts: < EventManager>and <Clients>. The first of

these tags manages the main setting in the event

manager, such as channels and middleware-specified

properties, while the second manages the clients. We

define the suppliers and consumers in EventML file,

and indicate the relationship between clients and

channels.

Table 1

Characteristics of the CORBA event/notification service and the

JMS

CORBA ES CORBA NS JMS

Channel Channels Channel

Factory

Topics

Communication Pull/push

model

Pull/push

model

Push model

Data type Any and

typed Event

Structured

event

Stream, map,

text, object,

Bytes Message

Filtering No Yes Yes

Fig. 2. EventML DTD.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355 349

2.3.3. An EventML sample

The following is a small sample of EventML (Fig.

3):

The description in EventML asks the event man-

ager to add the channels, NCTU and DCS Lab. Then,

this configuration file assigns one supplier News and

one consumer Neil. The supplier News publishes the

events to the NCTU and DCS Lab channels. The

consumer Neil subscribes only to the DCS Lab

channel, so it will receive only the events on the

DCS Lab channel.

3. Implementing the Ghostwriter system

The architecture of Ghostwriter is described in this

section. We give concrete form to our ideas in the

form of the simple Ghostwriter engine we present

with a description of implementation.

3.1. System architecture and sample

Fig. 4 shows an overview of Ghostwriter. Each of

the hosts in its system follows this architecture.

The communication components are as follows. At

the bottom of the figure comes the middleware, which

handles communication between all the hosts, i.e., it

receives/sends events or messages from all suppliers/

consumers. It can be any one of CORBA with Event/

Notification, the JMS, or any non-standard Message-

Oriented Middleware. It receives events and passes

them to the Ghostwriter engine. On the other hand, the

engine sends events to the middleware, which then

delivers them through middleware’s channels.

At the top, there are client applications. These are

wrapped as Ghostwriter clients for separating the

tasks. The clients communicate with the Ghostwriter

engine, i.e., they receive events or messages from and

send them to the engine. This interaction between

engine and clients is predefined in the Ghostwriter

client class, which allows application engineers to

program clients and concentrate on data logic only.

Configuration files describe the system setting. The

system configuration is written in an EventML files.

The system analysts write their semantics in these

files, and then register them in the Ghostwriter engine.

There is a mapping table in the engine that retains,

after registration, all the relationships between the

clients and channels written in the files. With the

mapping table, the Ghostwriter knows which event to

send to which client and vice versa.

3.2. The Ghostwriter development flow

There are several steps to initializing Ghostwriter

communication. We begin by configuring the under-

lying middleware. At this point, the appropriate

engine for the system is specified by the provider

(Fig. 5).

Fig. 4. Ghostwriter architecture.

Fig. 3. EventML sample.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355350

Second, the engine is configured and linked to the

middleware. Of course, a CORBA version Ghost-

writer engine is provided for the CORBA Event

Service and a JMS version for the Java Message

Service.

The third step involves writing the configuration in

the EventML. System analysts set up the channels,

suppliers, consumers, relationships, and specify the

system settings they want. That step is followed by

two more important tasks. First, the application engi-

neers program the client applications, ensuring that

suppliers and consumers are included as Ghostwriter

clients. Second, the configuration files are registered

in the Ghostwriter engine and a mapping table is

created. At this point, we are ready to exploit the

communication functions of Ghostwriter use through

event-based distributed systems.

3.3. The platform for Ghostwriter implementation

The Ghostwriter engine is implemented on the

Microsoft Windows 2000 Advanced Server version

and the Java Development Kit (JDK) for win32

version 1.3.0_02. The CORBA Notification Service,

JavaORB [4] v2.2.7 product from the Distributed

Object Group (DOG) is the chosen product. It is a

full implementation of the CORBA 2.3 and provides

all the features specified by the OMG and others such

as Naming, Event, Transaction, Property, and Collec-

tion. A new complete version of the JavaORB, Open-

ORB 1.0 [3,11], is already available. The XML parser,

Xerces 1.3.1, is used to parse and validate the

EventML configuration files. The Xerces Java Parser

1.3.1 supports the XML 1.0 [25] recommendation and

contains advanced parser functionality, such as the

XML Schema, DOM Level 2 version 1.0, and the

SAX version 2, in addition to supporting the industry-

standard DOM Level 1 and the SAX version 1 APIs.

4. Discussion and future work

In this section, we describe what has been done

with Ghostwriter and what our plans for future steps

with the environment are.

4.1. What has been done with Ghostwriter

Standard JavaORB and SonicMQ programming

are two samples that perform many trivial tasks.

Both CORBA Event/Notification Service and Java

Message Service have several preparations. What we

have done with Ghostwriter is to extract those tasks

from the two programs and incorporate them into

the Ghostwriter engine configured by EventML

files.

To program a CORBA application, first, we need

to resolve the initial reference of the ORB and the

Fig. 5. The development flow of the Ghostwriter environment.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355 351

object adapter, either BOA or POA. Then, we activate

the object adapter, resolve the Event Service or

Notification Service, bind the channel, ask for proxies,

and finally, initiate communications. The line number

of the code is about 50. Also, the CORBA program-

mers need to understand the event-based program-

ming concept before they can write the CORBA

event-based programs. (Please see the CORBA spec-

ifications [12,13,14] for more detail).

The left side of Fig. 6 shows the programming

model of the CORBA. The gray dialog there is a

partial code segment, which applies only to binding

the JavaORB and event service. In a complete event-

based program, some other segment or segments will

be needed, such as for sending an event to the Event

Channel. The right side of the figure shows the

programming style of the Ghostwriter client. The

gray dialog there is the code segment for send/

receive communications between the Ghostwriter

Engine and any Message-Oriented Middleware.

Any complicated codes, such as bind to CORBA

ORB, locate event channel, bind event channel, send

event object . . . are omitted in Ghostwriter client.

Ghostwriter clients need only to bind to the Ghost-

writer Engine, and simply send or receive any event

defined in business logic. The engine handles all the

dirty work and the rule of communication is to obey

the EventML already registered in it.

Similarly, to program a JMS application, we must

first check the connection factories. With this factory,

no matter whether it is a queue connection factory or a

topic connection factory, we can create a connection.

Next, we create a session with a connection, and then

a publisher or a subscriber with the session. Finally,

we publish or subscribe messages to a queue or to a

topic. In other words, JMS programmers need to

understand the JMS programming concept. (Please

see the JMS specifications [21] for more detail).

Using Ghostwriter as the middle-tier between the

application and the middleware, we can omit the

complicated codes for initializing, middleware/locate

channel/bind channel, etc. Programmers need only

implement the receive method in their Ghostwriter

client and the send method when they have messages

for sending to the middleware. Only system analysts

(those who specify the EventML files) need to under-

stand the event-based programming concept.

We establish that the Ghostwriter infrastructure

works in the Highly Confidential Information System*

(HiCIS). The purpose of this HiCIS project is to

research and implement an information system that is

robust and secure enough to survive information war-

Fig. 6. Comparing the traditional CORBA event-based application and the Ghostwriter Client.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355352

fare. The project has five teams, each headed by a core

technology specialist in the field of information system

protection. The core areas are information conceal-

ment, encryption, monitoring, adaptation and reconfi-

guration. Although the team leaders are experts in their

individual core areas, some are not familiar with net-

work programming. The project is collaborative and

the programs are integrative, so some kind of integra-

tive methodology and tool that will allow other users to

exploit the event-based data exchange platform are

needed. Our choice for that task is the Ghostwriter

Infrastructure, which, because of its message-oriented

middleware, provides a data exchange platform for

data transfer, e.g., encrypted hidden image.

The concept and role of Ghostwriter in the project

are to facilitate collaboration and integration and thus

reduce the difficulty of building an application in an

event-based distributed system. Programmers need

only be concerned with their research domain pro-

gram. When there is data to be transferred through our

data exchange platform, programmers need simply to

use the send/receive method. They have no need of

any domain knowledge of the event-based system.

Table 2 shows a comparison of the CORBA event/

notification service, the JMS 1.1 and our Ghostwriter

programming models. As we can see, the Ghostwriter

client programmer has no need to know how the

event-based programming model functions. They

can simply connect with Ghostwriter and send or

receive the events required.

4.2. Future work

Having established that the Ghostwriter infrastruc-

ture works in HiCIS and makes building applications

for event-based distributed systems simpler, the next

consideration is commercialization. This does not

mean that we ourselves have plans to produce and

market Ghostwriter, but we are convinced that Ghost-

writer has commercial possibilities.

We intend to add an event filtering mechanism to

EventML. Although the CORBA Event Service does

not have this function, both the Notification Service

and the Java Message Service feature event filtering

and message selection. Furthermore, because of the

information explosion on the Internet, such a mecha-

nism will constitute an important part of middleware.

A further development must be to improve

EventML until it becomes a generic solution. The

CORBA Event/Notification and the Java Message

Service used in this study are but two examples of

event-based systems. We are aware that Middleware

Table 2

Comparison of middleware programming models

CORBA ES/NS JMS 1.1 Ghostwriter

Event-based Domain

Knowledge Needed

YES YES NO (Just System Analyst

who writes EventML need

to know about this)

Steps that Push

Supplier need to do

(1) Bind to the

EventChannel

(1) Lookup ConnectionFactory

from JNDI

(1) Bind to Ghostwriter

(2) Get a SupplierAdmin (2) Create Connection from

ConnectionFactory

(2) Implements Send()

(3) Get a consumer proxy (3) Create Session from

Connection

(4) Add the supplier to

the EventChannel

(4) Create MessageProducer

from Session

(5) Data transfer (5) Data transfer

Steps that Push

Consumer need to do

(1) Bind to the EventChannel (1) Lookup ConnectionFactory

from JNDI

(1) Bind to Ghostwriter

(2) Get a ConsumerAdmin (2) Create Connection from

ConnectionFactory

(2) Implements Receive()

(3) Get a supplier proxy (3) Create Session from

Connection

(4) Add the consumer to the

EventChannel

(4) Create MessageConsumer

from Session

(5) Implements Push() (5) Implements setMessageListener()

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355 353

exists in the many forms devised by others elsewhere,

so if the Ghostwriter development environment is to

be a general solution, it must, as we intend, function

with all possible forms.

The sheer volume of messages between the mid-

dleware and the clients that pass through Ghostwriter

creates a data exchange bottleneck in the engine.

According to our measurements, the data transfer time

through the engine costs about 150 ms (In a Pen-

tium2-450 PC with 256MB RAM). Because of this

bottleneck [1], we propose the practical ghostwriter

model shown in Fig. 7.

This model accepts configuration in the files, still

written in EventML, just like the normal model does.

However, it does not serve as a bridge between the

clients and the middleware. Instead, it generates a

wrapper class for clients. This wrapper class works as

in a normal engine, but creates only one working

thread for client, which is to say that one wrapper

class works for one client only.

This model is the object of our future research. The

reason for using the normal model was to establish

how easily the Ghostwriter development environment

did the work and how simple the model was to use.

However, since it suffers from bottleneck, it is not

efficient enough for our requirements.

The performance should be the same for native

middleware clients because they are no different from

the practical Ghostwriter clients.

5. Conclusions

The rapid growth of data exchange on the Inter-

net has created many critical problems that require

an answer. Traditional data exchange systems based

on client/server communication models are less

scalable and incur especially high-maintenance cost

in the data exchange domain. For these reasons,

many researchers have switched their interest to

asynchronous communication models. Although

Message-Oriented Middleware (MOM) is a middle-

tier infrastructure that links operating systems and

applications, such asynchronous communication

APIs supported by middleware vendors are usually

hard to use. For these reasons, we have presented a

new development environment for asynchronous

communication platforms which we term Ghost-

writer. The keyword for this development environ-

ment is ‘easy’, that is, easy to use, easy to develop,

and easy to deploy. In addition, learning about and

implementing the functions of the asynchronous

communication’s clients in Ghostwriter environment

are simple. Other benefits are a lower technical

learning curve, help for concentrate on system

design, easily reusable components, and easily inte-

grated applications.

A further key design point about the Ghostwriter

environment is the separation of tasks and roles, i.e.,

between the different tasks of system administration,

application programming, and communication config-

uration; and of the different development roles of end

users, application engineers, system analysts, middle-

ware providers, and Ghostwriter providers. But, link-

ing them all, Ghostwriter provides engineers with a

sophisticated system of cooperation. We have estab-

lished that the Ghostwriter infrastructure works in a

Highly Confidential Information System and reduces

the difficulties in building applications for event-

based distributed systems.

Acknowledgements

The authors thank anonymous reviewers for many

useful comments. This work was partially supported

by Ministry of Education of the Republic of China

under Grant No. 89-E-FA04-1-4, High Confidence

Information Systems.Fig. 7. Practical Ghostwriter architecture.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355354

References

[1] A. Arulanthu, C. O’Ryan, D. Schmidt, et al., The Design and

Performance of a Scalable ORB Architecture for CORBA

Asynchronous Messaging, Proc. Of IFIP/ACM Int’l Conf.

on Distributed Systems Platforms and Open Distributed Pro-

cessing, ACM, 2000, pp. 208–230.

[2] J. Bacon, K. Moody, J. Bates, Ma. Chaoying, A. McNeil, O.

Seidel, M. Spiteri, Generic support for distributed applica-

tions, Computer 33 (3) (2000 March) 68–76.

[3] J. Daniel, C. Wood, OpenORB Programmers Guide, ExoLab.

Group Org. (2000 November 6).

[4] Distributed Object Group, JavaORB Event Service, 1999.

http://dog.team.free.fr/details_javaorb.html.

[5] Elvin, http://elvin.dstc.edu.au/.

[6] P.T. Eugster, R. Guerraoui, J. Sventek, Distributed asynchro-

nous collections:Abstractions for publish/subscribe interaction,

Proceedings of the 14th European Conference on Object-Ori-

ented Programming (ECOOP-00), Cannes, France, Springer

Verlag, 2000 (June), pp. 252–276.

[7] Gryphon, http://www.research.ibm.com/gryphon/.

[8] R. Guerraoui, What object-oriented distributed programming

does not have to be, and what it may be, Informatik 2 (1999

April) 3–8.

[9] R. Monson-Haefel, Enterprise Java Beans, 2nd ed., O’reilly,

2000 (March).

[10] D. Milojicic, Middleware’s role, today and tomorrow, IEEE

Concurr. 7 (2) (1999 April– June) 70–80.

[11] O. Modica, OpenORB Event Service, Exolab. Org. (2000

September 9). http://openorb.exoLab.org.

[12] Object Management Group, CORBA: Common Object Re-

quest Broker Architecture and Specification, Revision 2.4

(2000 October). http://www.corba.org.

[13] Object Management Group, Event Service Specification, V

1.1, http://www.corba.org/.

[14] Object Management Group, Notification Service Specifica-

tion, V 1.0, http://www.corba.org/.

[15] P.Th. Eugster, R. Boichat, R. Guerraoui, J. Sventek, Effective

multicast programming in large scale distributed systems, in:

Concurrency and Computation: Practice and Experience, vol.

13, Issue 6, Wiley & Sons, 2001 (May) pp. 421–447.

[16] A. Rofail, Y. Shohoud, Mastering COM and COM+ , Sybex,

1999.

[17] SOAP, http://www.w3.org/TR/SOAP/.

[18] SIENA, http://www.research.ibm.com/gryphon/.

[19] Sun Microsystems, Enterprise JavaBeansk Specification Ver-

sion 2 (2000 October). http://java.sun.com/products/ejb.

[20] Sun Microsystems, Java 2 Platform, Enterprise Edition

(J2EE), http://java.sun.com/j2ee/.

[21] Sun Microsystems, Java Message Service, Version 1.0.2 (1999

November). http://java.sun.com/products/jms.

[22] T.L. Thai, Learning DCOM, O’reilly, 1999.

[23] TIB/RendezvousWhite Paper (1999), http://www.rv.tibco.com/

whitepaper.html.

[24] S. Vinoski, Where is middleware? IEEE Internet Comput-

ing 6 (2) (2002 Mar./Apr.) 83–85.

[25] World Wide Web Consortium (W3C), Extensible Markup

Language (XML), http://www.w3.org/XML/.

T.-Y. Hsiao et al. / Computer Standards & Interfaces 25 (2003) 345–355 355

 http:\\dog.team.free.fr\details_javaorb.html
 http:\\elvin.dstc.edu.au\
 http:\\www.research.ibm.com\gryphon\
 http:\\openorb.exolab.org
 http:\\www.corba.org
 http:\\www.corba.org\
 http:\\www.corba.org\
 http:\\www.w3.org\TR\SOAP\
 http:\\www.research.ibm.com\gryphon\
 http:\\java.sun.com\products\ejb
 http:\\java.sun.com\j2ee\
 http:\\java.sun.com\products\jms
 http:\\www.rv.tibco.com\whitepaper.html
 http:\\www.w3.org\XML\

	A new development environment for an event-based distributed system
	Introduction
	The design concepts for the system
	The main concept of the Ghostwriter engine
	Lowering the technical learning curve
	Help with concentrating on the system design
	A sophisticated system of cooperation
	Easily reusable components
	Easily integrated applications

	Separate the different tasks
	System administration
	Application programming
	Communication configuration

	XML and CORBA mapping
	Extract the key ideas from event-based middleware
	Details of the EventML
	An EventML sample

	Implementing the Ghostwriter system
	System architecture and sample
	The Ghostwriter development flow
	The platform for Ghostwriter implementation

	Discussion and future work
	What has been done with Ghostwriter
	Future work

	Conclusions
	Acknowledgements
	References

