
Integration of CORBA and object relational databases

Kai-Chih Lianga,*, Daphne Chyanb, Yue-Shan Changc, Win-Tsung Lod,
Shyan-Ming Yuana

aDepartment of Computer and Information Science, National Chiao Tung University, 1001 Ta-Hsieh Road, Hsinchu, Taiwan, ROC
bW&Jsoft Inc., 7/F 173 GuengYuan Road, Hsinchu, Taiwan, ROC

cDepartment of Electronic Engineering, Minghsing Institute of Technology, 1 Hsin-Hsing Road, Hsinfong, Hsinchu, Taiwan, ROC
dDepartment of Computer Science and Information Engineering, Tunghai University, 181 Taichung-kang Road, Sec. 3, Taichung, Taiwan, ROC

Abstract

CORBA is widely accepted as the open international standard for modelling and building comprehensive distributed

systems. In most cases, CORBA architects have adopted relational databases for storage of persistent data. Among the issues

that usually face architecture designers considering how to combine CORBA and standard relational database standards are

fault tolerance, performance, and the extensibility and scalability of the systems. The research team involved with this paper

found that the ODMG object database concept is useful to solve the issues encountered when integrating CORBA and relational

database standards. The reference architecture, which the team devises, integrates CORBA and relational databases without

compromise on the necessary transactional properties. The CORBA standard object transaction service and concurrency control

service are reused. The team also develop an object relational data modelling tool—Latte—that supports the overall design

intention as well the development paradigms for the proposed architecture. The implementation of the system is useful to

CORBA, ODMG, and relational database architects because it provides a unified modelling and programming paradigm

capable of solving the problems of managing mission-critical distributed data. Thus, we present a case study of combining

different international standards to build a comprehensive system.

D 2003 Elsevier Science B.V. All rights reserved.

Keywords: CORBA; ODMG; Object relational database; Object transaction service; Object concurrency control service; Fault tolerance system

1. Introduction

CORBA technology is now widely accepted as the

standard for distributed system architecture. Along

with the core architecture standard, CORBA specifi-

cations also include fundamental object services [10]

as well as vertical and horizontal facilities [11]. This

helps the architect to reuse the specific CORBA

standards when modelling mission-critical systems.

However, even though CORBA standards define the

Persistent Object Service (POS) [12] as a reusable

persistent management service, software architects

can still not ignore the wide deployment base of

relational databases and the ease of SQL program-

ming technologies [3]. They must frequently adopt

these databases into CORBA-based software architec-

ture design. However, there is no standard or reference

architecture for combining the two technologies. Soft-

0920-5489/03/$ - see front matter D 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0920-5489(03)00009-6

* Corresponding author.

E-mail addresses: kcliang@cis.nctu.edu.tw (K.-C. Liang),

daphne@wnjsoft.com (D. Chyan), ysc@mhit.edu.tw (Y.-S. Chang),

winston@mail.thu.edu.tw (W. Lo), smyuan@cis.nctu.edu.tw

(S.-M. Yuan).

www.elsevier.com/locate/csi

Computer Standards & Interfaces 25 (2003) 373–389



ware architects facing this situation have to reconsider

the feasibility and support of classical transactional

properties (Atomicity Consistency Isolation Durabil-

ity (ACID)) [4] as well as software availability and

performance issues. Although CORBA standards also

define the Objective Transaction Service (OTS) [13]

and the Concurrency Control Service (CCS) [14] as

fundamental supports for ACID properties, the proc-

ess is still time-consuming and error-prone. Being

able to reuse a proven combinational architecture

model is of great benefit.

This paper proposes an integrated reference archi-

tecture as well corresponding implementation to

address the issues about the combination of CORBA

and relational database standards. Classical transac-

tional properties, system fault tolerance and system

load balance issues are taken into consideration in the

architecture. In addition, the design features standard

development paradigms. A software tool, Latte, is

provided to support the object relational data model-

ling. The key design area of the proposed software

architecture is the use of the ODMG object database

concepts [15].

1.1. Hybrid object relational data management

system development process

ODMG defines the standard reference model for

the object data management applications. In the

ODMG data model, data is represented logically by

the ODMG data object. ODMG defines bindings

between ODMG data model and popular object-ori-

ented programming languages, such as C++ and Java.

ODMG-compliant database users only need to manip-

ulate the data via the programming language objects.

This greatly reduces the gap between real data and

programming language objects and is of benefit to the

completion of OOA/OOD/OOP processes. Reusing

concepts found in ODMG, this paper is intended to

introduce the ODMG paradigms into the solution

architecture of combining CORBA and relational

databases. In this way, software architects are able

to access the relational data either from CORBA or

ODMG programming paradigms. They are also able

to take this combination as a hybrid architecture

pattern that provides new object data management

practices similar to both CORBA and ODMG.

Fig. 1 illustrates the hybrid development process

for CORBA/ODMG/RDBMS integration.

The three phases in the hybrid development proc-

ess are—Data Modelling, Logic Modelling, and

Deployment. Latte is the object data modelling tool

used to perform the first of these. To reuse the existing

relational data model, Latte extracts the existing

schema and defines the logical mapping between the

relational data model and the object data model. Users

can also define a new data model from the object data

model, which Latte converts into a relational data

Fig. 1. Hybrid development process for CORBA/ODMG/RDBMS integration.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389374



schema. When the data model is ready, Latte registers

the schema in specific Meta data storage, which is

typically a relational database. In the meantime, Latte

also generates a data manipulation code and a corre-

sponding CORBA IDL to represent the defined data

model in the CORBA. The focus is then on data

manipulation logic modelling by the use of new OOA/

OOD knowledge. Note that Latte’s code generator

automatically creates data manipulation mechanisms

such as load and store operations. Finally, the user

compiles the program modules and deploys the com-

ponents to the CORBA environment.

2. Previous works

Before work began on designing and developing

the integrated object relational data management sys-

tem based on CORBA described in this paper, the

project research team had completed a series of steps

to examine the necessary technologies and their fea-

sibility. These are described below.

2.1. CORBA object services

The Object Transaction Service (OTS) and the

Concurrency Control Service (CCS) are two CORBA

common object services that guarantee transaction

and concurrency semantics for CORBA objects. In a

previous work, the research team had developed the

OTS and the CCS [5,6] over Orbix ORB [2]. These

services can be reused through their standard inter-

faces.

2.2. WOO-DB Java binding

An ODBMS makes database objects appear as

programming language objects in one or more exist-

ing programming languages. ODMG defines the bind-

ing between the ODMG object model and native

programming languages such as C++, Smalltalk, and

Java. WOO-DB is an ODMG-compliant OODB

developed by the Institute for the Information Industry

and originally it provided C and C++ binding. The

research team has sought to improve the connectivity

of WOO-DB [1,8] by designing and implementing

WOO-DB Java binding according to ODMG Java

Binding Specifications [15].

2.3. Distributed object-based database architecture

model

In most cases, the scope of transactions is limited

to a single database. For transactions spanning multi-

ple databases, other mechanisms such as a TP Monitor

have been introduced. Following its experience with

WOO-DB Java Binding, the research team proposes

an architecture model [7] for a distributed object-

based database that supports the ODMG [15] object

model. This contains the key features of a distributed

object management system that has transactions span-

ning multiple databases.

A further purpose of the model is to reduce the

burden of maintaining the database architecture

caused by the changes in the outside environment

and application demands. The database architecture is

based on components and relational database, which

are built upon a distributed object infrastructure.

Fig. 2 reveals the distributed object-based database

architecture model. Application objects are found, of

course, in the application layer, at the top, and data

objects in the middle layer. An application object

accesses data from the data object through an interface

opened by the data object. The data object is prepared,

i.e., the data are defined or created by data definition

logic. Data manipulation logic has the function of

acquiring a data object, e.g., a query or a transaction.

Since placing related objects together achieves better

performance, we have included a service/data object

container. To support the dynamic requirements of

data semantics, the research team separates the seman-

tics from data objects. Below the logic layer comes

the semantic layer. Data objects delegate their seman-

tics requirement, such as relationship, concurrency,

and persistent store, to semantic objects in the seman-

tic layer. There are certain functions that do not

belong to any of the above three layers, such as

naming, transaction, and life cycle and these are

grouped in the Scope Management System that spans

the three layers vertically.

2.4. CORBA/OODB integration

To prove the feasibility of our distributed object-

based database architecture model, the research team

had done a work to integrate CORBA and ODMG-

compliant OODB [16]. OODB developers define

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 375



objects by ODL and are able to implement them with

no need of any CORBA domain knowledge, as if they

were implementing pure OODB objects. CORBA

client programmers, for whom object definitions are

translated into CORBA IDL, are able to develop

clients in their normal way. To reduce the burden of

incorporating CORBA with OODB, the associate

object implementation code is automatically gener-

ated. This provides access to data in database and the

transaction and concurrency control functions.

3. System model design

The system serves as a logical object-oriented

relational database (ORDB) in a distributed object

environment. How to map the relational data model

into the object data model is a key question for

ORDB system designers. A further question is how

to integrate standalone legacy RDBMs, so we decided

to introduce into our design such features as trans-

actions spanning multiple databases and concurrency

control. The integration can be illustrated in different

models.

3.1. Three-tier model

It is the limitations of two-tier architecture (client/

server architecture) that spurred the development of

three-tier architecture [9], which components are sep-

arated into three layers, namely, the presentation layer,

the functionality/business layer, and the data layer.

The benefits of the three-tier architecture are the

ability to partition application logic, capabilities of

system robustness, scalability, as well as single user

image. These meet our requirements of our system

design. Fig. 3 shows how we separate the components

of our system architecture into three layers. CORBA

application objects are mapped into the presentation

layer. In the data layer, all the states of objects are

stored in the relational databases. The data manipu-

lation logic, that is, the logic to retrieve and to access

data, transaction, and concurrency control, resides in

the functionality/business logic layer.

3.2. Data model

The relational data model and the object-oriented

data model differ in fundamental modelling philoso-

phy. To integrate the first with object-oriented logic

requires a proper mapping of relations into object-

oriented technology. We begin by simply mapping

Fig. 3. The three-tier model.

Orthogonal
Scope

Management
System

Application
Objects

Persistent
Store

Service/Data
Objects

Service/Data Object
 Container

e.g. e.g.

Semantic
Objects

Concurrency

e.g.

Relationship

Data
Defination

Data
Manipulation

Logic

Semantics

Applications

Logic

Fig. 2. Distributed object-based database architecture model.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389376



each table in the relational model into a primitive

class. Classes of this type all inherit from a common

base class, CORBA_RDB_DataObject. The desired

inheritance hierarchy among the classes is constructed

with any one of three operations: single_inherits_

from_new, which allows an existing class to inherit

from a new class; single_inherits_from_existinng,

which allows an existing class to inherit from another

existing class; and multiple_inherits_from_new, which

allows specified multiple classes to inherit from a new

class.

Fig. 4 illustrates an example of constructing object

types from relational tables. Classes A, B, and C are

primitive classes derived from relational tables, while

classes X and Y are new classes added by user.

Data type mapping between the database and the

CORBA IDL is also necessary. In addition, to reduce

the complexity of the system, each row of data is

associated with one data object only. The decision on

this design strategy is fundamental to maintaining data

consistency.

3.3. Transaction model

Since our system serves as a multidatabase system

in a distributed object environment, a mechanism to

manage transactions among databases is needed.

CORBA OTS is a transaction manager that coordi-

nates transactions across multiple processes, threads,

or spans more than one logical database.

Fig. 5 illustrates the transaction model in our

RDBs/CORBA integration architecture. There are

multiple recoverable objects (ROs) within a CORBA

transaction that are managed by a Coordinator object.

The data associated with the ROs span more than one

database and the RO Servers are distributed. Within an

RO Server, the ROs participate in the same OTS

transaction and associate with the same database to

Fig. 4. An example of user-defined inheritance hierarchy.

Fig. 5. The transaction model for RDBs/CORBA integration.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 377



form a group. The RO Server has the task of creating a

local database transaction for each group within it.

These local database transactions may be viewed as

the nested transactions of the CORBA transaction.

Data objects in the system are all shared resources.

There may be several users accessing the same objects

at the same time. So we use CCS to guarantee

consistency for concurrent access. It is obvious that

the granularity for concurrency control is an object.

The system uses three of the lock modes defined in

CCS: read, write, and upgrade. To avoid deadlock,

our system provides some constraints. To obtain data

for later updating, the method is get_upgrade_

< attribute name>and for read-only data, the method

is get_readonly_ < attribute name>.

3.4. Failure model

Although failure seldom occurs, the system still

has to keep objects and databases in a consistent state

if it happens. There are two possible kinds of system

failure here:

1. RO Failures: The effect of an RO failure is limited

to the object itself. It is detected on request from

clients. The states of the object are automatically

recovered from the permanent storage.

2. RO Server Failures: When an RO Server fails, it

influences all the CORBA clients and the states of

the ROs within the server in question. We must

keep them all in a consistent state. So when a

failure is discovered, we have to REDO or UNDO

all operations on the objects.

The recovery process for an RO Server is initiated

when the RO Server is restarted from failure. Another

case is for the client to request the ROs that originally

resided in a failed RO Server. The recovery process is

also initiated.

The point in time at which RO Server fails, it

decides whether a transaction should be REDO or

UNDO. Our failure mode in Fig. 6 shows that the OTS

recovery point is the boundary between REDO and

UNDO. As the OTS receives all of the return votes

from participating resources, it makes the final deci-

sion to commit or roll back the transaction. The point

in time when the OTS makes the final decision is the

recovery point.

For a transaction, if the RO Server fails before the

recovery point, we have to UNDO all operations,

whereas if the failure occurs after the recovery point,

we have to REDO or UNDO the operations depending

on what the final decision is. As long as the final

decision is VoteDcommit, all operations must be

made persistent. In contrast, if the final decision is

VoteDrollback, all states must be rolled back. We

detail our implementation issues later.

4. System architecture design

4.1. System overview

Fig. 7 is the functional diagram for the components

of RDBs/CORBA integration architecture. They are

CORBA client, RO Server, CCS, OTS, and RDBs that

support the ODBC interfaces. As can be seen in the

three-tier model introduced above, these components

are separated into three layers. The interaction between

the CORBA client, the OTS, the CCS, and the RO

Server is through the CORBA Interface and the RO

Server accesses the RDB through the ODBC interface.

Fig. 6. The diagram of RO Server failure.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389378



Within the RO Server, each RO is associated with a

row of data in an RDB. We wrap the data manipulation

logic and the recovery function into the ROs. Apart

from the RO objects, there are the RO Factories and the

ROManagers in the RO Server. They provide the logic

function for data object retrieval and transaction man-

agement within the RO Server, while the ROs are

persistent data objects. The OTS is a transaction

manager whose task is to passively begin/end a trans-

action. The concurrency control for the shared ROs is

provided by the CCS. The CORBA client is an object

that manipulates persistent data objects within trans-

actions. The RDBs supporting the ODBC interface are

pluggable and serve as persistent storage for data

objects.

4.2. System architecture

4.2.1. Latte

The word ‘‘Latte’’ refers to a kind of hybrid coffee.

Since the tool in our design combines several func-

tions, we take our cue from ‘‘hybrid’’ and so name our

tool Latte.

In our RDB/CORBA integration architecture, Latte

is a realization of the code generation model we

described above and provides a GUI tool (see Fig.

8). It hides all the tasks for mapping the relational data

model into the object data model. Those tasks are:

1. Schema translation: Schemas are the logical data

structures. Different data models may have differ-

Fig. 7. System components of RDB/CORBA integration architecture.

Fig. 8. Latte object relational data modeling tool.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 379



ent schemas. Latte carries out the task of translating

relational schema into object schema.

2. User-defined inheritance hierarchy: We provide a

GUI tool to allow users to define their own

mapping between relational data and object data.

It has three operations: single_inherits_from_new;

single_inherits_from_existing, and multiple_inher-

its_from_new.

3. Meta data storing: The user-defined mapping

information between relational data and object

data is called Meta data. This should be stored in

permanent storage such as databases, so that

information can be retrieves on demand.

4. CORBA IDL: Latte defines interfaces for objects.

These interfaces are described by CORBA IDL,

which are stored into files.

5. RO component implementation: Latte hides the

task of integrating the RDB and the CORBA. We

wrap the function of accessing relational data into

RO objects. The transaction semantics and con-

current access functions are also wrapped into RO

objects. The necessary codes for RO objects and

those for the RO Factory and the RO Manager are

automatically generated by Latte, as is the RO

Server program.

4.2.2. RO components

The RO components comprise the RO Servers, the

RO Factories, the RO Managers, and the ROs. Since

they are closely related, we put them together. Each of

these components is detailed as follows.

4.2.2.1. RO Server. We conceptually partition the

CORBA Server address space into several RO Servers

(see Fig. 9). Each one is associated with an RO Factory

object. All the RO objects and the ROManager objects

created by a given RO Factory object also reside in the

RO Server corresponding to the given ROFactory. If an

RO Server failure occurs, all the object states in that

server must be recovered when it is restarted or when

any other RO Server detects the failure. In addition, to

retain performance, each RO Server has a memory

cache that records all the RO objects within the server

and associated transaction information.

4.2.2.2. RO. AnRO object is a data object. ‘R’ stands

for ‘‘Recoverable’’, indicating that this kind of object

has the capability to recover. When a failure occurs, an

RO object can regain its state, i.e., remain consistent.

When a transaction is completed, the state of the object

including its data must remain in a consistent state.

4.2.2.3. RO Factory. In the system, the RO Factory

is responsible for creating RO objects. Each type of RO

is associated with a type of RO Factory. That is, RO

Factories of different types are responsible for creating

ROs of different types. Thus, all ROs in the same RO

Server are associated with the same data type and their

persistent data are stored in the same database. An RO

Factory retrieves data from a database according to the

criteria specified by the user and wraps each data as an

RO object. Apart from that, it provides the function of

creating a new persistent object within a transaction.

Fig. 9. The united RO Servers.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389380



The data of this persistent object are stored into a

database when the transaction is committed.

To reduce the complexity of maintaining data con-

sistency among the RO objects associated with the

same row of data in a database, each row is associated

with just one RO object. So we must keep RO object

references and some necessary information in persis-

tent storage, such as in a database. Therefore, clients

requesting ROs according to the same criteria obtain

the same set of ROs. When a CORBA client requests

an RO object, the RO Factory checks whether there is

an RO associated with this data. If so, the RO Factory

returns the object reference to the client. If not, the data

is wrapped into a new RO object and retained in a log.

The RO Factory also has the task of dispatching

transactions. It is responsible for mapping a CORBA

transaction context into database transaction context

within the spanned databases. We detail this task in

the next section.

4.2.2.4. RO Manager. Although we claim that an RO

object has the capability to recover, it does not imple-

ment the CosTransactionsDResource interface. It does

not directly register itself as a resource in the OTS.

Instead, an RO Manager serves as a mediator between

the OTS and the RO object (see Fig. 10). In our design,

each CORBA transaction is associated with an RO

Manager object for each RO Server it spans. The

manager is responsible for controlling the processing

of certain transactions within the RO Server. The

manager implements the CosTransactions::Resource

interface and registers itself as a resource in the OTS.

When the OTS tells the RO Manager to prepare/

commit/rollback the transaction that it is associated

with, the manager informs all the ROs in the same RO

Server and participates in certain transactions to proc-

ess the prepare/commit/rollback task.

4.3. Interactions of transactional programs

The interactions of transactional programs are

demonstrated in Fig. 11. The client first binds to the

desired servers, e.g., the OTS and the RO Factory, to

serve the further requests. A new transaction is then

initiated and a lookup invoked for the bound RO

Factory with the specified criteria. The RO Factory

creates a new RO Manager to regulate the transaction

processing in the given RO Server. The manager

registers itself as a resource in the OTS. A database

transaction is also requested. Each row of the query

results participates in the database transaction. The

RO Factory checks whether the query results have

been wrapped as ROs. Here, a has been wrapped,

while b has not been wrapped yet. Therefore, the RO

Factory checks out RO a and creates RO b to wrap the

data in b. RO a and RO b both register themselves in

the RO Manager. One manipulates the data of the ROs

through transactional operations and then instructs the

OTS to commit the transaction and the two-phase

commit protocol starts.

In the prepare phase, OTS notifies the RO Man-

ager, which then informs all the registered ROs to do

the preparatory task, i.e., write their operation results

into the database and make logs. It then returns the

vote to the OTS. In the commit/rollback phase, the

OTS notifies the RO Manager to commit/rollback.

The manager also informs all registered ROs to

perform the commit/rollback task, perform database

commit/roll back operation, and clear the log.

5. Issues and constraints

5.1. Critical issues

5.1.1. RO Server recovery

To ensure the ACID properties, there must be some

mechanism to deal with transient system failures. For

recovery reasons, we must retain the state of both the

CORBA transactions and the ROs in permanent stor-

age. In this way, when the RO Server is restarted after a

failure, it can recover the state of the CORBA trans-

actions.

When a client invokes the RO’s set_ < attribute

name>method, we update only the data in the RO’s

memory. In the prepare phase, these modified data areFig. 10. The RO Manager.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 381



written into the database within a database transaction.

Thus, when the user manipulates RO data, we must

retain the information about the type of operation

(create new, delete, or update) for the RO.

As we described in Section 3, when an RO Server

fails, if a CORBA transaction occurs before the OTS

recovery, it must abort, whereas if it occurs after the

point, it must commit or rollback, all accordance with

the OTS’s final decision.

Let us consider the effects of an RO Server failure.

If this happens, all the database transactions on the

server are automatically rolled back. A problem occurs

where the OTS’s final decision is VoteDcommit but

where the RO Server has failed before the correspond-

ing database transaction commits. So, in the prepar-

atory phase, apart from writing RO data into the

database, we must also copy the data into persistent

storage, such as in a database or in a log. Note that this

log should be made persistent. When an RO Server is

restarted after failure, it can obtain the RO’s state from

the log and recover the data involved in the transaction

to the database. But how do know what state a trans-

action is in? The RO Manager must place checkpoints

in the persistent storage with which the manager can

restore the transaction state when the RO Server is

restarted. Such checkpoints are shown in Fig. 12.

At the beginning of a transaction, the RO Manager

places checkpoint 1 and records the object reference

Fig. 11. The detail interactions in a transactional program.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389382



strings of the OTS Coordinator and RecoveryCoordi-

nator corresponding to the transaction. At the same

time, the database transaction also begins. When the

manager collects all the RO votes participating in the

transaction, it makes a local decision based on the

votes and returns it to the OTS. This local decision

must be retained in checkpoint 2. When the manager

receives the commit or abort request from the OTS, it

places checkpoint 3 to confirm recognition of OTS’s

final decision. The manager then commits or rolls back

the corresponding database transaction and places

checkpoint 4 to specify that the database transaction

has finished. At checkpoint 5, all the logs associated

with this transaction in this RO Server are removed.

For a transaction, if the RO Server fails between

checkpoints 1 and 2, then clearly the transaction is

rolled back. In the case of failure between checkpoints

2 and 3, if the local decision is ‘‘prepare fail’’, then the

transaction is rolled back. But if the decision is ‘‘pre-

pare succeed’’, since we do not know the final OTS

decision, we must ask the OTS for it by issuing a replay

request to the corresponding OTS RecoveryCoordina-

tor, which can be retrieved from the log. In the case of

failure between checkpoints 3 and 4, and if the decision

is VoteDcommit, we can restore the ROs’ prefailure

states from the backup log. These states must be

restored to the database. Finally, if the failure occurs

between checkpoints 4 and 5, the only thingwemust do

is to clear the log associated with the transaction.

5.1.2. Keys

Primary keys and foreign keys are important issues

for relations in the relational model. Their function,

working in pairs, is to automatically construct rela-

tions between data. The function of unique keys is to

specify the uniqueness of attribute values. Since there

is no clear concept about keys in an object model in

our system, we simply treat all key attributes as

normal. The mapping of both key attributes and non-

key attributes into object attributes is performed in the

same manner.

On the other hand, since the back-end storage is the

relational database, certain constraints on key attributes

remain, just as there remains for those in the relational

model. The constraints are the uniqueness of the

primary and unique key attributes and the limitations

on updating the values of all the key attributes, etc. To

reduce the complexity of the system, we delegate

checking these integrity constraints to the RDBMSs

and collect the exceptions from back-end databases.

5.1.3. Data modification propagation

When Latte is used to build an inheritance hierarchy,

a new class that we term a nonoriginal table class

because it does not correspond to any existing table in a

database, can be created. Should we provide nonorigi-

nal table class persistent storage? If we did so, the

modification of data in one class would perhaps prop-

agate to other classes. This is an issue worthy of

discussion.

If we provide persistent storage for all classes, any

modification of data in one class could perhaps

propagate to its ancestors and even to its descendants

if it has any. But in some cases, such modification

could propagate not only to ancestors and descend-

ants, but also to siblings. This would usually be due to

the overlapping of data among sibling classes. Since

we do not know the purpose of the original table

Fig. 12. The checkpoints for a transaction.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 383



schema, we cannot automatically tell whether in fact

the modification will propagate to siblings. Therefore,

at this stage we do not provide persistent storage for

nonoriginal table class, which makes them virtual

classes. At most, any modification will propagate to

ancestors and descendants only.

5.1.4. Multi-inheritance

Since the CORBA IDL supports multi-inheritance,

an interface can inherit from more than one interface.

But if we support multi-inheritance, the problem of

modification propagation becomes more complex.

Therefore, at this stage, we only support single

inheritance.

5.2. System constraints

5.2.1. Transactions

To guarantee correctness, we stipulate that all RO

objects may be used only within the transaction in

which they were requested. This concept is similar to

the one for the database transaction.

Although the user may manipulate an RO object

several times within a transaction, the final value is

written into the database only once the transaction

ends. A problem can arise if the operation order gets

lost within the transaction. A possible solution to this is

to record every operation performed within the trans-

action in question, but that solution is too expensive.

So, to achieve higher performance, we just write the

final value into database when the transaction ends.

5.2.2. Working together with legacy applications

In normal situations, applications in our system can

work alongside legacy applications. Concurrent

access is guaranteed by the database transactions.

But if an RO Server fails, the database transactions

are automatically rolled back and the database locks

for the data in question are released, with a resulting,

perhaps insoluble, problem.

A possible problem can arise where the final

decision of an OTS is VoteDcommit but where the

RO Server fails before the corresponding database

transaction commits. In our system, any failed trans-

action is automatically recovered later, and any appli-

cation that accesses nonconsistent data is blocked

until the recovery process is completed. The ACID

properties are preserved. But if there is access through

legacy applications to the nonconsistent data directly

before the recovery process, there is no guarantee

about data consistency because database locks have

been released.

In Fig. 13, the CORBA transaction spans two RO

Servers A and B. In the commit phase, Server A fails

before the database transaction is completed and

Server B succeeds in committing the database trans-

action. At this time, the data in database a is in

pretransaction state, and that in databases a and b

may be inconsistent. If legacy application X accesses

the data in database a before the beginning of the

recovery process for Server A, it retrieves the older

version of the data, in which case a version control

problem occurs. If legacy application Y accesses the

Fig. 13. The problems of version control and inconsistency.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389384



data in databases a and b before the recovery process

for Server A starts, it retrieves the inconsistent data, in

which case an inconsistency problem occurs.

5.3. System performance

In measuring performance, since what we are

mainly concerned about is the overhead in our system,

the data schema and population in back-end databases

are ignored. Only certain critical operations to prove

whether the performance of our integration system is

reasonable are tested.

To evaluate the system performance, we deploy

three servers, OTS Server, CCS Server, and RO

Server. The OTS Server and the CCS Server provide

the transaction semantics and concurrency control

functionality. The RO Server is responsible to access

database, warp ROs, and vote back to OTS in the two-

phase commit protocol (2PC).

The testing involves deploying three servers, the

OTS Server, the CCS Server, and the RO Server. The

functions provided by the OTS and CCS Servers are

transaction semantics and concurrency control. The

RO Server is responsible for accessing the database,

wrapping ROs, and sending votes back to the OTS in

the two-phase commit protocol (2PC).

Table 1 illustrates the testing environment and

Table 2 the testing database schema.

The system performance is measured by the

response time that clients observe. In addition, we

test how retrieval and update operations perform. As a

‘warm-up’ to the measurement, a number of light

weight test cases are tried beforehand to ensure that

our system has reached a stable state.

5.3.1. Retrieval

In our system, clients issue a lookup request with

user-specified criteria to retrieve data objects. When

this is done, the data ensures that the specified criteria

are retrieved from the database and wrapped as ROs.

In addition, to ensure data consistency, we log the

transaction information, with a log for each RO. The

performance evaluation for retrieval is shown in Fig.

14a and b.

Here, we define two terms, cold cache and warm

cache. The first means Cache Miss, which means that

none of the data retrieved has been wrapped as an RO

in any memory cache and that, therefore, a wrapping

process for data retrieval is needed. The second means

Cache Hit, which means that each required data has

been wrapped as an RO in a given memory cache.

With warm cache, we can simply take the ROs and

return them. In contrast, cold cache takes a lot of extra

time to wrap the ROs. In general, more time is spent

on retrieving data objects with cold cache than with

warm cache.

Because we have to request a LockSet for each RO,

cold cache spends approximately a quarter of the time

on communicating with the CCS. To reduce the

overhead, we substitute an in-process CCS for the

out-process CCS. The substitute can be reached by a

dynamic link library or shared library, thereby reduc-

ing the total cost for each lookup operation by almost

a quarter.

Although in the distributed object environment, the

locations of objects are transparent, placing related

objects together can improve performance. Therefore,

we measure how warm cache performs in retrieving

local and remote ROs. When a client issues a lookup

invocation to an RO Server, any retrieved ROs resid-

ing in the server in question are local ones and any

residing in other servers are remote ROs. We must

make a validity check for each remote RO to ensure

that no RO Server failure influences the consistency

of the data retrieval. In addition, a one-way invocation

to the remote server is also needed to check whether

a particular RO should participate in a particular

Table 2

The testing database schema

Table 1

The testing environment

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 385



CORBA transaction. Since validity checking and one-

way invocations lead to overhead, the performance for

local ROs is better than that for remote ROs.

Fig. 14a and b shows that the total time curve is

exponential and average time curve is linear. This is

because we have to check and make a log for data

retrieval. As the data retrieval set grows, so too does

the time spent in checking and logging.

5.3.2. Update

In the architecture design, we delay the database

update to the two-phase commit period. The client

issues CosTransactionsDTerminatorDcommit() and

the CORBA transaction enters the commit period,

the duration of which is the response time of

CosTransactionsDTerminatorDcommit(). We com-

pare the update performance for our system and

ODBC and show the results in Fig. 15a and b. It

can be seen that as the influenced data set grows, the

total update time for our system and ODBC both

grow linearly, and so too does total overhead.

Since the commit request to the database and the

communications between the client, the OTS, and the

RO Server do not grow along with the data set, the

overhead can be shared by the influenced data set.

Consequently, the curves for the average time taken by

our system and the ODBC converge to 6 and 1.9 ms,

respectively. The average overhead of update also con-

Fig. 14. (a) Total time of retrieve. (b) Average time of retrieve.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389386



verges to 4 ms. Therefore, we can say that the update

performance evaluation for our system is reasonable.

5.3.3. Discussion on improvements

Since it appears that the performance for date

retrieval in the system is not perfect, we offer some

suggestions for future improvements. We know that

checking validity and logging cause retrieval bottle-

necks, so we suggest delegating the logging task of

the RO Server to another Log Server by issuing an

asynchronous call to perform log operations for all

data objects retrieved within a single lookup. Since

this call is asynchronous, the RO Server can continue

the processing after issuing the call. Note that we must

aim to guarantee that the behavior of the new

approach is the same as the original one.

6. Concluding remark—aggregating standards

OMG/CORBA and ODMG are two organizations

committed to distributed object and object data

management international standards. They both rein-

force the completeness of the architecture models as

well as the standards for reusability. However, rela-

tional databases have dominated the data processing

market for more than two decades. Large amount of

deployment base makes relational database irreplace-

able. Software architects who take advantage of

well-defined, distributed computing architecture and

adopt existing data assets face their greatest chal-

lenge to aggregating standards. Because of the

aggregation, several key design issues have to be

reexamined.

This paper has proposed novel reference architec-

ture to address those issues. Our design preserves the

key ACID properties by adopting the CORBA OTS

and CCS standards. By synchronizing the interface

protocol between the system containers, it achieves

high availability and scalability. A reference develop-

ment process is available for streamlining activities

when applying the reference architecture. The aggre-

gated potential of these novel standards, CORBA,

ODMG, and RDBMS, lies in the presence of the

Fig. 15. (a) Total time of two-phase commit. (b) Average time for two-phase commit.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 387



framework for distributed object relational data man-

agement. This, in the future, can achieve object rela-

tional data management standards.

References

[1] H.C. Liao, Java Binding Based on WOO-DB, Department of

Computer and Information Science, National Chiao-Tung

University, Hsin-Chu, Taiwan, 1998.

[2] Iona, Orbix (http://www.iona.com/products/orbix3_home.

htm).

[3] Information Technology—Database Languages—SQL (ISO/

IEC 9075, 1992) (can also be found at http://www.jcc.com/

SQLPages/jccs_sql.htm#SQL%20Publications).

[4] J. Gray, A. Reuter, Transaction Processing: Concepts and

Techniques, Morgan Kaufmann, San Mateo, 1992.

[5] K.C. Liang, Transaction and Concurrency Control Services on

CORBA, Master thesis, Department of Computer and Infor-

mation Science, National Chiao-Tung University, 1996.

[6] K.C. Liang, S.M. Yuan, D. Liang, W. Lo, Nested transaction

and concurrency control services on CORBA, Proceedings of

Joint International Conference on Open Distributed Process-

ing and Distributed Platforms 1F1PTC6, 1997, pp. 236–247,

Toronto.

[7] K.C. Liang, S.M. Yuan, A Distributed Object Database Archi-

tecture on CORBA, Technical Report, Department of Com-

puter and Information Science, National Chiao-Tung Univer-

sity, Hsin-Chu, Taiwan, 1998.

[8] K.C. Liang, S.M. Yuan, H.C. Liao, R.K. Sheu, W.J. Lee, J.C.

Dai, C.H. Chen, C.H. Cheng, When Java Applet Meets Object

Database, 7th WWW Conference, 1998.

[9] N. Jenkins, et al., Client/Server Unleashed, Sams Publishing,

Indianapolis, IN, USA, 1996.

[10] Object Management Group, CORBAservices Specification

(http://www.omg.org/technology/documents/corbaservices_

spec_catalog.htm).

[11] Object Management Group, CORBAfacilities Specification

(http://www.omg.org/technology/documents/corbafacilities_

spec_catalog.htm).

[12] Object Management Group, Persistent Object Service (http://

www.omg.org/cgi-bin/doc?orbos/99-07-07.pdf).

[13] Object Management Group, Object Transaction Service

(http://www.omg.org/cgi-bin/doc?formal/00-06-28.pdf).

[14] Object Management Group, Concurrency Control Service

(http://www.omg.org/cgi-bin/doc?formal/00-06-14.pdf).

[15] R.G.G. Cattell (Ed.), The Object Database Standard: ODMG

3.0, Morgan Kaufmann Publishers, San Francisco, 2000.

[16] R.K. Sheu, K.C. Liang, S.M.Yuan,W.T. Lo, A new architecture

for integration of CORBA and OODB, IEEE Transactions on

Knowledge and Data Engineering 11 (5) (1999) 748–768.

Kai-Chih Liang received his BS and MS

degrees in computer and information sci-

ence from National Chiao Tung University,

Taiwan in 1994 and 1996, respectively. He

is now the PhD candidate in computer

science of the same school. His current

research interests include Web technology,

distributed object computing architecture,

high-confidence middleware, enterprise

application integration, and software engi-

neering.

Chii-Hwa Chyan received her BS and MS

degrees in computer and information sci-

ence from National Chiao Tung University,

Taiwan in 1997 and 1999, respectively. She

is an active consultant in the W&Jsoft,

Taiwan. Her primary industrial domain is

manufacturing and e-Business. Her current

research interests include Web technology,

business process automation and integra-

tion, workflow technology, and software

engineering.

Chang Yue-Shan was born on August 4,

1965 in Tainan, Taiwan, Republic of

China. He received his BS degree in

Electronic Technology from National Tai-

wan Institute of Technology in 1990 and

his MS degree in Electrical Engineering

from the National Cheng Kung University

in 1992. Currently, he is a graduate stu-

dent of PhD degree in Computer and

Information Science at National Chiao

Tung University. His research interests

are in distributed systems, object-oriented programming, fault

tolerance, and computer network.

Win-Tsung Lo received his BS MS degrees

in applied mathematics from National Tsing

Hua University, Taiwan, Republic of China,

and his PhD degree in computer science

from the University Of Maryland. He is

now an associate professor of Computer

Science and the director of Computer Cen-

ter at Tung Hai University, Taiwan, Repub-

lic of China. His research interests include

architecture of distributed systems, data

exchange in heterogeneous environments,

and multicasts routing in computer networks.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389388

 http:\\www.iona.com\products\orbix3_home.htm 
 http:\\www.jcc.com\SQLPages\jccs_sql.htm#SQL%20Publications 
 http:\\www.omg.org\technology\documents\corbaservices_spec_catalog.htm 
 http:\\www.omg.org\technology\documents\corbafacilities_spec_catalog.htm 
 http:\\www.omg.org\cgi-bin\doc?orbos\99-07-07.pdf 
 http:\\www.omg.org\cgi-bin\doc?formal\00-06-28.pdf 
 http:\\www.omg.org\cgi-bin\doc?formal\00-06-14.pdf 


Shyan-Ming Yuan was born on July

11,1959 in Mauli, Taiwan, Republic of

China. He received his BSEE degree from

National Taiwan University in 1981, his

MS degree in Computer Science from Uni-

versity of Maryland Baltimore County in

1985, and his PhD degree in Computer

Science from University of Maryland Col-

lege Park in 1989. Dr. Yuan joined the

Electronics Research and Service Organi-

zation, Industrial Technology Research

Institute as a Research Member in October 1989. Since September

1990, he had been an Associated Professor at the Department of

Computer and Information Science, National Chiao Tung Univer-

sity, Hsinchu, Taiwan. He became a Professor in June 1995. His

current research interests include distributed objects, Internet tech-

nologies, and software system integration. Dr. Yuan is a member of

ACM and IEEE.

K.-C. Liang et al. / Computer Standards & Interfaces 25 (2003) 373–389 389


	Integration of CORBA and object relational databases
	Introduction
	Hybrid object relational data management system development process

	Previous works
	CORBA object services
	WOO-DB Java binding
	Distributed object-based database architecture model
	CORBA/OODB integration

	System model design
	Three-tier model
	Data model
	Transaction model
	Failure model

	System architecture design
	System overview
	System architecture
	Latte
	RO components
	RO Server
	RO
	RO Factory
	RO Manager


	Interactions of transactional programs

	Issues and constraints
	Critical issues
	RO Server recovery
	Keys
	Data modification propagation
	Multi-inheritance

	System constraints
	Transactions
	Working together with legacy applications

	System performance
	Retrieval
	Update
	Discussion on improvements


	Concluding remark-aggregating standards
	References


