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ABSTRACT

Two very general, fast and simple iterative methods were proposed by Bosma

and de Rooij (Bosma, P. B., de Rooij, W. A. (1983). Efficient methods to calculate

Chandrasekhar’s H functions. Astron. Astrophys. 126:283–292.) to determine

Chandrasekhar’s H-functions. The methods are based on the use of the equation

h ¼ ~FFðhÞ, where ~FF ¼ ð ~f1f1, ~f2f2, . . . , ~fnfnÞ
T is a nonlinear map from Rn to Rn. Here

~fifi ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
þ
Pn

k¼1 ðck�khk=�i þ �kÞÞ, 0 < c � 1, i ¼ 1, 2, . . . , n: One such

method is essentially a nonlinear Gauss-Seidel iteration with respect to F̃.

The other ingenious approach is to normalize each iterate after a nonlinear

Gauss-Jacobi iteration with respect to F̃ is taken. The purpose of this article is

two-fold. First, we prove that both methods converge locally. Moreover, the

convergence rate of the second iterative method is shown to be strictly less

than ð
ffiffiffi
3

p
� 1Þ=2. Second, we show that both the Gauss-Jacobi method and

Gauss-Seidel method with respect to some other known alternative forms of

the Chandrasekhar’s H-functions either do not converge or essentially stall

for c¼ 1.
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1. INTRODUCTION

The Chandrasekhar’s H-equation and its variants arise in the solution of exit
distribution problems in neutron transport and radiative transfer. The simplest form
of this equation is

Hð�Þ ¼ 1þ
c

2
�Hð�Þ

Z 1

0

Hð�0
Þ

�þ �0
d�0 :¼ FðHÞð�Þ: ð1aÞ

In (1a), c 2 ð0, 1
, which denotes the fraction of scattering per collision, is a real
parameter and H 2 C½0, 1
 is the unknown. Since it is known (Mullikin, 1968) that
the Fr �eechet derivative F 0

ðH�
1 Þ, where H

�
1 is a unique positive solution of Eq. (1a) for

c¼ 1, has spectral radius 1, the difficulty in solving Eq. (1a) arises dramatically as c
approaches 1 from the left. Much effort (Bosma and de Rooij, 1983; Chandrasekhar,
1960; Decker and Kelley, 1985; Kelly, 1988; Kelley and Suresh, 1983; Kelley and Xue,
1993, and the work cited therein) has been put in determining the problem of the H-
function at near-conservative and conservative scattering (i.e., c is near 1 and c¼ 1).
Let f�ig

n
i¼1 be the quadrature set and fcig

n
i¼1 be the corresponding weights. Then

Eq. (1a) reduces to

hi ¼ 1þ
c

2
�ihi

Xn
k¼1

ckhk
�i þ �k

, i ¼ 1, 2, . . . , n, ð1bÞ

where hi :¼ Hð�iÞ. Let h ¼ ½h1, h2, . . . , hn

T , we write Eq. (1b) as a vector equation of

the form

h ¼ FðhÞ, ð1cÞ

where F is a vector-valued function from Rn to Rn. It is also known (see e.g., Kelley,
0000) that Eq. (1c) has a unique positive solution for c¼ 1, and two positive
solutions otherwise. Moreover, if �hhi and ~hhi are two positive solutions of Eq. (1b)
for 0 < c < 1, then either �hhi � ~hhi for all i or �hhi � ~hhi for all i. We shall denote the
minimum positive solution of Eq. (1c) by h�.

To set up the iterative procedures, some authors have used an equivalent form
of Eq. (1a)

hi ¼
1

1� c
2
�i

Pn
k¼1 ðckhk=�i þ �kÞ

, i ¼ 1, 2, . . . , n: ð2aÞ

Similarly, we write Eq. (2a) in vector form

h ¼ �FFðhÞ: ð2bÞ

The iterative scheme hð pþ1Þ
¼ �FFðhð pÞÞ gives a good improvement over that of Eq. (1)

at the near-conservative scattering. However, the spectral radius of �FF 0
ðh�Þ for c¼ 1 is
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still 1, which amounts to no improvement at conservative scattering. Note that the
comparison of Eqs. (1) and (2) for the Matrix-valued analogs of the Chandrasekhar
H-function in multigroup neutron transport was given in (Bowden et al., 1976;
Kelley, 1980). From hereon, we shall term such one-step iteration a Gauss-Jacobi
method with respect to F̃. Using the discrete version of a known identity
(Chandrasekhar, 1960), we have

c

2

Xn
i¼1

cih
�
i ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
, ð3Þ

we arrive at an alternative form Eq. (1a),

hi ¼
1ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

þ c
2

Pn
k¼1 ðck�khk=�i þ �kÞ

, i ¼ 1, 2, . . . , n: ð4aÞ

In vector form, we write Eq. (4a) as

h ¼ ~FFðhÞ: ð4bÞ

It was proved in (Bosma and de Rooij, 1983), that the continuous version of Eq. (4b)
allows two solutions, one being entirely positive, the physically relevant solution
H�

c ð�Þ, and the other one being entirely negative. Similar techniques applied to
Eq. (4b) would yield the same assertions. Two very successful iterative procedures,
which are based on the use of Eq. (4), were proposed by Bosma and de Rooij (1983).
Their methods are general, fast, and simple and do not impose any fundamental
restriction on the accuracy of the calculations for any 0 < c � 1. One of the iterative
schemes proposed in (Bosma and de Rooij, 1983) is essentially the Gauss-Seidel
iterative technique applied to the nonlinear system (4). Specifically, Bosma and
de Rooij considered the following iteration:

h
ð pþ1Þ
i ¼

1ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
þ c

2

Pi�1
k¼1

ck�kh
ð pþ1Þ

k

�iþ�k
þ c

2

Pn
k¼i

ck�kh
ð pÞ

k

�iþ�k

:¼ ~fifi
�
h
ð pþ1Þ
1 , . . . , h

ð pþ1Þ
i�1 , h

ð pÞ
i , . . . , hð pÞn

�
, i ¼ 1, 2, . . . , n, ð5aÞ

h
ð0Þ
i ¼ 1, i ¼ 1, 2, . . . , n: ð5bÞ

The second approach is to normalize each iterate after a Gauss-Jacobi iteration with
respect to F̃ is taken. If we write the right hand side of Eq. (4a) as hið�i; hÞ, then the
second iteration of Bosma and de Rooij can be formulated as

h
ð pþ1Þ
i ¼

hið�i; h
ð pÞ
Þ

hið0; h
ð pÞÞ

ð6aÞ

or, equivalently,

h
ð pþ1Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
þ c

2

Pn
k¼1 ckh

ð pÞ
kffiffiffiffiffiffiffiffiffiffiffi

1� c
p

þ c
2

Pn
k¼1

ck�kh
ð pÞ

k

�iþ�k

, i ¼ 1, 2, . . . , n, ð6bÞ

h
ð0Þ
i ¼ 1, i ¼ 1, 2, . . . , n: ð6cÞ
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We shall call, respectively, the iterations of types (5) and (6) a Gauss-Seidel method
with respect to ~FF and a normalization method with respect to F̃. However, as noted
in (Bosma and de Rooij, 1983), such schemes do not work for nonlinear systems (1)
and (2).

The purpose of this article is to give a rigorous justification for why the
Gauss-Seidel iterative procedure and the normalization approach work so well at
the nonlinear system (4), and so poorly at the nonlinear systems (1) and (2). In
particular, we prove that both methods with respect to Eq. (4) converge locally.
Moreover, the convergence rate of the second iterative method is shown to be strictly
less than ð

ffiffiffi
3

p
� 1Þ=2. Finally, we show that both the Gauss-Jacobi method and

Gauss-Seidel method with respect to some other known alternative forms of the
Chandrasekhar’s H-functions either do not converge or essentially stall for c¼ 1.

2. THE GAUSS-JACOBI METHOD

Our prerequisites complies only some elementary facts from the theory of non-
negative matrices. If A¼ (aij) and B¼ (bij) are n� n matrices, we shall write A�B if
aij� bij for 1 � i, j � n. And A>B if aij> bij for 1 � i, j � n. A matrix A is called
nonnegative or positive, if A � 0 or A > 0, respectively. The notation jAj means that
jAj ¼ (jaijj). Let A 2 Rn�n, the spectrum of A will be denote �ðAÞ and the spectral of A
will be denoted �ðAÞ, i.e., �ðAÞ is the set of eigenvalues of A and �ðAÞ ¼
maxfj�j : j�j 2 �ðAÞg.

To study the convergence behavior of the iteration defined in Eq. (4), we
first consider the spectral properties of the Jacobian matrices �FF

0
ðh�Þ and ~FF

0
ðh�Þ.

A direct calculation would yield

ð �FF
0
ðh�ÞÞij ¼

ccj�ih
�
i
2

2ð�i þ �jÞ
i, j ¼ 1, 2, . . . , n, ð7Þ

and

ð ~FF
0
ðh�ÞÞij ¼

�ccj�jh
�
i
2

2ð�i þ �jÞ
i, j ¼ 1, 2, . . . , n: ð8Þ

Let

�DD1 ¼
c

2
diag

�
�1h

�
1
2
, . . . ,�nh

�
n
2�

and �DD2 ¼ daig½c1, c2, . . . , cn
:

Similarly, we set

~DD1 ¼
c

2
diag

�
h�1

2
, h�2

2
, . . . , h�n

2�
and ~DD2 ¼ diag½c1�1, . . . , cn�n
:

Then

�FF
0
ðh�Þ ¼ �DD1H �DD2, ð9aÞ
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where

H ¼
1

�i þ �j

	 

n�n

, ð9bÞ

and

� ~FF
0
ðh�Þ ¼ ~DD1H ~DD2: ð9cÞ

We first show the following lemma.

Lemma 1. The matrix H is symmetric positive definite.

Proof. Let Hk ¼ ð1=ð�i þ �jÞÞk�k. Using 1=ð�k þ �kÞ as a pivot element to eliminate
the elements to the left of 1=ð�k þ �kÞ, we see that

detAk ¼
1

�k þ �k

	 
 Yk�1

i, j¼1

ð�k � �iÞð�k � �jÞ

ð�n þ �iÞð�n þ �jÞ

 !
detAk�1

:¼ 	ðkÞ detAk�1:

Clearly, 	ðkÞ > 0 for k ¼ 1, 2, . . . , n. Hence, an induction would yield that detAk > 0
for all k ¼ 1, 2, . . . , n: Therefore, H is a symmetric positive definite matrix as
asserted. g

We are now ready to state our first result.

Theorem 1. The following assertions hold

(i) �ð �FF
0
ðh�ÞÞ ¼ �ð� ~FF

0
ðh�ÞÞ:

(ii) The eigenvalues of �FF
0
ðh�Þ, hence, � ~FF

0
ðh�Þ, are real and positive.

(iii) �ð �FF
0
ðh�ÞÞ ¼ �ð� ~FF

0
ðh�ÞÞ ¼ ðk1=ð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
þ k1ÞÞ, for some 0 < k11�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
.

In particular, for c¼ 1, �ð �FF
0
ðh�ÞÞ ¼ �ð� ~FF

0
ðh�ÞÞ ¼ 1.

Proof. To prove (i), we see that the characteristic polynomial of �FF
0
ðh�Þ is

detð �FF
0
ðh�Þ � �IÞ ¼ det �DD1 detðH � �DÞ det �DD2,

where D ¼ �DD1
�1 �DD2

�1
.

Similarly,

detð ~FF
0
ðh�Þ � �IÞ ¼ det ~DD1 detðH � �DÞ det ~DD2:

We thus conclude that the first assertion of the theorem holds as asserted.
Using the facts that D�1=2HD�1=2 is symmetric positive definite and D�1H and

D�1=2HD�1=2 are similar, we conclude that the eigenvalues of �FF
0
ðh�Þ are real and

positive.

Spectral Analysis of Iterations in Chandrasekhar’s H-Functions 579

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
40

 2
7 

A
pr

il 
20

14
 



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

To see (iii), we use the celebrated Perron-Frobenius theorem, let �hh ¼

½ �hh1, �hh2, . . . , �hhn
, where �hhi > 0 for all i ¼ 1, 2, . . . , n, be the eigenvector corresponding
to the eigenvalue �ð �FF

0
ðh�ÞÞ :¼ 
. Writing �FF

0
ðh�Þ �hh ¼ 
 �hh in component form, we get

c

2
�ih

�
i

Xn
k¼1

ck �hhk
�i þ �k

¼

 �hhi
h�i

ð10Þ

Substituting Eq. (2a) into the right hand side of Eq. (10), we have

c

2
�ih

�
i

Xn
k¼1

ck �hhk
�i þ �k

þ
c

2

�i

�hhi
Xn
k¼1

ckh
�
k

�i þ �k

¼ 
 �hhi: ð11Þ

Multiplying ci on both sides of Eq. (11) and summing the resulting equation over the
index i, we obtain that

c

2

Xn
i¼1

ci �hhi
Xn
k¼1

ck�kh
�
k

�i þ �k

þ
c

2


Xn
i¼1

ci �hhi
Xn
k¼1

ck�i
�hhk

�i þ �k

¼ 

Xn
i¼1

ci �hhi: ð12Þ

Set

k1ðiÞ ¼
c

2

Xn
k¼1

ck�kh
�
k

�i þ �k

: ð13Þ

Then 0 < k1ðiÞ < 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
. And Eq. (12) reduces to

Xn
i¼1

ci �hhik1ðiÞ þ 

Xn
i¼1

ci �hhið1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
� k1ðiÞÞ ¼ 


Xn
i¼1

ci �hhi: ð14Þ

Since �hhi > 0 for all i, there exists k1, 0 < k1 < 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
, such that

k1
Xn
i¼1

ci �hhi ¼
Xn
i¼1

ci �hhik1ðiÞ: ð15Þ

Using Eq. (15), we have, via Eq. (14), that


 ¼
k1ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

þ k1
:

We thus complete the proof of the theorem. g

Remark.

1. It is known (Mullikin, 1968) that �ðF 0
ðh�ÞÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
. A direct calcula-

tion would yield that �ðF 0
ðh�ÞÞ � �ð �FF

0
ðh�ÞÞ. Moreover, the equality above

holds only if c¼ 1.
2. For c¼ 1, the Gauss-Jacobi method with respect to either F, �FF or F̃ does not

work well at all. However, for 0 < c < 1 some improvement is expected if
either one of the nonlinear systems (2) and (3) are chosen over (1).
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3. We expect that similarly assertions in Theorem 1 can be applied as well to
the infinite dimensional case by using the ideas in Anselone’s book
(Anselone, 1971) on collective compact operators.

3. THE GAUSS-SEIDEL METHOD

To see the effective of the application of the Gauss-Seidel technique on the
nonlinear system (4), we need to reformulate (5) as

hð pþ1Þ
¼ ~GGðhð pÞÞ, ð16aÞ

where ~GG is an appropriate defined nonlinear mapping from Rn to Rn. Let ~GG =
½ ~gg1, ~gg2, . . . , ~ggn
, where ~ggi, i ¼ 1, 2, . . . , n are the functionals from Rn to R. Then ~ggi
can be recursively defined as

~gg1 ¼ ~ff1, ð16bÞ

and

~ggiðhÞ ¼ ~ffið ~gg1ðhÞ, . . . , ~ggi�1ðhÞ, hi, . . . , hnÞ: ð16cÞ

Here ~ffii ¼ 1, 2, . . . , n, are defined in Eq. (5a). We are ready to state the following
Theorem.

Theorem 2. Let ~FF
0
ðh�Þ ¼ ~DDþ ~LLþ ~UU, where ~DD, ~LL, and ~UU are, respectively, the diagonal

part, strictly lower triangular part and strictly upper triangular part of ~FF
0
ðh�Þ. Then

~GG
0
ðh�Þ ¼ ðI � ~LLÞ�1

ð ~DDþ ~UUÞ:

Proof. Clearly, h� is also a fixed point of ~GG. For 1 � j < i, we have

@ ~ggi
@hj

ðh�Þ ¼
Xi�1

k¼1

@ ~ffi
@hk

ðh�Þ

 !
@ ~ggk
@hj

ðh�Þ

	 

: ð17aÞ

For i � j � n, we get

@ ~ggi
@hj

ðh�Þ ¼
Xi�1

k¼1

@ ~ffi
@hk

ðh�Þ

 !
@ ~ggk
@hj

ðh�Þ

	 

þ

@ ~ffi
@hj

ðh�Þ: ð17bÞ

Combing Eqs. (17a) and (17b), we have that

~GGðh�Þ ¼ ~LL ~GGðh�Þ þ ~DDþ ~UU,

or, equivalently,

~GGðh�Þ ¼ ðI � ~LLÞ�1
ð ~DDþ ~UUÞ: g

Remark. Suppose one applies the Gauss-Seidel technique on the nonlinear system
(2), and writes the corresponding one point iteration as hð pþ1Þ

¼ �GGðhð pÞÞ: Moreover,
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let �FF
0
ðh�Þ ¼ �DDþ �LLþ �UU,where �DD, �LL, and �UU are, respectively, the diagonal part,

strictly lower triangular part and strictly upper triangular part of �FF
0
ðh�Þ. Then

�GG
0
ðh�Þ ¼ ðI � �LLÞ�1

ð �DDþ �UUÞ:

Lemma 2. The spectral �ð �GG
0
ðh�ÞÞ of �GG

0
ðh�Þ is ðk1 � k2 þ k2ð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
ÞÞ=

ðk1 � k2ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Þ, where k1 and k2 are constants such that 0 < k2 <

k1 < 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
.

Proof. Since ðI � �LLÞ�1
¼ I þ �LLþ �LL

2
þ � � � þ �LL

n�1
, we see that �GGðh�Þ > 0. Let �gg ¼

½ �gg1, �gg2, . . . , �ggn
, where �ggi > 0 for all i ¼ 1, 2, . . . , n, be the eigenvector corresponding
to the eigenvalue �ð �GGðh�ÞÞ :¼ �

. A similar procedure as done in obtaining Eq. (12)
would yield

c

2

Xn
i¼1

ci�ih
�
i �

Xi�1

k¼1

ck �hhk
�i þ �k

þ
Xn
k¼i

ck �hhk
�i þ �k

 !
þ

c

2


Xn
i¼1

ci �hhi
Xn
k¼1

ck�ih
�
k

�i þ �k

¼ 

Xn
i¼1

ci �hhi: ð18Þ

Let �kk2 be the positive constant such that

Xn
i¼1

ci�ih
�
i

Xi�1

k¼1

ck �hhk
�i þ �k

¼ �kk2
Xn
i¼1

ci�ih
�
i

Xn
k¼1

ck �hhk
�i þ �k

: ð19Þ

Clearly 0 < �kk2 < 1: Let k1 be defined as in Theorem 1, and k2 ¼ k1 �kk2. It follows from
Eqs. (18) and (19) that Eq. (18) would reduce to

k2ð �

 � 1Þð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Þ þ k1 þ �

ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
� k1Þ ¼ �

1: ð20Þ

A direct calculation would give

�

 ¼
k1 � k2 þ k2ð

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Þ

k1 � k2ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p

as asserted. g

Remark.

1. For c¼ 1, �

 ¼ 
 ¼ 1. Hence, both the Gauss-Seidel method and the Gauss-
Jacobi method do not work on the nonlinear system (2). For 0 < c < 1, we
have that �ð �GG

0
ðh�ÞÞ < �ð �FF

0
ðh�ÞÞ: This, in turn, suggests that some improve-

ment is expected when the Gauss-Seidel method is applied to Eq. (2).
2. Similar assertions hold on the nonlinear system (1).

Theorem 3. �ð ~GG
0
ðh�ÞÞ < �ð �GG

0
ðh�ÞÞ: In particular, if c¼ 1, �ð ~GG

0
ðh�ÞÞ < 1.

Proof. Let ~KK ¼ �ðI þ ~LLÞ�1
ð ~DDþ ~UUÞ, where ~DD, ~LL, and ~UU are given in Theorem 2.

A similar technique as given in the proof of Theorem 1(i) would yield that

�ð ~KKÞ ¼ �ð �GG
0
ðh�ÞÞ:
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Now,

~GG
0
ðh�Þ ¼ ðI � ~LLÞ�1

ð ~DDþ ~UUÞ

¼ ðI þ ~LLþ � � � þ ~LL
n�1

Þð ~DDþ ~UUÞ:

and

~KK ¼ �
�
I � ~LLþ ~LL

2
� � � � þ ð�1Þn�1 ~LL

n�1�
ð ~DDþ ~UUÞ:

Noting that � ~DD, � ~UU, and � ~LL are nonnegative, we see that

j ~GG
0
ðh�Þj � ~KK and j ~GG

0
ðh�Þj 6¼ ~KK :

Clearly, ~GG
0
ðh�Þ and ~KK are irreducible. A well-known result (see e.g., Minc, 1988)

would give

�ð ~GG
0
ðh�ÞÞ < �ð ~KKÞ ¼ �ð �GG

0
ðh�ÞÞ:

It follows from the above and Lemma 2 that the last assertion holds. g

4. THE NORMALIZATION METHOD

In vector form, Eq. (6) can be written as

hð pþ1Þ
¼ Kðhð pÞÞ: ð21Þ

A direct calculation yield that the Jacobian matrix K 0
ðh�Þ is

K 0
ðh�Þ ¼

c

2
h�wT

þ ~FF
0
ðh�Þ, ð22Þ

where wT
¼ ½c1, c2, . . . , cn
.

To see that the spectral radius of K 0
ðh�Þ is less than one, we need to derive the

following lemma:

Lemma 3. For c ¼ 1,
Pn

k¼1 ck�kh
�
k ¼ 2=

ffiffiffi
3

p
.

Proof. Multiplying ci�
2
i on both sides of Eq. (1b), and summing the resulting

equation over the index i, we getXn
i¼1

ci�
2
i h

�
i ¼

Xn
i¼1

ci�
2
i þ

1

4

Xn
i¼1

Xn
k¼1

�3
i þ �3

k

� �
cih

�
i ckh

�
k

�i þ �k

: ð23Þ

Simplifying the second term on the right hand side of Eq. (23) and using the fact thatPn
i¼1 ci�

2
i ¼

R 1
0 �2d� ¼ 1

3
for n � 2, we have

1

2

Xn
i¼1

cih
�
i �i

 !2

¼
1

3
,

and, hence,
Pn

i¼1 cih
�
i �i ¼ 2=

ffiffiffi
3

p
as asserted.
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Remark. A continuous version of equality established in the above lemma can be
found in (Chandrasekhar, 1960).

Theorem 4. Let wT
¼ ½c1, c2, . . . , cn
, then �ðK 0

ðh�ÞÞ < ðc=2Þ�ðh�wT
Þ, and hence

�ðK 0
ðh�ÞÞ < 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
. In particular, if c ¼ 1, �ðK 0

ðh�ÞÞ < 1:

Proof. To see the first assertion of the theorem, it suffices to show that

c

2
cjh

�
i � jK 0

ðh�Þj, for all i, j: ð24Þ

To this end, let k1ðiÞ be given as in Eq. (13). For c¼ 1, using Eq. (1b), we see that

h�i ¼
1

k1ðiÞ
:

Hence,

�jh
�
i

�i þ �j

¼
�j

k1ðiÞ �i þ �j

� � � 1

k1ðiÞ 1þ �ið Þ
�

ffiffiffi
3

p
: ð25Þ

The last inequality is justified by the inequality k1ðiÞð1þ �iÞ � ð1=2Þ
Pn

k¼1 ck�kh
�
k

and Lemma 3. Now, inequality (24) follows easily from Eq. (25). The first assertion
of Theorem 4 now follows from the fact that h�i are increasing in c for all i. The last
assertion of the theorem follows from Eq. (3). g

In the following, we shall give a tighter upper bound for the spectral radius of
K 0

ðh�Þ. To this and, we first recall a result in (Rothblum and Tan, 1985).

Theorem 5. [Theorem 5.1 of Rothblum and Tan (1985)]. Let P be an n� n nonnegative
irreducible matrix, and let r be a positive right eigenvector of P corresponding to the
eigenvalue � ¼ �ðPÞ. Also, let a 2 Rn. Then

�ðP� raT Þ ¼ ½�ðPÞ � f �g
 [ f �� aTrg:

Lemma 4. For c� 1, let �2 be the second largest eigenvalue of � ~FF
0
ðh�Þ. Then the

spectral radius of K 0
ðh�Þ equals to maxf�2, 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
� ðk1=

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
þ k1Þg, where

k1 is given as in Theorem 1.

Proof.We first note that h� is a positive right eigenvector of � ~FF
0
ðh�Þ. The assertion of

the lemma now follows from Theorems 1 and 5. g

Theorem 6. For c¼ 1, �ðK 0
ðh�ÞÞ < ðð

ffiffiffi
3

p
� 1Þ=2Þ.

Proof. For c¼ 1, the spectral radius of K 0
ðh�Þ is clearly equal to �2. Now,

�2 < trace
�
� ~FF

0
ðh�Þ

�
� 1 ¼

1

4

Xn
i¼1

cih
�
i
2
� 1:
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By Eq. (25) and Lemma 3, we see that

1

4

Xn
i¼1

cih
�
i
2
�

ffiffiffi
3

p

4

Xn
i¼1

cið�i þ �jÞh
�
i

�j

�

ffiffiffi
3

p

4

Xn
i¼1

cið1þ �iÞh
�
i ¼

ffiffiffi
3

p
þ 1

2
:

Therefore, �2 < ð
ffiffiffi
3

p
� 1Þ=2 as asserted. g

Concluding Remarks.

1. Our numerical results suggest that �ð ~GG
0
ðh�ÞÞ � 0:25 and �ðK 0

ðh�ÞÞ � 0:06.
Moreover, the convergence behavior of the iterations (5) and (6) are inde-
pendent of the number of quadrature points chosen. This, in turn, suggests
that �ð ~GG

0
ðh�ÞÞ and �ðK 0

ðh�ÞÞ are independent of the dimension of the
Jacobian matrices ~GG

0
ðh�Þ and K 0

ðh�Þ. Moreover, our analysis does not give
an indication as to how good these iterations really are. In light of above
comments, it is worthwhile to pursue these matters further.

2. We have obtained some new estimates concerning the spectra of the Fr �eechet
derivatives of certain operators with respect to various formulation of
Eq. (1). It is of interest to see if all such estimates apply as well to the infinite
dimensional case.

3. It is certainly worthwhile to see how Bosma and de Rooij’s ideas can be
extended to systems, such as the H-equations arising in polarized light,
multigroup neutron transport or simple transport model with an angular
shift (see e.g., Chandrasekhar, 1960; Coron, 1990; Ganapol, 1992; Juang,
1995; Kelley, 1980; Kelley and Xue, 1993).
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