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Abstract

Ina yeast arti2cial chromosome library, DNA clones may be stored in n-dimensional grids.
Barillot, Lacroix and Cohen proposed to use the grid lines as pools in a pooling design (used in
physical mapping). To screen the clones in a given grid, they noted that it is important to take
several copies of the grid, but rearrange the clones such that two clones are in the same grid
line at most once. For ease of implementation, biologists proposed using transforming matrices
to transform one copy into another. We give a construction of a set of transforming matrices
which produce a maximum number of such copies whenever q is a prime power.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

Consider DNA clones stored in a yeast-arti2cial-chromosome (YAC) library (see
[4]). The clones of a YAC library are typically grown on nylon 2lters in rectangular
arrays or “grids” (see Fig. 1). A pool is a set of clones to be tested together. Since
each pool needs much time to be prepared for testing, usually non-adaptive algorithms
are used, namely, all pools are tested simultaneously, to screen the clone library for
clones containing a speci2ed DNA segment. One convenient way to collect the pools
is to take the rows and columns of the grids as pools. We assume the screening is
con2ned to one grid, say G, at a time, which is of size q × q, and among the q2

clones at most d are positive (speci2c clones which we need to identify). In absence
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Fig. 1. A DNA subsequence is stored in a clone. A positive clone renders its row and its column positive.
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Fig. 2. If two positive clones A and D are not in the same row and column, then we need other grids to
2nd the positive clones.

of experimental error, the testing outcome is negative (or 0) if all clones in the pool
are negative. If at least one clone is positive in the pool, the test outcome is positive
(or 1).
If there is a positive clone in G, then we get a positive outcome for the row and

column containing the positive clone. For this reason, all positive clones are located
at the intersections of positive rows and positive columns. Unfortunately, we cannot
determine which intersections are the locations of positive clones when we have more
than one positive clone.
Suppose for example (see Fig. 2) that A at (i′; i) and D at (j′; j) are positive clones

which are not in the same row and column. Then the test produces four positive
lines (i; i′; j; j′) with four intersections. In this case, we cannot be certain which two
intersections are the locations of positive clones. Therefore when d is more than one,
other grids, which rearrange the clones, are needed to diJerentiate positive clones from
other clones at these intersections.
Two clones are called collinear in a grid if they lie either in the same column or

in the same row (See Fig. 3). Barillot et al. [1] suggested using a second grid G1 in
which the rows and the columns are again partitions of the q2 clones, but two clones
collinear in G0 are no longer collinear in G1 (see Fig. 3).
We now consider a generalization of the 2-dimensional grid to n-dimensions.
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Fig. 3. Any two clones are collinear just once in the two grids.

Let Zq be the set of all integers modulo q. The general abstract model of an
n-dimensional grid G on qn objects is a bijective (one to one) mapping

G: {0; 1; 2; : : : ; qn − 1} → (Zq)n = {[x1; : : : ; xn]t | xi ∈Zq}

onto column n-tuples over Zq. Two clones x; y are collinear if their images G(x); G(y)
diJer in exactly one component. We also call the image G(x) the coordinate of the
clone x.
The standard grid G0 is de2ned to be the q-nary representation of {0; 1; 2; : : : ; qn−1},

where
G0(0) = [0; 0; : : : ; 0]t ;
G0(1) = [1; 0; : : : ; 0]t ;
...
G0(qn − 1) = [q− 1; q− 1; : : : ; q− 1]t.
A set of grids is compatible if any two clones x; y collinear in a given grid are not

collinear in the other grid. Since each clone is collinear with n(q− 1) other clones in
a single grid, while the total numbers of clones other than the given clone is qn − 1,
at most �(qn − 1)=(n(q− 1))	 compatible grids can exists. If a set of compatible grids
attains this upper bound, we refer to this set as a full set of compatible grids. For
n = 2, Hwang [5] showed there exists a factorization of the complete graph of order
q2 into 2-dimensional grids with side length q if and only if there exists a set of q− 1
mutually orthogonal latin squares of order q.
This implies that if q is a prime power, then there is a full set of compatible grids.

On the other hand, if q = 6 there is no other grid compatible with the standard grid.
In [3], it is shown that the complete graph of order qn can be packed with a full set
of n-dimensional grids of side length q for every prime power q. However, no explicit
construction of such a packing is given.
For easier implementation, De Jong et al. [2] and Barillot et al. [1], proposed using

transforming matrices to construct compatible grids. Let G be an arbitrary n-dimensional
grid, and A0 the n× n identity matrix. Then an n× n matrix A, called a transforming
matrix, is e/cient if A0 · G and A · G are compatible. A set of transforming matrices
{A0; A1; : : : ; Ak−1} is an eMcient set if {A0 · G; A1 · G; : : : ; Ak−1 · G} are compatible for
any grid G. An eMcient set is full if the induced compatible set of grids is full. In this
paper, we give a necessary and suMcient condition for an eMcient set. We also give a
simple construction of a full set of transforming matrices when q is a prime power.
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2. Coordinate transformation and e�cient matrix

Let G0 be the standard grid, E0 = [1; 0; 0; : : : ; 0]t ; E1 = [0; 1; 0; : : : ; 0]t ; : : : ; En−1 =
[0; 0; : : : ; 0; 1]t be column vectors of the identity matrix of order n. Let A= [V0; V1; : : : ;
Vn−1] be an invertible n × n matrix over Zq, where V0; V1; : : : ; Vn−1 are column vec-
tors of A. We can use the matrix A to de2ne a coordinate transformation on (Zq)n by
assigning

x0

...

xn−1


to a new coordinate

x̃0

...

x̃n−1


if 

x0

...

xn−1

= A ·


x̃0

...

x̃n−1

= x̃0 · V0 + · · ·+ x̃n−1 · Vn−1:

Let G be the new grid induced by this new coordinate system. Two distinct clones
x= x̃0 · V0 + · · ·+ x̃n−1 · Vn−1; y= ỹ0 · V0 + · · ·+ ỹn−1 · Vn−1 are collinear in the new
grid if and only if there is an 06 i6 n− 1 such that x̃j = ỹj for all j �= i, i.e.

x − y = � · Vi for some 0 �= �∈Zq; 05 i 5 n− 1:

Two clones x; y are collinear in the standard grid G0 if and only if

x − y = � · Ei for some 0 �= �∈Zq; 05 i 5 n− 1:

Since it is well known that the column vectors of an invertible matrix are not parallel
to each other, so we have the following lemma:

Lemma 1. Let A0 be the identity matrix, G0 be the standard grid. A set of matrices
{A0; A1; : : : ; Ak−1} is an e/cient set of transforming matrices and generates a set of
compatible grids {G0; G1; : : : ; Gk−1} if and only if no two column vectors among the
matrices A0; A1; : : : ; Ak−1 are parallel to each other.

Remark. By setting k=2, we obtain a necessary and suMcient condition for an eMcient
matrix (as versus Barillot’s suMcient condition).
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Example 1.

A0 =

[
1 0

0 1

]
; A1 =

[
1 1

1 2

]
; A2 =

[
1 1

3 4

]
is a full set of transforming matrices and generates the following compatible grids
over Z5:

G0 =



(0; 0) (0; 1) (0; 2) (0; 3) (0; 4)

(1; 0) (1; 1) (1; 2) (1; 3) (1:4)

(2; 0) (2; 1) (2; 2) (2; 3) (2; 4)

(3; 0) (3; 1) (3; 2) (3; 3) (3; 4)

(4; 0) (4; 1) (4; 2) (4; 3) (4; 4)


;

G1 =



(0; 0) (1; 2) (2; 4) (3; 1) (4; 3)

(1; 1) (2; 3) (3; 0) (4; 2) (0:4)

(2; 2) (3; 4) (4; 1) (0; 3) (1; 0)

(3; 3) (4; 0) (0; 2) (1; 4) (2; 1)

(4; 4) (0; 1) (1; 3) (2; 0) (3; 2)


;

G2 =



(0; 0) (1; 4) (2; 3) (3; 2) (4; 1)

(1; 3) (2; 2) (3; 1) (4; 0) (0:4)

(2; 1) (3; 0) (4; 4) (0; 3) (1; 2)

(3; 4) (4; 3) (0; 2) (1; 1) (2; 0)

(4; 2) (0; 1) (1; 0) (2; 4) (3; 3)


:

Note that the non-existence of an eMcient set over Zq does not imply the non-existence
of a compatible grid sets. For example, there is no 2 × 2 eMcient matrix over Z4.
However, Since there are 3 mutually orthogonal Latin squares of order 4, we can 2nd
a new grid compatible with the standard grid.
Barillot et al. [1] proposed using an eMcient set of transforming matrices to construct

compatible grids and claimed the following to be a necessary condition:
“An eMcient transforming matrix must have a determinant and all the subdetermi-

nants non-null and prime with q”.
It turns out that this condition is suMcient but not necessary for n¿ 2.

Example 2. For q= 3, the transforming matrix

A=

 2 1 1

1 2 0

0 1 2

 ;
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sends the standard 3-dimensional grid G0 (in 3 layers)
(000) (001) (002)

(010) (011) (012)

(020) (021) (022)



(100) (101) (102)

(110) (111) (112)

(120) (121) (122)



(200) (201) (202)

(210) (211) (212)

(220) (221) (222)


to the grid G1

(000) (102) (201)

(121) (220) (022)

(212) (011) (110)



(210) (012) (111)

(001) (100) (202)

(122) (221) (020)



(120) (222) (021)

(211) (010) (112)

(002) (101) (200)

 :
It is easily checked that although the matrix A contains submatrices with zero deter-
minants. The matrix A is an eMcient matrix.

Let q be a prime power. If we change the coeMcients from Zq to a 2nite 2eld of order
q, then it is possible to construct a full set of transforming matrices with algebraic
machinery. In the next section, we review some basic facts of 2nite 2elds. Details can
be found in [6].

3. Finite �elds

A 2nite non-empty set F with binary operation +; · is called the 0nite 0eld, if for
all x; y; z in F , the following conditions are satis2ed:

(1) x + y = y + x; x · y = y · x,
(2) x + (y + z) = (x + y) + z,
(3) x · (y · z) = (x · y) · z,
(4) x · (y + z) = x · y + x · z, furthermore there is a zero elements 0, identity element

e, −x for all x, y−1 for all y �= 0 such that,
(5) x + 0 = x; x + (−x) = 0,
(6) y · e = y; y · y−1 = e.

If F is a 2nite 2eld of size q, then q must be a prime power. On the other
hand, we can make a 2nite set of size q a 2nite 2eld with the following
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constructions:

(1) If q is a prime number, then Zq, the set of all integers modulo q is a 2nite 2eld.
(2) If q = pr is a prime power, then the set of all polynomials, with coeMcients in

Zp modulo an irreducible polynomial p(x) of degree r, is a 2nite 2eld.

The structure of a 2nite 2eld of size q are essentially unique and denoted by GF(q)
referred to the Galois 0eld of order q.
For any positive integer n, there exists an irreducible polynomial p(x) of degree n

over GF(q), such that the set {x; x2; : : : ; xqn−2; xq
n−1 = 1} modulo p(x) is the set of

all non-zero polynomials of degree less than n. In other words, the set of all non-zero
polynomials of degree less than n forms a cyclic group with respect to polynomial
multiplication modulo p(x). The set of all scalars (polynomials of zero degree) is a
cyclic subgroup of order q−1, of the form xm; x2m; : : : ; x(q−1)m, where m=qn−1=q−1.
We call such p(x) a primitive polynomial. The set of all polynomials over Zq of degree
less than n modulo a primitive polynomial is also a 2nite 2eld of order qn.

Let F = GF(q); p(x) = p0 + p1 · x + · · ·+ pn−1 · xn−1 + xn, p0 �= 0 be a primitive
polynomial of degree n, and let

S =



0 0 · · 0 −p0

1 0 0 · 0 −p1

0 1 0 0 · −p2

· 0 1 0 0 ·
· · 0 1 0 ·
· · · 0 1 −pn−1


be the companion matrix of p(x). It is easy to verify that S is an invertible matrix.
Let

E0 = [1; 0; 0; : : : ; 0]t ; E1 = [0; 1; 0; : : : ; 0]t ; · · ·En−1 = [0; 0; : : : ; 0; 1]t :

Since x · (a0 + a1 · x + · · · + an−1 · xn−1) (modp(x)) = (a0 · x + a1 · x2 + · · · + an−2 ·
xn−1)− an−1 · (p0 + p1 · x + · · ·+ pn−1 · xn−1).
The mapping:

�: a0 + a1 · x + · · ·+ an−1 · xn−1 → a0 · E0 + a1 · E1 + · · ·+ an−1 · En−1

is an isomorphism (preserving addition and scalar multiplication) sending polynomials
of degree less than n to the column n-vectors over GF(p) and satis2es:
�(xi) = Si · E0,
�(xi · (a0 + a1 · x+ · · ·+ an−1 · xn−1)) = Si · (a0 · E0 + a1 · E1 + · · ·+ an−1 · En−1), for

all i.



428 H.-M. Huang et al. / Discrete Applied Mathematics 129 (2003) 421–431

Example 3. p(x) = x2 + x + 2 is a primitive polynomial over GF(3) with companion
matrix

S =

[
0 −2

1 −1

]
=

[
0 1

1 2

]
;

{x; x2 = 2x + 1; x3 = 2x + 2; x4 = 2; x5 = 2x; x6 = x + 2; x7 = x + 1; x8 = 1}
is the set of all non-zero elements of GF(9).
The corresponding 2-vectors are:

�(x) = S ·
[
1

0

]
=

[
0

1

]
; �(x2) = S2 ·

[
1

0

]
=

[
1

2

]
;

�(x3) = S3 ·
[
1

0

]
=

[
2

2

]
; �(x4) = S4 ·

[
1

0

]
=

[
2

0

]
;

�(x5) = S5 ·
[
1

0

]
=

[
0

2

]
; �(x6) = S6 ·

[
1

0

]
=

[
2

1

]
;

�(x7) = S7 ·
[
1

0

]
=

[
1

1

]
; �(x8) = S8 ·

[
1

0

]
=

[
1

0

]
:

Following the same reasoning as in Section 2, we have the following lemma:

Lemma 2. A set of matrices {A0; A1; : : : ; Ak−1} over the Galois 0eld GF(q), where
A0 is an identity matrix, is an e/cient set of transforming matrices and generates a
set of compatible {G0; G1; : : : ; Gk−1} if and only if no two column vectors among the
matrices A0; A1; : : : ; Ak−1 are parallel to each other.

4. Construction of a full set of transforming matrices over GF(q)

Our discussion in this section is based on the framework established in Section 3.
Let p(x) be a primitive polynomial of degree n over GF(q), S be the compan-

ion matrix of p(x), and � be the isomorphism de2ned in the previous section. Let
m = (qn − 1)=(q − 1); k = �m=n	; A0 be the identity matrix, and let Ai = (Sn)i for
16 i6 k − 1. In this section, we prove that the set of matrices {A0; A1; : : : ; Ak−1} is a
full set of transforming matrices.

Lemma 3. The column vectors of Ai are Sn·i · E0; Sn·i+1 · E0; : : : ; Sn·i+n−1 · E0.

Proof. Straightforward veri2cation.

Lemma 4. Any two column vectors among the set of transforming matrices {A0; A1;
: : : ; Ak−1} are not parallel to each other.
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Proof. The n ·k column vectors are E0; S ·E0; S2 ·E0; : : : ; Sn·k−1 ·E0. Let Vi=Si ·E0; Vj=
Sj · E0, where 06 i¡ j¡m, be 2 distinct column vectors. If Vi is parallel to Vj then
there is a scalar � in GF(q) such that � · Vi = Vj. Since � is an isomorphism and
�(xi) = Si · E0 = Vi; �(xj) = Sj · E0 = Vj, this implies that (� · xi) = (xj). But any scalar
in GF(q) is of the form xr·m for some 16 r6 q− 1 and 06 i¡ j¡m, leading to a
contradiction.

Lemma 5. The matrices Ai; i = 0; 1; 2; : : :, are invertible.

Proof. Since A0 is the identity matrix and the companion matrix S is invertible, the
matrices Ai = (Sn)i must be invertible for all i.

Theorem 6. {A0; A1; : : : ; Ak−1} is a full set of transforming matrices.

Proof. By Lemmas 4 and 5, Ai is invertible for all i and no column vectors
among {A0; A1; : : : ; Ak−1} are parallel to each other. Theorem 6 now follows from
Lemma 2.

Example 4. Let F = {0; 1; 2; 3; 4; } be the Galois 2eld of order 5, p(x) = 2 + x2 + x3

be a primitive polynomial over GF(5).

S =


0 0 −2

1 0 0

0 1 −1

 ; S3 =


3 2 3

0 3 2

4 1 2

 ; S6 =


1 0 4

3 1 0

0 3 3

 ; : : : ;
where S is the companion matrix of p(x). The following matrices form a full set of
transforming matrices:

1 0 0

0 1 0

0 0 1



3 2 3

0 3 2

4 1 2



1 0 4

3 1 0

0 3 3



4 1 1

4 4 1

2 2 2



1 2 1

1 1 2

4 2 4



2 4 4

1 2 4

3 3 4



2 0 2

4 2 0

0 4 3



4 1 0

2 4 1

2 0 4



2 1 4

0 2 1

2 3 4



2 1 1

4 2 1

2 2 0

 :
Example 5. Let F = {0; 1; z; z + 1} be the Galois 2eld of order 4, where z2 = z + 1.
Let p(x) = x3 + x2 + x + z be a primitive polynomial over F . The companion matrix
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of p(x) is
0 0 z

1 0 1

0 1 1

 :
The polynomials xi modulo x3 + x2 + x + z, i = 0; 1; 2; : : : ; 21 are:

1; x; x2; x3 = z + x + x2; x4 = z + (1 + z)x; x5 = zx + (1 + z)x2;

x6 = 1 + (1 + z)x + x2; x7 = z + zx2; x8 = (1 + z) + zx2; x9 = (1 + z) + x + zx2;

x10 = (1 + z) + x + (1 + z)x2; x11 = 1 + zx2; x12 = (1 + z) + (1 + z)x + zx2;

x13 = (1 + z) + x + x2; x14 = z + zx; x15 = zx + zx2; x16 = (1 + z) + zx;

x17 = (1 + z)x + zx2; x18 = (1 + z) + zx + x2; x19 = z + zx + (1 + z)x2;

x20 = 1 + x + x2; x21 = z:

The corresponding non-zero 2-vectors are
1

0

0

 ;

0

1

0

 ;

0

0

1

 ;

z

1

1

 ;


z

1 + z

0

 ;


0

z

1 + z

 ;


1

1 + z

1

 ;

z

0

z

 ;

1 + z

0

z

 ;

1 + z

1

z

 ;

1 + z

1

1 + z

 ;

1

0

z

 ;

1 + z

1 + z

z

 ;

1 + z

1

1

 ;

z

z

0

 ;

0

z

z

 ;

1 + z

z

0

 ;


0

1 + z

z

 ;

1 + z

z

1

 ;


z

z

1 + z

 ;

1

1

1

 ;

z

0

0

 :
The full set of 3 by 3 matrices over GF(4) consists of

1 0 0

0 1 0

0 0 1

 ;

z z 0

1 1 + z z

1 0 1 + z

 ;


1 z 1 + z

1 + z 0 0

1 z z

 ;
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1 + z 1 + z 1

1 1 0

z 1 + z z

 ;

1 + z 1 + z z

1 + z 1 z

z 1 0

 ;

0 1 + z 0

z z 1 + z

z 0 z

 ;

1 + z z 1

z z 1

1 1 + z 1

 :
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