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Abstract

A bipartite graph isbipancyclic if it contains a cycle of every even length from 4 to|V (G)| inclusive. It has been shown th
Qn is bipancyclic if and only ifn � 2. In this paper, we improve this result by showing that every edge ofQn − E′ lies on a
cycle of every even length from 4 to|V (G)| inclusive whereE′ is a subset ofE(Qn) with |E′| � n− 2. The result is proved to
be optimal. To get this result, we also prove that there exists a path of lengthl joining any two different verticesx andy of Qn

whenh(x, y) � l � |V (G)| − 1 andl − h(x, y) is even whereh(x, y) is the Hamming distance betweenx andy.
 2003 Elsevier Science B.V. All rights reserved.
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Network topology is usually represented by a gra
where vertices represent processors and edges r
sent links between processors. There are a lot of
tually conflicting requirements in designing the top
ogy of computer networks. It is almost impossible
design a network which is optimum from all aspec
Fault-tolerance is highly desirable in massive para
systems that have a relative high probability of failu
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In this paper, a network is represented as a loop
undirected graph. For the graph definition and nota
we follow [3]. G = (V ,E) is a graph ifV is a finite
set andE is a subset of{(a, b) | (a, b) is an unordered
pair of V }. We say thatV is thevertex set andE is
theedge set. A graphG = (V0 ∪ V1,E) is bipartite if
V (G) is the union of two disjoint setsV0 andV1 such
that every edge joinsV1 with V2. Two verticesa and
b areadjacent if (a, b) ∈ E. Let E′ be a subset ofE.
We useG − E′ to denote the graph with vertex setV

and edge setE −E′. A path is a sequence of adjace
vertices, written as〈v0, v1, v2, . . . , vm〉, in which all
the verticesv0, v1, . . . , vm are distinct except possibl
v0 = vm. We also write the path〈v0,P, vm〉, where
P = 〈v0, v1, . . . , vm〉. Thelength of a pathP , denoted
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by l(P ), is the number of edges inP . Let u and v

be two vertices ofG. Thedistance betweenu andv
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bipancyclic wheren � 2 andF ⊂ E(Qn) with |F | �
n − 2. In other words, we prove thatQn is (n − 2)-
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denoted bydG(u, v) is the length of the shortest pa
of G joining u andv. A cycle is a path with at leas
three vertices such that the first vertex is the sam
the last one. AHamiltonian cycle is a cycle of length
V (G).

The ring embedding problem, which deals w
all the possible lengths of the cycles in a giv
graph, is investigated in a lot of interconnecti
networks [4,5,7]. In general, a graph ispancyclic
if it contains a cycle of every length from 3 t
|V (G)| inclusive [2]. The concept of pancyclicit
has been extended to vertex-pancyclicity [6] a
edge-pancyclicity [1]. Bipancyclicity is essentially
restriction of the concept of pancyclicity to biparti
graphs whose cycles are necessarily of even len
A bipartite graph isvertex-bipancyclic [10] if every
vertex lies on a cycle of every even length from 4
|V (G)| inclusive. Similarly, a bipartite graph isedge-
bipancyclic if every edge lies on a cycle of eve
even length from 4 to|V (G)| inclusive. Obviously,
every edge-bipancyclic graph is vertex-bipancyc
A bipartite graphG is k-edge-fault-tolerant edge-
bipancyclic if G−F remains edge-bipancyclic for an
F ⊂ E(G) with |F | � k.

Let u = un−1un−2 . . .u1u0 be an n-bit binary
strings. For 0� k < n, we useuk to denote the bi-
nary stringvn−1vn−2 . . . v1v0 such thatvk = 1 − uk
andui = vi for all i = k. TheHamming weight of u,
denoted byw(u), is the number ofis such thatui = 1.
Let u = un−1un−2 . . .u1u0 andv = vn−1vn−2 . . . v1v0
be two n-bit binary strings. TheHamming distance
h(u, v) between two verticesu andv is the number
of different bits in the corresponding strings of bo
vertices. Then-dimensional hypercube, denoted by
Qn, consists of alln-bit binary strings as its vertice
and two verticesu andv are adjacent if and only i
h(u, v) = 1. Thus,Qn is a bipartite graph with biparti
tion {u | w(u) is odd} and{u | w(u) is even}. An edge
(u, v) in E(Qn) is of dimension i if u = vi . It is known
thatdQn(u, v) = h(u, v).

Hypercube,Qn, is one of the most popular inte
connection network topologies [9]. In [11], it is prove
thatQn is bipancyclic if and only ifn � 2. In [8], it
is proved thatQn − F is Hamiltonian ifF ⊂ E(Qn)

with |F | � n− 2 andn � 2. In this paper, we improv
these two results by showing thatQn − F is edge-
edge-fault-tolerant edge-bipancyclic ifn � 2. In par-
ticular, letF be any subset ofE(Qn) with |F | � n−2
and e be any edge ofE(Qn) − F . Then,e is in a
Hamiltonian cycle ofQn − F .

Let u be any vertex ofQn andF be {(u,ui) | 1 �
i < n}. Obviously,|F | = n − 1 and degQn−F (u) = 1.
Thus, (u,u0) does not lie on any cycle ofQn − F .
Hence, our result is optimal.

To proveQn is (n − 2)-edge-fault-tolerant edge
bipancyclic if n � 2, we also prove thatQn is bi-
panconnected. The concept of bipanconnectivity
derived from the concept of panconnectivity [1
A graphG is panconnected if there exists a path o
lengthl joining any two different verticesx andy with
d(x, y) � l � |V (G)| − 1. It is easy to see that an
bipartite graph with at least three vertices is not p
connected. For this reason, we say a bipartite grap
bipanconnected if there exists a path of lengthl join-
ing any two different verticesx andy with d(x, y) �
l � |V (G)| − 1 such that 2|(l − d(x, y)).

In the following section, we prove thatQn is
bipanconnected. In the final section, we prove t
Qn is (n − 2)-edge-fault-tolerant edge-bipancyclic
n � 2.

2. Bipanconnectivity

For convenience, we useQ0
n−1 to denote the

subgraph ofQn induced by{x ∈ V (Qn) | x0 = 0}
andQ1

n−1 to denote the subgraph ofQn induced by
{x ∈ V (Qn) | x0 = 1}. Thus,Q0

n−1 andQ1
n−1 are iso-

morphic toQn−1.

Theorem 1. Qn is bipanconnected if n � 2.

Proof. We prove this theorem by induction onn.
Obviously, the theorem holds forn = 2. Assume tha
the theorem is true for every integer 2� k < n. Let
u = un−1un−2 . . .u1u0 andv = vn−1vn−2 . . . v1v0 be
any two vertices inQn.

Case 1: h(u, v) < n. Without loss of generality
we may assume thatu0 = v0 = 0. Then u0, v0 ∈
V (Q0

n−1). By induction hypothesis, there exists a pa
of length l joining u and v for any h(u, v) � l �
2n−1 − 1 such that 2|(l − h(u, v)).
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Suppose that 2n−1 � l � 2n − 1 with 2|(l −
h(u, v)). Let P0 be one of the longest paths ofQ0

a

,

of

hat

B = {〈000→ 010→ 011→ 111→

s,

i-

-

-

e

f

n−1
joining u andv. With the above discussion,l(P0) =
2n−1 − 1 if h(u, v) is odd, or l(P0) = 2n−1 − 2
if h(u, v) is even. Obviously, 2|(l(P0) − h(u, v)).
Let l1 = l − l(P0) − 1. Then l1 is odd and 1�
l1 < 2n−1. Let (x, y) be any edge onP0. We can
write P0 as 〈u,P1, x, y,P2, v〉. By definition, x0

and y0 are vertices inQ1
n−1. Since h(x, y) = 1,

h(x0, y0) = 1. By induction hypothesis, there exists
pathP3 of lengthl1 in Q1

n−1 joining x0 andy0. Thus,
〈u,P1, x, x

0,P3, y
0, y,P2, v〉 is a path of lengthl in

Qn joining u andv.
Case 2: h(u, v) = n. Without loss of generality, we

may assume thatu0 = 0 andv0 = 1, i.e.,u ∈ V (Q0
n−1)

andv ∈ V (Q1
n−1). Let y be a neighbor ofv in Q1

n−1
andx be a neighbor ofy in Q0

n−1, i.e.,x0 = 0, y0 = 1,
andh(x, y)= h(y, v) = 1. Thus,h(x,u) = n − 2.

Suppose thatn � l � 2n−1 + 1 with 2|(l − n). By
induction hypothesis, there exists a pathP of length
l − 2 in Q0

n−1 joining u andx. Then〈u,P,x, y, v〉 is
a path of lengthl in Qn joining u andv.

Suppose that 2n−1 + 2 � l � 2n − 1 with 2|(l − n).
Let P0 be one of the longest paths ofQ0

n−1 joining u

andx, i.e., l(P0) = 2n−1 − 1 or 2n−1 − 2. Obviously,
l(P0) − h(x,u) is even. Letl1 = l − l(P0) − 1. Then
l1 is odd and 1� l1 � 2n−1. By induction hypothesis
there exists a pathP of length l1 in Q1

n−1 joining y

andv. Thus,〈u,P0, x, y,P, v〉 is a path of lengthl in
Qn joining u andv.

The theorem is proved.✷

3. Edge-fault-tolerant bipancyclic

Lemma 1. Q3 is 1-edge-fault-tolerant edge-bipancy-
clic.

Proof. It is known that the possible cycle lengths
Q3 are 4, 6, and 8. Letf be any faulty edge ofQ3.
Since Q3 is edge symmetric, we may assume t
f = (000,001). Let

A = {〈000→ 010→ 110→ 100→ 000〉,
〈001→ 011→ 111→ 101→ 001〉,
〈010→ 110→ 111→ 011→ 010〉,
〈100→ 110→ 111→ 101→ 100〉};
110→ 100→ 000〉,
〈001→ 011→ 010→ 110→

111→ 101→ 001〉,
〈011→ 010→ 110→ 100→

101→ 111→ 011〉};
C = {〈000→ 010→ 011→ 001→ 101→

111→ 110→ 100→ 000〉,
〈000→ 010→ 110→ 111→ 011→

001→ 101→ 100→ 000〉}.
SetsA,B, andC contain a set of 4-cycles, 6-cycle

and 8-cycles, respectively, ofQ3. Note thatf is not in
any cycle inA∪B ∪C. Let e be any edge ofQ3 such
that e = f . We can observe thate lies on one of the
4-cycles, 6-cycles, and 8-cycles in setsA, B, andC,
respectively. Thus, the lemma is proved.✷
Theorem 2. Qn is (n − 2)-edge-fault-tolerant edge-
bipancyclic.

Proof. We prove this theorem by induction. Obv
ously, the theorem is true forn = 2. By Lemma 1,
the theorem is true forn = 3. Assume that the the
orem is true for all 3� k < n. Let F be any sub-
set of E(Qn) with |F | � n − 2. For 0� i < n, let
Fi denote the set ofi-dimensional edges inF . Thus,∑n−1

i=0 |Fi | = |F |. Without loss of generality, we as
sume that|F0| � |F1| � · · · � |Fn−1|. Moreover, we
useF 0 to denote the setE(Q0

n−1) ∩ F andF 1 to de-
note the setE(Q1

n−1) ∩ F . Thus,F = F 0 ∪ F0 ∪ F 1

and|F 0| + |F 1| � n − 3.
Let e be any edge ofE(Qn)−F andl be any even

integer with 4� l � 2n. To prove this theorem, w
need to construct a cycle of lengthl containinge.

Case 1: e is not of dimension 0. Without loss o
generality, we may assume thate ∈ E(Q0

n−1).
Suppose that 4� l � 2n−1. Since|F 0| � n − 3, by

induction hypothesis there exists a cycle of lengthl in
Q0

n−1 − F containinge. In particular, we useC0 to
denote such a cycle of length 2n−1.

Suppose that 2n−1 + 2 � l � 2n. Let l1 = l −
2n−1. Then 2� l1 � 2n−1. Since |E(C0) − {e}| =
2n−1 − 1 > 2(n − 2) = 2|F | for n � 3, there ex-
ists an edge(u, v) on C0 such that(u, v) = e and
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{(u,u0), (v, v0), (u0, v0)} ∩ F = ∅. We may writeC0
as〈u,P0, v, u〉. Obviously,e lies onP0, h(u0, v0) = 1,

s-

of

neighborx of u in Q0
n−1 such that(x, x0) /∈ F . Ob-

viously,h(u, x) = h(u0, v0) = 1. By Theorem 1, there
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and {u0, v0} ⊆ V (Q1
n−1). Suppose thatl1 = 2. Then

〈u,P0, v, v
0, u0, u〉 is a cycle of lengthl in Qn − F .

Suppose thatl1 � 4. Since|F 1| � n − 3, by induc-
tion hypothesis there exists a cycleC1 of lengthl1 in
Q1

n−1 − F containing(u0, v0). We can writeC1 as
〈u0, v0,P1, u

0〉. Then〈u,P0, v, v
0,P1, u

0, u〉 is a cy-
cle of lengthl in Qn − F containinge.

Case 2: e is of dimension 0.
Subcase 2.1: |F0| < n − 2. Let �Q0

n−1 denote the
subgraph ofQn induced by{x ∈ V (Qn) | x1 = 0} and
�Q1
n−1 denote the subgraph ofQn induced by{x ∈

V (Qn) | x1 = 1}. Thus, �Q0
n−1 and �Q1

n−1 are isomor-
phic toQn−1. Without loss of generality, we may a
sume thate ∈ E(�Q0

n−1). We claim that|E(�Q0
n−1)∩F |

+ |E(�Q1
n−1)∩F | � n − 3.

Suppose that|F | � n − 3. Obviously,|E(�Q0
n−1) ∩

F | + |E(�Q1
n−1) ∩ F | � n − 3. Suppose that|F | =

n − 2. Then, |F1| � 1. Again, |E(�Q0
n−1) ∩ F | +

|E(�Q1
n−1)∩F | � n− 3. Accordingly,|E(�Q0

n−1)∩F |
+ |E(�Q1

n−1)∩F | � n − 3.

Suppose that 4� l � 2n−1. Since|E(�Q0
n−1)∩F | �

n − 3, by induction hypothesis there exists a cycle
length l in �Q0

n−1 − F containinge. In particular, we
useC0 to denote such a cycle of length 2n−1.

Suppose that 2n−1 + 2 � l � 2n. Let l1 = l −
2n−1. Then 2� l1 � 2n−1. Since |E(C0) − {e}| =
2n−1 − 1 > 2(n − 2) = 2|F | for n � 3, there ex-
ists an edge(u, v) on C0 such that(u, v) = e and
{(u,u1), (v, v1), (u1, v1)} ∩ F = ∅. We may writeC0
as〈u,P0, v, u〉. Obviously,e is onP0, h(u1, v1) = 1,
and {u1, v1} ⊆ V (�Q1

n−1). Suppose thatl1 = 2. Then
〈u,P0, v, v

1, u1, u〉 is a cycle of lengthl in Qn − F .
Suppose thatl1 � 4. Since|E(�Q1

n−1) ∩ F | � n − 3,
by induction hypothesis there exists a cycleC1 of
length l1 in �Q1

n−1 − F containing(u1, v1). Write C1

as 〈u1, v1,P1, u
1〉. Then 〈u,P0, v, v

1,P1, u
1, u〉 is a

cycle of lengthl in Qn − F containinge.
Subcase 2.2: |F0| = n− 2. ThenE(Q0

n−1)∩F = ∅
andE(Q1

n−1) ∩ F = ∅. Assume thate = (u, v) with

u ∈ V (Q0
n−1) andv ∈ V (Q1

n−1).
Suppose thatl = 4l′ for 1 � l′ � 2n−2. Since there

are (n − 1) neighbors ofu in Q0
n−1, there exists a
exists a pathP0 of length 2l′ −1 inQ0
n−1 joiningu and

x and there exists a pathP1 in Q1
n−1 of length 2l′ − 1

joining x0 andu0. Then 〈u,P0, x, x
0,P1, u

0, u〉 is a
cycle inQn − F containinge of lengthl.

Suppose thatl = 4l′ + 2 for 1� l′ � 2n−2 − 1. Let
A = {w | w ∈ V (Q0

n−1) andh(u,w) = 2}. Obviously,

|A| = C(n−1
2 ) � n − 2. There exists an elementx

in A such that(x, x0) /∈ F . Obviously, h(u, x) =
h(u0, x0) = 2. By Theorem 1, there exists a pathP0
in Q0

n−1 of length 2l′ joining u andx and there exists
a pathP1 in Q1

n−1 of length 2l′ joining x0 and u0.
Then 〈u,P0, x, x

0,P1, u
0, u〉 is a cycle inQn − F

containinge of lengthl.
The theorem is proved.✷
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