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Abstract

A bipartite graph idipancyclic if it contains a cycle of every even length from 4{16(G)| inclusive. It has been shown that
0y, is bipancyclic if and only ifr > 2. In this paper, we improve this result by showing that every edge,of- E’ lies on a
cycle of every even length from 4 t& (G)| inclusive whereE’ is a subset of (Q,,) with |E’| < n — 2. The result is proved to
be optimal. To get this result, we also prove that there exists a path of [ejuiting any two different vertices andy of O,
whenh(x,y) <I<|V(G)|—1andl — h(x, y) is even wheré (x, y) is the Hamming distance betweerandy.
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1. Introduction A number of fault-tolerant considerations for specific
multiprocessor architectures have been discussed.
In this paper, a network is represented as a loopless

Network topology is usually represented by a graph | irected graph. For the graph definition and notation
where vertices represent processors and edges reprege follow [3]. G = (V, E) is a graph ifV is a finite

sent links between processors. There are a lot of mu- set andE is a subset of(a, b) | (a, b) is an unordered
tually conflicting requirements in designing the topol- pair of V}. We say thatV is thevertex set and E is
ogy of computer networks. It is almost impossible to theedge set. A graphG = (Vo U V4, E) is bipartite if
design a network which is optimum from all aspects. V(G) is the union of two disjoint set¥ and V4 such
Fault-tolerance is highly desirable in massive parallel {4t every edge join¥; with V,. Two verticesa and
systems that have a relative high probability of failure. , areadjacent if (4, b) € E. Let E’ be a subset of.
We useG — E’ to denote the graph with vertex sét
- and edge sek — E’. A path is a sequence of adjacent
Y This work was supported in part by the National Science vertices, written asvo, V1, V2, . . ., Up), in which all
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by I(P), is the number of edges iR. Let u andv
be two vertices ofG. Thedistance betweeru andv
denoted by (u, v) is the length of the shortest path
of G joining u andv. A cycleis a path with at least

T.-K. Li et al. / Information Processing Letters 87 (2003) 107-110

bipancyclic where: > 2 andF c E(Q,) with |F| <
n — 2. In other words, we prove thad, is (n — 2)-
edge-fault-tolerant edge-bipancyclicrif> 2. In par-
ticular, let F be any subset af (Q,) with |F| <n—2

three vertices such that the first vertex is the same asand e be any edge ofE(Q,) — F. Then,e is in a

the last one. AHamiltonian cycleis a cycle of length
V(G).

The ring embedding problem, which deals with
all the possible lengths of the cycles in a given
graph, is investigated in a lot of interconnection
networks [4,5,7]. In general, a graph p@ncyclic
if it contains a cycle of every length from 3 to
[V(G)| inclusive [2]. The concept of pancyclicity
has been extended to vertex-pancyclicity [6] and
edge-pancyclicity [1]. Bipancyclicity is essentially a
restriction of the concept of pancyclicity to bipartite

Hamiltonian cycle ofQ,, — F.

Let u be any vertex of0,, and F be {(u,u’) | 1<
i <n}. Obviously,|F|=n —1 and deg, _p(u)=1.
Thus, (1, u®) does not lie on any cycle of, — F.
Hence, our result is optimal.

To prove Q, is (n — 2)-edge-fault-tolerant edge-
bipancyclic if n > 2, we also prove thap, is bi-
panconnected. The concept of bipanconnectivity is
derived from the concept of panconnectivity [12].
A graph G is panconnected if there exists a path of
lengthl joining any two different vertices andy with

graphs whose cycles are necessarily of even length.d(x, y) <1 < |V(G)| — 1. It is easy to see that any

A bipartite graph isvertex-bipancyclic [10] if every
vertex lies on a cycle of every even length from 4 to
|V (G)| inclusive. Similarly, a bipartite graph eige-
bipancyclic if every edge lies on a cycle of every
even length from 4 tqV(G)| inclusive. Obviously,
every edge-bipancyclic graph is vertex-bipancyclic.
A bipartite graphG is k-edge-fault-tolerant edge-
bipancyclicif G — F remains edge-bipancyclic for any
F C E(G) with |F| < k.

Let u = uy—1uy—2...urup be an n-bit binary
strings. For O< k < n, we useu* to denote the bi-
nary stringv,—1v,—2...v1vg such thatvy = 1 — uy
andu; = v; for all i # k. TheHamming weight of u,
denoted byw(u), is the number ofs such that;; = 1.
Letu =u,_1u,_2...u1uo andv = v,_1v,_2...v100
be two n-bit binary strings. TheHamming distance
h(u,v) between two vertices andv is the number
of different bits in the corresponding strings of both
vertices. Then-dimensional hypercube, denoted by
On, consists of alk-bit binary strings as its vertices
and two vertices: and v are adjacent if and only if
h(u,v) = 1. Thus,Q, is a bipartite graph with biparti-
tion {u | w(u) is odd and{u | w(u) is ever}. An edge
(u, v) in E(Q,) is ofdimension; if u = v'. Itis known
thatdg, (u, v) = h(u, v).

Hypercube,Q,, is one of the most popular inter-
connection network topologies [9]. In [11], itis proved
that 9, is bipancyclic if and only ifz > 2. In [8], it
is proved thatQ,, — F is Hamiltonian if F C E(Q,)
with |F| <n — 2 andn > 2. In this paper, we improve
these two results by showing tha&, — F is edge-

bipartite graph with at least three vertices is not pan-
connected. For this reason, we say a bipartite graph is
bipanconnected if there exists a path of lengthjoin-

ing any two different vertices andy with d(x, y) <

[ <|V(G)| —1suchthat @l —d(x, y)).

In the following section, we prove thap, is
bipanconnected. In the final section, we prove that
Q. is (n — 2)-edge-fault-tolerant edge-bipancyclic if
n>=?2.

2. Bipanconnectivity

For convenience, we us@,?_l to denote the
subgraph ofQ,, induced by{x € V(Q,) | xo = 0}
and Q,lz_1 to denote the subgraph @, induced by
{x € V(Qu) | xo=1}. Thus,Q° , andQ? , are iso-
morphictoQ,_1.

Theorem 1. Q,, isbipanconnectedif n > 2.

Proof. We prove this theorem by induction on
Obviously, the theorem holds far= 2. Assume that
the theorem is true for every integer2k < n. Let
U =Uy_1Up_2...u1ug andv = v,_1v,_2...v1v9 be
any two vertices inQ,,.

Case 1: h(u,v) < n. Without loss of generality,
we may assume thatg = vo = 0. Thenug, vp €
V(Qg_l). By induction hypothesis, there exists a path
of length/ joining u and v for any ia(u,v) <[ <
2"=1 _ 1 such that Rl — h(u, v)).
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Suppose that 21 <1 < 2" — 1 with 2/( —
h(u,v)). Let Pp be one of the longest paths Qlff_l
joining u andv. With the above discussiot(Pp) =
21 _ 1 if h(u,v) is odd, ori(Py) =21 -2
if h(u,v) is even. Obviously, RI(Py) — h(u,v)).
Let I1 =1 —I(Py) — 1. Then!; is odd and 1<
I1 <21 Let (x,y) be any edge onPy. We can
write Py as (u, P1, x,y, P>,v). By definition, x°
and y° are vertices inQ! ;. Since h(x,y) = 1,
h(x9, y% = 1. By induction hypothesis, there exists a
path P of lengthly in Q1 , joining x° andy®. Thus,
(u, P1,x,x% P3,y°, y, P>, v) is a path of length in
0y, joining u andv.

Case 2: h(u, v) = n. Without loss of generality, we
may assume thad = 0 andvo = 1, i.e.,u € V(Q° ,)
andv € V(Q! ). Lety be a neighbor of in Q! |
andx be a neighbor of in Q°_,,i.e.,.xo=0,yo=1,
andh(x,y) =h(y,v) =1. Thusji(x,u) =n — 2.

Suppose that < < 2" + 1 with 2|(/ — n). By
induction hypothesis, there exists a pdthof length
1—2in Q% | joining u andx. Then(u, P, x,y,v) is
a path of lengtti in Q, joining u andv.

Suppose that2! +2 <1 < 2" — 1 with 2/(I — n).
Let Pp be one of the longest paths Qlfj_l joining u
andx, i.e.,l(Po) =2"1 —1 or 22=1 — 2. Obviously,
[(Pg) — h(x,u) is even. Letlh =1 —I(Py) — 1. Then
I1 is odd and K /; < 2"~1. By induction hypothesis,
there exists a pati® of length/; in Q1 , joining y
andv. Thus,{u, Pg, x, y, P, v) is a path of lengtfi in
0Oy, joining u andv.

The theorem is proved.O

3. Edge-fault-tolerant bipancyclic

Lemma 1. Q3 is 1-edge-fault-tolerant edge-bipancy-
clic.

Proof. It is known that the possible cycle lengths of
Qs are 4, 6, and 8. Lef be any faulty edge 0Ds.
Since Q3 is edge symmetric, we may assume that
f =(000 00YD. Let

A = {(000— 010— 110— 100— 000,

001— 011— 111— 101— 001,

010— 110— 111— 011— 010,

(
(
(
(100— 110— 111— 101— 100 };
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B = {(000—> 010— 011— 111—
110— 100— 000,
(001— 011— 010— 110—
111— 101— 001,
(011— 010— 110— 100—
101— 111— 011)};

C = {(000— 010— 011— 001— 101—
111— 110— 100— 000),
(000— 010— 110— 111— 011—
001— 101— 100— 000 }.

SetsA, B, andC contain a set of 4-cycles, 6-cycles,
and 8-cycles, respectively, ¢f3. Note thatf is notin
any cycle inAU BUC. Lete be any edge 03 such
thate # f. We can observe thatlies on one of the
4-cycles, 6-cycles, and 8-cycles in setsB, andC,
respectively. Thus, the lemma is proveda

Theorem 2. Q, is (n — 2)-edge-fault-tolerant edge-
bipancyclic.

Proof. We prove this theorem by induction. Obvi-
ously, the theorem is true for = 2. By Lemma 1,
the theorem is true for = 3. Assume that the the-
orem is true for all 3< k < n. Let F be any sub-
set of E(Q,) with |[F| <n — 2. For 0<i < n, let
F; denote the set of-dimensional edges ir. Thus,
Z;:& |F;| = |F|. Without loss of generality, we as-
sume thatl Fp| > |F1| > --- > | F,,—1|. Moreover, we
useFO to denote the sek(Q° ;) N F and F! to de-
note the se€(Q} )N F. Thus,F = FOU FU F!
and|FO| + |FY <n-3.

Lete be any edge o (Q,) — F and/ be any even
integer with 4< [ < 2". To prove this theorem, we
need to construct a cycle of lengtisontaininge.

Case 1: e is not of dimension 0. Without loss of
generality, we may assume that E(Qg_l).

Suppose that & 7 < 2"~1. Since|F°| <n — 3, by
induction hypothesis there exists a cycle of lengi
QS_l — F containinge. In particular, we use&’g to
denote such a cycle of length 2.

Suppose that21 + 2 <1< 2" Letl; =1 —
2'=1 Then 2< 11 < 2"1. Since |E(Co) — {e}| =
21 _ 1> 2(n —2) = 2|F| for n > 3, there ex-
ists an edge&(u, v) on Cp such that(u, v) # ¢ and
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{(u, u®), (v,19), @°, %)} N F = @. We may writeCo
as(u, Po, v, u). Obviously. lies onPy, h (1, v%) =1,
and {u°, 1%} € V(Q! )). Suppose thal = 2. Then
(u, Po,v,v%,u® u) is a cycle of length in Q,, — F.
Suppose that; > 4. Since|F1| < n — 3, by induc-
tion hypothesis there exists a cyalg of length/; in
0! | — F containing(u® v%). We can writeC; as
w9, 1°, P1,u®. Then(u, Py, v,0°, P1,u® u) is a cy-
cle of lengthl in Q,, — F containinge.

Case 2: ¢ is of dimension 0.

Subcase 2.1: |Fo| < n — 2. Let 00 ; denote the
subgraph oD, induced by{x € V(Q,) | x1 =0} and
in_l denote the subgraph ad, induced by{x e
V(Qn) | x1=1}. Thus,0° ; andQ? , are isomor-
phic to Q,,—1. Without loss of generality, we may as-
sume that € E(Q° ). We claim thal E(Q° )N F|
+|E(QL DNF|<n—3.

Suppose thaltF| < n — 3. Obviously,|E(Q° ;) N
F|+ |E(Qn 1) N F| < n— 3. Suppose thalF|
n — 2. Then, |Fi| > 1. Again, |[E(Q° ) n F| +
|E(QL )N F|<n—3.Accordingly|E(Q° )N F|
+|E(Qr DNF|<n-3.

Suppose that & I < 2", Sincel E(Q° )N F| <
n — 3, by induction hypothesis there exists a cycle of
length! in Q?_l — F containinge. In particular, we
useCo to denote such a cycle of length 2.

Suppose that 2! + 2 <1< 2" Letly =1 —
2"~ Then 2< 11 < 2"~1. Since |E(Co) — {e}| =
21 _ 1> 2(n — 2) = 2|F| for n > 3, there ex-
ists an edggu, v) on Cp such that(u, v) # ¢ and
{(u, ub), (v, oY), @, vH} N F =@. We may writeCo
as(u, Po, v, u). Obviously,e is on Py, h(ul,vl) =1,
and {u?, 1} c V(Qn 1)- Suppose thaly = 2. Then
(u, Po,v, v, ut, u) is a cycle of length in 0, — F.
Suppose that, > 4. Since|E(QL )N F|<n -3,
by induction hypothe3|s there eX|sts a cyde of
Iengthll in Q - F contamlng(u v1). Write C1
as (ul,vl, Pr,u ).Then(u,Po,v,v ,Prut u) is a
cycle of length in Q,, — F containinge.

Subcase2.2:|Fo| =n —2.ThenE(Q° HNF =0
and E(Q} ) N F =¢. Assume that = (u, v) with
ueV(Q® )andveV(Ql ).

Suppose that= 4!’ for 1 <1’ < 2"~2. Since there
are (n — 1) neighbors ofu in Q°_,, there exists a
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neighborx of u in Q% , such that(x, x%) ¢ F. Ob-
viously, i (u, x) = h(u®, v%) = 1. By Theorem 1, there
exists a pattPo of length 2’ —1in Q°_, joining u and
x and there exists a path in Qi_l of length 2’ —
joining x° and u®. Then (u, Po, x,x%, Py, u% u) is a
cycle in Q, — F containinge of length!.

Suppose that=4l'+2for 1</’ <22 —1. Let

={w|weV(Q° ;) andh(u, w) = 2}. Obviously,
|A| =C("; ) n — 2. There exists an element
in A such that(x, x% ¢ F. Obviously, h(u, x) =
h@®, x% = 2. By Theorem 1, there exists a palp
in Q% _, of length 2’ joining u andx and there exists
a path Py in Q1 | of length 2’ joining x° and u°.
Then (u, Po, x,x°, P1,u® u) is a cycle inQ, — F
containinge of length!.

The theorem is proved.O
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