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Abstract
The connection between the wavefunctions and the classical periodic orbits in a
2D harmonic oscillator is analytically constructed by using the representation of
SU(2) coherent states. It is found that the constructed wavefunction generally
corresponds to an ensemble of classical trajectories and its localization is
extremely efficient. With the constructed wavefunction, we also analyse the
property of the probability current density associated with the classical periodic
orbit. The appearance of vortex structure in the quantum flow is clearly found
to arise from the wave interference.

PACS numbers: 03.65.Vf, 03.65.Ge, 03.65.Fd

1. Introduction

The classical–quantum interface has been a central issue in quantum theory and has remained
an intriguing subject for nearly a century [1–5]. Although the elliptical stationary states in the
Kepler problem have been developed [6, 7], it is a usually elusive question to build high-order
wavefunctions that mimic the familiar classical periodic orbits for two-dimensional (2D) and
three-dimensional (3D) quantum systems. Recently, the progress in modern semiconductor
technology has made it possible to design nanostructure devices with quantum ballistic
properties [8, 9]. One of the foremost results is that there are some striking phenomena
in open quantum ballistic cavities associated with the wavefunctions in terms of classical
periodic orbits [10–12]. Therefore, to construct the connection between the wavefunctions
and classical periodic trajectories is of great importance for understanding quantum–classical
correspondence as well as quantum transport in mesoscopic systems.

The quantum wavefunction intrinsically contains more information than mere
probabilities. For example, the quantum probability flow in the hydrodynamic interpretation
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[13] can be easily connected with some relevant macroscopic quantum phenomena, such as
superconductivity [14] and Bose–Einstein condensation [15], through the presence of vortices.
The theory of quantum vortices, first pointed out by Dirac [16], has been shown to play an
important role in quantum mechanics. In recent years, there has been growing attention to
the occurrence of quantum vortices in the current flow of mesoscopic structures especially
in semiconductor open quantum dots [17–19]. However, the physical relevance of quantum
vortices is not completely clear so far.

In this paper, we use the representation of the SU(2) coherent state to analytically make a
connection between the wavefunctions and the classical trajectories in a 2D harmonic oscillator
with commensurate frequencies. The prominent feature of the wavefunction corresponding
to classical periodic orbits is the appearance of vortex structures in the flow of probability
current density. The formation of vortex structures is clearly demonstrated to be the result of
quantum interference effects. Moreover, we modify the analytical wavefunction to obtain a
partially coherent state. With the partially coherent state, we find that the localization of the
wave pattern is very efficient; only a few degenerate eigenfunctions are already sufficient to
localize wave patterns on high-order periodic orbits.

2. Wavefunctions associated with Lissajous orbits

The Hamiltonian for a 2D quantum harmonic oscillator is generally given by

H = p2
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The eigenfunctions of equation (1) can be expressed as
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where X = √
2h̄/(mxωx) and Y = √

2h̄/(myωy). The eigenvalues associated with the
eigenfunctions �m,n(x, y;X, Y ) are given by

Em,n = (
m + 1

2

)
h̄ωx +

(
n + 1

2

)
h̄ωy. (3)

As is well known, the classical trajectories for the 2D harmonic oscillators with
commensurate frequencies are periodic orbits, called Lissajous figures [20]. According
to Bohr’s correspondence principle, the classical limit of a quantum system should be
achieved when the quantum numbers go to infinity. However, the conventional eigenstates
�m,n(x, y;X, Y ) do not manifest the characteristics of classical periodic orbits even in the
correspondence limit of large quantum numbers. Recently, the wavefunctions associated with
the classical elliptical trajectories in a 2D isotropic harmonic oscillator have been analytically
constructed by using the representation of SU(2) coherent states [21, 22]. Mathematically, the
SU(2) coherent states are a superposition of degenerate eigenstates. Here we derive the SU(2)
coherent states for the 2D harmonic oscillators with commensurate frequencies to construct
the wavefunctions associated with the Lissajous figures.

Consider a 2D harmonic oscillator with frequencies in the ratio ωx : ωy = q : p, where p
and q are integers, the eigenvalues can be rewritten in the form

Em,n = [(
m + 1

2

)
q +

(
n + 1

2

)
p
]
h̄ω (4)
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where ω is the common factor of the frequencies ωx and ωy . For q : p quantum
harmonic oscillators, it is explicit that a family of the eigenstates �pK,q(N−K)(x, y;X, Y )

with K = 0, 1, 2, . . . , N are degenerate for a positive integer N and the eigenvalue of these
eigenstates is given by EN = [pqN + (p + q)/2]h̄ω. As in the Schwinger representation
of the SU(2) algebra, the coherent state for q : p quantum harmonic oscillators is
given by

�
p,q

N (x, y;X, Y, τ ) = 1

(1 + |τ |2)N/2

N∑
K=0

(
N

K

)1/2

τK �pK,q(N−k)(x, y;X, Y ) (5)

where the parameter τ is, in general, complex and |τ |2 is approximately the ratio of the mean
energies in the x- and y-axes. With the SU(2) coherent state in equation (5), the mean energies
in the x- and y-axes are derived to be
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It can be found that EN = EN,x + EN,y and the ratio EN,x/EN,y approaches |τ |2 for N � 1.
For making a connection with the classical periodic orbits, it is convenient to express

the parameter τ as the polar representation, i.e. τ = A exp(iφ). Provided that p and q are
relatively prime, the wave patterns of

∣∣�p,q

N (x, y;X, Y,A eiφ)
∣∣2

are found to be localized on a
single, nonrepeated orbit that is related to the Lissajous figure by
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Note that 〈x2〉 and 〈y2〉 are, respectively, the expectation values of x2 and y2 for the coherent
state �

p,q

N (x, y;X, Y,A eiφ). Figure 1 shows the calculated results of the SU(2) coherent
states for the frequency ratios of 1:1, 2:1, 3:2 and 4:3 with A = 1, φ = π/2, X = Y and
N = 20. For comparison, the corresponding Lissajous figures are shown in figure 2. It
can be seen that the distributions of

∣∣�p,q

N (x, y;X, Y,A eiφ)
∣∣2

are in good agreement with

the classical periodic orbits. Moreover, the behaviour of
∣∣�p,q

N (x, y;X, Y,A eiφ)
∣∣2

illustrates
geometrically Bohr’s correspondence principle: the velocity of the classical particle is at a
minimum at the apogees of the motion, and therefore the probability density has a peak at
these points. Although classical and quantal probability densities become indistinguishable
in the large quantum number limit, interference effects, which are characteristic of quantum
mechanics, do not have any analogy in classical mechanics.

On the other hand, if p and q have a common factor M, the wave patterns of∣∣�p,q

N (x, y;X, Y,A eiφ)
∣∣2

are found to correspond to an ensemble of classical periodic orbits.
The total number of the corresponding periodic orbits is M and their trajectories are given by

xk(t) =
√

2〈x2〉 cos

(
qωt − φk

p

)
y(t) =

√
2〈y2〉 cos(pωt) (9)

where φk = φ + 2πk and k = 0, 1, 2, . . . ,M − 1. For demonstration, figure 3 shows the
wave pattern of the SU(2) coherent state for q : p = 3 : 3 with A = 1, φ = π/2, X = Y

and N = 40. It can be seen that the SU(2) coherent state for q : p = 3 : 3 is associated with
three classical periodic orbits (two elliptical orbits and one circular orbit). In other words,
the SU(2) coherent state generally corresponds to an ensemble of classical trajectories, not
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p:q=1:1 p:q=2:1

p:q=3:2 p:q=4:3

Figure 1. The calculated results of the SU(2) coherent states |�p,q

N (x, y;X, Y,A eiφ)|2 for the
frequency ratios of 1:1, 2:1, 3:2 and 4:3 with A = 1, φ = π/2, X = Y and N = 20.

a single classical trajectory except that p and q are relatively prime. Even so, it must be
emphasized that the corresponding classical orbits are not mutually independent but constitute
an indivisible pattern through quantum interference effects. As described in the following
section, quantum interference effects lead to the formation of vortex structures in the quantum
flow.

Although the coherent state �
p,q

N (x, y;X, Y,A eiφ) comprises N + 1 degenerate
eigenstates, the number of dominant eigenstates for wave localization is rather small for
high-order states. To manifest the efficiency of wave localization, a partially coherent state is
defined as

�
p,q

N,M(x, y;X, Y,A eiφ) =
[

N−J∑
K=J

(
N

K

)
A2

]−1/2 N−J∑
K=J

(
N

K

)1/2

(A eiφ)K�pK,q(N−k)(x, y;X, Y )

(10)

where the index M = N − 2J + 1 represents the number of eigenstates used in the state
�

p,q

N,M(x, y;X, Y,A eiφ). Figure 4 displays the wave patterns of
∣∣�p,q

N,M(x, y;X, Y,A eiφ)
∣∣2

with M = 5 and N = 20 corresponding to the classical periodic orbits shown in figure 2.
It is clear that only five eigenstates are already sufficient to localize the wave patterns on
the classical trajectories. This property is in good agreement with the recent finding that the
wavefunctions seen in open quantum dots may be interpreted as arising from single eigenstates
of closed billiards [23].
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p:q=1:1 p:q=2:1

p:q=3:2 p:q=4:3

Figure 2. The classical Lissajous figures for the frequency ratios of 1:1, 2:1, 3:2 and 4:3
corresponding to the wave patterns displayed in figure 1.

p:q=3:3

Figure 3. The calculated wave pattern for the SU(2) coherent state |�p,q

N (x, y; X, Y, A eiφ)|2 for
q : p = 3 : 3 with A = 1, φ = π/2, X = Y and N = 40. For correspondence, the classical
periodic orbits are shown below the wave pattern.
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p:q=1:1 p:q=2:1

p:q=3:2 p:q=4:3

Figure 4. The wave patterns of |�p,q

N,M(x, y;X, Y,A eiφ)|2 with M = 5 and N = 20 corresponding
to the classical periodic orbits displayed in figure 2 for showing the efficiency of wave localization.

3. Quantum vortices

Vortices are responsible for many observable phenomena known mainly to occur in
macroscopic quantum systems, for example, superconductors or superfluids [24–26]. The
order parameter equation in the study of these phenomena is the Ginzburg–Landau or Gross–
Pitaevskii equation. However, the analysis of the wavefunction is greatly complicated because
of the nonlinear character of the modelling equation. As pointed out already by Dirac [16],
the vortices arising from the singular points of the quantum phase can manifest themselves
in the linear Schrödinger equation. Recent works also show that the vortex problems play an
important role in quantum mechanics [27–30]. Therefore, it is of great interest to analyse the
vortex behaviour for the present wavefunction.

For analysing the property of phase singularities associated with the classical periodic
orbits, it will be convenient to write �

p,q

N (x, y;X, Y,A eiφ) in polar form:

�
p,q

N (x, y;X, Y,A eiφ) =
√

ρ(x, y) exp[iχ(x, y)] (11)

where

ρ(x, y) = ∣∣�p,q

N (x, y;X, Y,A eiφ)
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and

χ(x, y) = tan−1
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Re
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p:q=1:1 p:q=2:1

p:q=3:2 p:q=4:3

Figure 5. The calculated results for the probability current density corresponding to the wave
patterns shown in figure 1.

In terms of the probability density ρ(x, y) and the phase distribution χ(x, y), the probability
current density is analytically given by [31]

�J (x, y) = h̄

m
ρ(x, y)∇χ(x, y). (14)

Note that when φ = ±nπ and n is an integer, the coherent state �
p,q

N (x, y;X, Y,A eiφ) is
a standing wave and has no vortices. In other words, the vortices regularly appear in the
coherent state �

p,q

N (x, y;X, Y,A eiφ) with the exception of φ = ±nπ . Hereafter we focus on
the case of φ �= ±nπ , unless otherwise specified.

Using equations (11)–(14), the probability current densities have been calculated. Figure 5
shows the calculated results for the wavefunctions displayed in figure 1. It can be seen that
quantum interference effects lead to the vortex structure in the quantum probability flow.
Such vortices are topological singularities in the sense that on these points the phase of
the wavefunction is not defined. In the case of p = q = 1 the quantum flow forms a
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p:q=1:1 p:q=2:1

p:q=3:2 p:q=4:3

Figure 6. The standing wave patterns corresponding to the coherent states shown in figure 1.

single vortex, whereas increasing the indices of p and q can result in a complex structure
with multiple vortices. Among the multiple vortices the tunnelling process is expected
to exist in the quantum probability flow for establishing a complete periodic orbit. Note
that the present vortices are similar in mathematical nature to those earlier discovered
by Onsager and Feynman in superfluid helium [32, 33] and later found in many other
quantum systems such as superconductors, plasma and chemical reactions [34–36]. Even
so, an intriguing point is that the present vortices are not only related to classical periodic
orbits but also entirely due to quantum interference. It is worthwhile mentioning that
the standing wave pattern can be described by the superposition of two travelling waves
with counterclockwise directions, i.e. �

p,q

N (x, y;X, Y,A eiφ) ± �
p,q

N (x, y;X, Y,A e−iφ).
Figure 6 displays the standing wave patterns corresponding to the coherent states shown in
figure 1.

Finally, it should be remarked that the parameters in equation (7), which gives a connection
between the wave pattern of a coherent state and classical Lissajous figures, are deduced from
numerical calculations. It is difficult for us to give an analytical derivation for the expression
of equation (7) at present. We have analysed a different physical system [37], namely a square
billiard, and some of the results are quite similar to the present system. The relationship
between the wavefunctions and the classical trajectories can be developed more manifestly in
a square billiard. An understanding of [37] should be helpful in gaining some appreciation for
the content of equation (7).
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4. Conclusions

We have used the representation of the SU(2) coherent state to make a connection between the
wavefunctions and the classical trajectories in a 2D harmonic oscillator with commensurate
frequencies. We modify the constructed coherent state to investigate the efficiency of
wave localization. It is found that only a few degenerate eigenstates are already sufficient to
localize wave patterns on classical periodic orbits. Also, the property of phase singularities
in the quantum probability current has been analysed. The formation of vortex structures in
the probability current density is clearly demonstrated to be the result of quantum interference
effects.
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