
OS Portal: an economic approach for making
an embedded kernel extensible

Da-Wei Chang, Ruei-Chuan Chang *

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road, 30050 Hsinchu, Taiwan, ROC

Received 28 April 2001; received in revised form 6 August 2001; accepted 22 January 2002

Abstract

With the rapid development of embedded system techniques and Internet technologies, network-enabled embedded devices have

grown in their popularity. One critical design trend of such devices is that they are shifting from static and fixed-function systems to

more dynamic and extensible ones, which are capable of running various kinds of applications. To support the diversity of the

applications, kernels on these devices must be extensible. However, making embedded kernels extensible is challenging due to the

shortage of resources on these devices.

In this paper, we propose the operating system portal framework, which makes embedded kernels become extensible while

keeping the added overheads minimal. By storing kernel modules on a resource-rich server and loading them on demand, the need

for equipping a local storage on the device is eliminated. In addition, we propose mechanisms for reducing the memory requirements

and performing on-line module replacement on the embedded devices.

According to the performance evaluation, our approach requires only 1% of the resource requirements, compared to the tra-

ditional approaches. This allows our framework to be applied on a wide range of embedded devices.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Extensible kernels; Embedded kernels; Network-enabled embedded devices

1. Introduction

In recent years, Internet technologies together with
the rapid development of embedded system techniques

have made many network-enabled embedded devices

prominent. One critical design trend of these devices is

that consumers are driving the shift of embedded devices

from static and fixed-function systems to more dynamic

and extensible ones (Sun, 2001). At the hardware level,

extensible devices such as Visor handhelds (Handspring,

2002) contain expansion slots so that they can become
wireless Internet devices, mobile phones, MP3 players,

and etc. However, many kinds of functionality require

not only hardware components but also software system

modules. For example, a Bluetooth-enabled device re-

quires a hardware Bluetooth module as well as the

Bluetooth protocol stack. For another example, to ac-

cess data on a disk, not only the disk drive is required

but also the driver and the file system are needed. At the

software level, users may wish to download various

kinds of applications from remote sites and execute
them on their devices. Many of the downloaded appli-

cations require extra support from the operating system.

For instance, a multimedia application may specify a

different scheduling policy to satisfy its own need. For

another instance, a high priority network application

may ask the system to use a priority based packet

scheduling policy instead of the default one (e.g., FCFS)

to increase its throughput. Therefore, the kernels of
these devices must be extensible so as to support the

diversity of these runtime-added functionality and

downloaded applications. However, supporting exten-

sible kernels requires more resources and therefore is not

affordable for many resource-constrained embedded

devices. Owing to the low cost requirement, these de-

vices are usually equipped with only small-sized ROMs

or RAMs, and they often have no local disks.
Due to the reason mentioned above, many embed-

ded kernels are still not dynamically extensible. For

*Corresponding author.

E-mail address: rc@cc.nctu.edu.tw (R.-C. Chang).

0164-1212/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00084-5

The Journal of Systems and Software 67 (2003) 19–30

www.elsevier.com/locate/jss

mail to: rc@cc.nctu.edu.tw

example, the VRTX (Mentor, 2000) kernel is not ex-

tensible; the Nucleus (Accelerated, 2001) and eCOS

(Red, 2001) kernels are only statically extensible, which

means that they are allowed to be configured at compile

time only. Such extensibility is not enough. Imagine that

a user plugs a disk to his embedded device via a USB
link and downloads a Java applet to read information

from the disk. To allow the applet to access the disk, a

file system should be presented in the embedded kernel.

If the kernel is not configured to have a file system, the

user will have to stop all the applications, re-configure

the kernel, install and reboot the kernel again. For an-

other example, an application may have several threads

and desire to specify a different scheduling policy to
satisfy its own need. If the kernel is not configured to

provide the policy, the above re-configuration process

should be performed again. Obviously, these situations

do result in inconvenience to the users. Therefore, em-

bedded kernels should be extensible (i.e., dynamically

extensible) even though the devices are resource-limited.

Many desktop operating systems such as Linux are

already extensible. By using the technique of loadable
kernel modules (LKMs) (Pomerantz, 1999), these ker-

nels can be extended at run time. In addition to the

LKM, many research efforts such as micro-kernels, ex-

tensible kernels, and Java operating systems also focus

on the extensibility of kernels. However, none of them

address the resource-limited problem of embedded de-

vices. Therefore, our goal is to make an embedded

kernel extensible while keeping the added overheads
minimal.

We propose a framework, named operating system

portal (OSP) framework, to achieve this goal. In this

framework, we assume that embedded devices are con-

tinuously connected to a resource-rich server (i.e., the

OS Portal). The OS Portal, as the name indicates, acts as

a portal site of kernel modules. It provides all the pos-

sible kernel modules that an embedded device may need.
An embedded kernel is just equipped with a base set of

modules on its initialization. During the execution of the

applications, the embedded kernel may download other

modules and perform module replacement on demand

(e.g., replacing the current thread-scheduling module,

say first-in-first-out (FIFO), with a new one, say Round-

Robin (RR)).

Our work is unique in that we move the job of
module linking, which is traditionally performed on the

embedded kernel, to the OS Portal. This makes an em-

bedded kernel extensible while keeping the increase on

the memory footprint minimal. According to the per-

formance measurement, the overhead of our technique

is only about 1%, compared to those of the traditional

approaches. As a consequence, our technique can be

applied to a much wider range of embedded systems. In
addition, we use a mechanism named cooperation based

module replacement to perform on-line replacement of

kernel modules. On-line module replacement is neces-

sary since it is not feasible to exit all the running

programs before replacing kernel modules. However,

on-line replacement is more complex than the off-line

one. This is because kernel modules always encapsulate

some run-time information, and replacing a kernel
module with a new one usually involves the transfer

of this information. In this mechanism, such an infor-

mation-transfer is accomplished through the coopera-

tion between the involved modules. The benefit of this

mechanism is that it hides the details of the module re-

placement from the irrelevant part of the kernel, making

the kernel easier to maintain and upgrade.

The rest of the paper is organized as follows. Section
2 presents the alternative approaches that can be used to

make embedded kernels extensible. We describe the

design and implementation of the OSP framework in

Section 3. The performance results are given in Section

4. Section 5 shows the research efforts that are related to

ours. We describe the limitations of the OSP framework

in Section 6. Finally, conclusions and future works are

given in Section 7.

2. Alternative approaches

In this section we describe two alternative approaches

that can be used to make an embedded kernel extensible:

network file system (NFS) based approach and socket

based approach. Both are based on the LKM model.

2.1. Network file system based approach

Many desktop operating systems (e.g., Linux) are

already extensible since they provide a mechanism to

load kernel modules at run time. In these systems,

modules are usually accessed via the local file systems.

To address the problem that embedded devices usually
have no local storages, we may adapt the system by

performing the following tasks. First, we place the ker-

nel modules on a remote site to save the storage need of

the embedded devices. Second, we replace the local file

system with a network one so that the embedded kernel

can load modules from the remote site. Fig. 1 shows the

architecture of the NFS based approach. From the fig-

ure we can see that, a kernel-level dynamic loader is
responsible for loading modules via the NFS. Note that

the module loaded to the client host (i.e., embedded

device) is still left un-linked. The dynamic linker has to

link it with the client-side kernel via the kernel symbol

table.

The advantage of this approach is that it does not

require any kernel modifications, and hence is easy to

implement. However, the resource consumption of this
approach might prevent it from being applied to re-

source-limited embedded devices. To make an embed-

20 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

ded kernel extensible by using this approach, the fol-

lowing overheads are indispensable. First, the kernel

must be equipped with a dynamic linker/loader. Second,

the code and data of the VFS and NFS client should be
included. Third, a kernel symbol table is necessary for

the dynamic linking of modules. And finally, to support

multiple object file formats, an object file reader has to

be included in the client for each object file format.

According to our experiments, the total size of these

overheads is about hundreds of Kbytes, which is unaf-

fordable for resource-constrained embedded devices.

2.2. Socket based approach

From Fig. 1 we can see that, the VFS layer and the

NFS client are not a must for dynamic loading of

modules. They only provide a file system interface for

the dynamic loader. Therefore, they can be excluded

from the client kernel by replacing the interface with a

socket-like one. Fig. 2 shows the architecture of this
socket based approach. A client-side dynamic loader

issues requests to the server host. On the server side, a

user-level server process is responsible for processing

these requests and sending the requested modules to the

client. Similar to the NFS based approach, the modules

sent to the client are left un-linked. They are linked to-

gether with the client kernel by the client-side dynamic

linker.

This approach differs from the NFS based one in the

following two aspects. First, it requires some kernel

modifications. A traditional dynamic loader loads
modules via a file system interface. Instead, this ap-

proach requires the dynamic loader to use a socket in-

terface. Second, this approach eliminates the overheads

of the VFS and the NFS client, making itself more

feasible for resource-limited devices. However, the other

overheads (i.e., the dynamic loader/linker, the symbol

table, and the possible object file readers) are still a

heavy pressure for such devices.

3. Design and implementation

In this section, we shall describe the design and im-

plementation of the OSP framework. Section 3.1 gives

an overview of the OSP architecture. We describe two

main techniques used in the OSP: server-side module
linking and cooperation based module replacement in

Sections 3.2 and 3.3, respectively. Finally, the overall

control flow of extending an embedded kernel is pre-

sented in Section 3.4.

3.1. Architecture overview

Fig. 3 shows the architecture of the OSP framework.
It follows the client-server model. All the dynamically

loadable modules are located on the server host. A user-

level process (i.e., the OS Portal process) is responsible

for loading, linking and transmitting these modules to

the clients. A kernel-level module manager is installed

on the client to make the client kernel extensible. During

the client startup, the module manager registers the

client to the OS Portal. After the registration, the module
manager is allowed sending requests to load modules

from the OS Portal. Generally speaking, generation of

Fig. 2. The socket based architecture. Fig. 3. The OS Portal architecture.

Fig. 1. The NFS based architecture.

D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30 21

requests is related to the execution of client-side appli-

cations. For example, if a client application wants to use

another CPU scheduling policy which is not supported

by the current kernel, the module manager will send a

request to the OS Portal, download that scheduling

policy, and replace the current policy with the new one.

3.2. Server-side module linking

The goal of the server-side module linking is to make

a resource-limited embedded kernel extensible, while

keeping the imposed overheads minimal. As mentioned

above, the OS Portal process on the server machine re-

ceives requests from client kernels and performs tasks
according to those requests. There are two types of re-

quests: REGISTRATION and LOAD_MODULE. The

former is used for a client to register itself to the OS

Portal, while the latter is used to load a specific module

from the OS Portal.

The OS Portal performs the following tasks when it

receives a REGISTRATION request. First, it authen-

ticates the client (for security or billing purpose). In our
current implementation, the authentication is performed

by using the user name and password provided by the

client. After the client is authenticated, the OS Portal

creates an in-memory symbol table for the client. The

symbol table is created based on the symbol file, which is

uploaded to the OS Portal prior to the execution of the

client. The symbol file is obtained by nm, a GNU binary

utility (Free, 1998) that prints the symbols and addresses
of an object file, while building the client kernel. Note

that, although clients can be dynamically extended, they

share a common base kernel configuration. Therefore,

they can use the same copy of the symbol file. After the

symbol table is created, it will be updated as modules are

dynamically loaded to the client.

When the OS Portal receives a LOAD_MODULE

request, it locates the requested module first. If the
module is not found, it returns back a ‘‘module not

found’’ error and let the client kernel process that error.

The client kernel can simply discard this error message

or request another module. If the module is found, the

OS Portal will try to load and link it according to

the symbol table of the client. In order to perform the

module linking, the OS Portal has to know where

the module will reside in the client-side memory (i.e., the
starting address of the module). This address is client-

specific and therefore should be provided by the client. It

seems straightforward that a LOAD_MODULE request

can carry a module_address parameter to specify the

starting address of the module. However, sometimes it is

impossible for a kernel to determine the module address

without knowing the information (e.g., size) of the

module. This is because that the kernel memory allo-
cator may choose different memory allocation mecha-

nisms for different size requirements. For example, in

LyraOS (Cheng et al., 2000; Yang et al., 1999), the

embedded kernel that is used in our work, memory

blocks that are smaller than half of a page size are al-

located via the power-of-two allocator. Other memory
blocks are allocated via the multiple-of-page allocator.

Therefore, if the size is unknown, the client kernel will

not be able to determine which memory allocator to

invoke. As a consequence, it cannot determine the

starting address of the module.

We solve this problem by allowing the OS Portal to

send the module size to the client when the client re-

quests the module. After the client determines the
starting address, it sends this address back to the OS

Portal for module linking. Obviously, this requires an-

other round trip of messages and therefore may degrade

the performance of module loading. However, since

module loading does not happen frequently, the extra

round trip of messages will not have large impacts on

the overall performance. In addition, client kernels can

cache the sizes of frequently used modules and hence
avoid the extra round trip of messages.

After the module address is determined, the OS

Portal is able to link the module with the client kernel.

This is achieved by resolving symbols in the module via

the symbol table of the client kernel. We modify the

code of the Linux kernel module utilities 2.2.2 (Ekwall,

2001) to perform the symbol resolution. 1

After the module is linked, the OS Portal marshals
the image and other information to a message buffer,

and then sends the buffer to the client. Fig. 4 shows the

format of the message buffer. Note that each module has

two pre-defined management routines. The init() routine

is used to initialize the module, and replace the current

module with this one. The cleanup() routine is invoked

when the module is to be replaced. The addresses of

these two routines are contained in the message buffer to
allow the client kernel to setup the module information

quickly.

When the client kernel receives the message buffer, it

can simply setup the module information according to

its need, and then invoke the init() routine to replace the

current running module with the new one (i.e., this

module).

1 In the OSP framework, the OS Portal is able to support clients

running on different processors. The client processor information can

be sent during client registration and the requested module for the

target processor can be linked and sent to the client. In current

implementation stage, we only support x86 clients. Clients running on

other processors will be supported in the future.

Fig. 4. The message buffer.

22 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

At the end of this section, we describe the space

overheads that are eliminated by the server-side module

linking. First, the dynamic linker can be removed from

the client kernel. This includes not only the code and

data segments of the dynamic linker but also the dy-

namic memory that it allocates. Second, the embedded
kernel does not have to keep the symbol table in the

memory. This can save large memory space if there are

lots of symbols in the table. And third, it is not necessary

to provide an object file reader for each object file for-

mat. It is the responsibility of the OS Portal to support

multiple object file formats. All module images trans-

mitted to the client are already linked (i.e., resolved).

Therefore, the client has no idea about the format of the
linked images. This enables us to add new object file

readers without modifying the client kernels, making the

whole system easier to upgrade.

3.3. Cooperation based module replacement

In this section, we show how modules are replaced at

run time. One important requirement of the module
replacement is that the details of the replacement should

be hidden from the rest of the kernel. Only the modules

involved have the idea of how the replacement performs.

This makes the separation between the client kernel and

the modules more clear, and therefore allows the de-

velopment and management of the kernel easier. To

achieve this, we use a technique, namely cooperation

based module replacement, to replace modules at run

time. Fig. 5(a) shows the module replacement interface

(MRI). This interface contains only one routine: init(),

which is used to trigger the module replacement. Fig.

5(b) and (c) show two example module interfaces based
on the MRI, one is a scheduler interface and the other is

a memory allocator interface. Both the module inter-

faces contain a mri field for module replacement. In

addition, each interface contains a cleanup() routine,

which is used for the handoff of run-time module in-

formation. For example, the scheduler.cleanup() routine

returns a list of runnable threads that are managed by

the scheduler module, and the memory_allocator.clean-
up() routine returns a list of memory blocks managed by

the memory allocator module. Note that the cleanup()

routine of the old module should be invoked in the init()

routine (specifically, the mri.init() routine) of the new

one during the module replacement. In other words,

when the client kernel downloads a new module from

the OS Portal, it triggers the module replacement by

invoking the init() routine of the new module. The init()
routine will in turn invoke the cleanup() routine of the

old (i.e., current) module. As a result, the run-time

module information is handed over to the new module.

In addition to these routines, each module inter-

face contains a set of module-specific routines. For ex-

ample, the scheduler module interface shown in Fig. 5(b)

Fig. 5. (a) Module replacement interface, (b) an example scheduler interface, and (c) an example memory allocator interface.

D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30 23

contains the checkin() and checkout() routines that are

used to add/remove a thread to/from the run queue of

the scheduler. Similarly, the memory allocator interface

in Fig. 5(c) contains the malloc() and free() routines to

allocate/free memory blocks.

In the following, we shall describe how cooperation
based module replacement works by presenting the de-

sign of a CPU scheduling system that supports on-line

replacement of scheduling policies. Other kernel systems

can also be designed in the same way.

We take the interface shown in Fig. 5(b) as the

scheduler interface. The scheduling policy is encapsu-

lated in the checkin() and checkout() routines. Other

part of the kernel does not have to know the imple-
mentation details of the policy. To replace the cur-

rent scheduler S1 with a new one S2, the client kernel

performs the following tasks. First, it contacts the

OS Portal and downloads S2. Second, it invokes the

init() routine of S2. In this routine, S2 in turn calls

the cleanup() routine of S1 so as to make S1 check out

all its runnable threads, and inserts these threads into a

thread list, which is returned to S2. And then, S2 checks
in all the threads in the list according to its policy.

Finally, it frees the memory used by S1 and sets the

pointer to the current scheduler (i.e., cur_scheduler) to

itself.

3.4. Overall control flow

The control flow of the client registration and module
loading is shown in Fig. 6. The steps are as follows.

1. After initialization, the client kernel sends a REGIS-

TRATION message (together with its user name and

password) to the OS Portal.

2. The OS Portal authenticates the client, and then con-

structs the symbol table for the client.

3. The OS Portal sends a message back to the client to

tell whether the client is authenticated.

4. If a client needs a module, it sends a LOAD_MOD-

ULE message to the OS Portal. The parameters in-

clude the module name, the starting address of the

module, and a v bit that indicates whether the start-
ing address is valid. If the starting address is not va-

lid, messages 6 and 7 are needed to assist the client

kernel to determine the starting address. Otherwise,

these two messages are not necessary.

5. The OS Portal loads the requested module and the

related information to its memory.

6. To help the client kernel determine the module ad-

dress, the OS Portal sends the size of the module
to the client.

7. After receiving the size information, the client kernel

determines the module address and sends it to the OS

Portal.

8. The OS Portal uses the starting address provided in

message 4 or 7 to link the module. Symbols are re-

solved via the symbol table constructed in step 2.

9. The linked image and the related information are
marshalled in a message buffer, which is sent to the

client.

10. The client kernel invokes the init() routine of the

module to trigger the module replacement.

4. Performance measurement

In this section, we compare the performance of

the OSP framework with the other two approaches: the

NFS based and the socket based approaches. In the

comparison, we provide detailed breakdowns of their

overheads. In addition, we also show the performance of

the OSP framework by presenting the request processing

time and the server throughput.

Fig. 6. The control flow of registration and module loading.

24 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

4.1. Experimental environment

The experimental environment consists of a client

and a server host that are connected via a 10 Mbits/s

Ethernet. The server host is a Pentium II 233 MHz

machine with 128 MB RAM, running Linux 2.0.36. The

OS Portal is a user-level process on the server host. The

client host is a Pentium 133 MHz machine with 32 MB
RAM, running LyraOS 1.8. Table 1 shows the modules

and total size of the LyraOS.

We implement three scheduler modules in LyraOS:

RR, FIFO, and fixed-priority (PRIO) scheduling. The

sizes of these modules are 2888, 2824, and 3328 bytes,

respectively.

In the next two sections, we compare the three ap-

proaches in terms of space overheads, which can be di-
vided into the environment overheads and the module

overheads.

4.2. Environment overhead

4.2.1. NFS based approach

Table 2 shows the environment overheads of the cli-

ent kernel under the NFS based approach. Because most
of the items are not currently available on LyraOS, we

obtain these values by measuring the sizes of their ver-

sions on Linux 2.0.36. The dynamic loader/linker item

shows the static size of the insmod program (Ekwall,

2001), which allows privileged users to load modules

into a running Linux kernel. The sizes of the following 3

items are obtained by building the Linux kernel and

seeing their corresponding object file sizes. Note that the
Sun RPC is included since the NFS client is based on it

(Kohler et al., 2000). 2 It should be noted that symbols

in the object files are already stripped before we report

the sizes. In addition to the above overheads, NFS based

approach requires the kernel symbol table to be stored

on the client. Since symbol tables are maintained in the

OS Portal process in our system, we can measure this

overhead by recording the high watermark of the

memory that are used by the symbol table and the re-

lated data structures. The dynamic memory item in Table

2 shows the size of this overhead after a client has reg-

istered to the OS Portal. There are two points worth

noting. First, the size of the symbol table is proportional

to the number of symbols. The current configuration of

LyraOS has 707 symbols, which result in an overhead of

about 50 Kbytes. Another kernel configuration that is
equipped with a window management system has 1410

symbols, which lead to an overhead of about 110 Kbytes

(out of the 331 Kbytes total kernel size). Second, this

size will increase at run time as the kernel loads more

modules during its execution. For example, the size will

increase to 67 Kbytes if all the three scheduler modules

are loaded into the kernel.

From the table we can see that an overhead of 210
Kbytes is required to make an embedded kernel exten-

sible. This overhead is larger than the size of the original

kernel, 200 Kbytes. Therefore, this approach may not

become feasible unless the system vendors equip more

memory in their devices.

4.2.2. Socket based approach

Table 3 shows the environment overheads of the
socket based approach. Since it does not rely on the file

system interface, the overheads of VFS, NFS client, and

Sun RPC can be eliminated. The other two overheads

are the same as those in the NFS based approach. From

the table we can see that the total overhead is about 76

Kbytes, which still results in a notable increase in the

kernel size. In addition, the same as the NFS based

approach, the dynamic memory item will increase as
module-loading events occur.

4.2.3. OS Portal approach

The only overhead of the OS Portal approach is the

module manager, which is only 2600 bytes according to

our measurement. Note that since we do not keep the

Table 1

Modules and total size of LyraOS

Categories Modules

Core Initialization, Memory, Thread, Scheduler

Drivers Keyboard, Mouse, IDE HD, Ethernet

Networking TCP, UDP, IP

Total size 200,400 bytes

Table 2

Environment overheads of the NFS based approach

Items Size (bytes)

Dynamic loader/linker 25,612

VFS 62,636

NFS client 25,272

SUN RPC 51,064

Dynamic memory 50,988

Total 215,582

2 Originally, the Sun RPC is based on UDP, whose static size is 5980

bytes after all the symbols for linking are stripped. If the original

kernel does not contain UDP, this size should be included in the

environment overheads. Otherwise, the Sun RPC implementation

should be changed to use an alternative transport-layer mechanism

that the kernel supports.

Table 3

Environment overheads of the socket based approach

Items Size (bytes)

Dynamic loader/linker 25,612

Dynamic memory 50,988

Total 76,600

D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30 25

symbol table on the client, the overhead will not increase

during the loading of modules. In addition, adding

support to new object file formats requires no further

overheads on the client. Obviously, our approach does

achieve the goal of making an embedded kernel exten-

sible while keeping the added overhead minimal.

Fig. 7 summaries up the environment overheads of

these approaches. The numbers in percentages show the
proportions of the sizes of overheads to the original

kernel size (i.e., the base size). Except for the OS Portal

approach, the others result in noticeable increases in the

kernel sizes.

4.3. Module overhead

In addition to the environment overheads, the OS
Portal approach also differs from the others in the

transmission sizes of modules (i.e., module overheads).

Table 4 presents the module overheads of the three

scheduler modules we implemented. In this table, the

numbers in parentheses are the ratios of module over-

heads under the OS Portal approach to those under the

other two approaches. From the table we can see that,

the transmission sizes under the OS Portal approach are
only about half of the sizes under the other approaches.

This is because the former transmits modules in the form

of linked images, while the latter transmits modules in

the form of object files. Generally speaking, object files

occupy more space than linked images since the former

contain more overheads, such as symbols for dynamic

linking and other data structures. One exception is the

declaration of large static data areas in the module (e.g.,

a large static, un-initialized array). This will usually

make the linked image larger than the object file since

the data areas are not contained in the latter. However,

we can avoid this problem by allocating large data areas

dynamically. As a result, the transmission sizes of

modules can usually be smaller under the OS Portal
approach.

4.4. Request processing time

Table 5 shows the required time for processing re-

quests. The registration item presents the time for the OS

Portal to perform a REGISTRATION request. A major

part of the time is spent on constructing the symbol
table for the client. As we described earlier, the symbol

table has 707 entries. The module processing item shows

the time for the OS Portal to process a LOAD_MOD-

ULE request to the FIFO scheduler module. It includes

the time to locate and load the module to the memory,

link it with the client kernel, marshall the response to a

message buffer, and then send the buffer down to the

TCP/IP stack. The last item (i.e., module downloading)
presents the total elapsed time for the client to download

the FIFO scheduler. Since the module-loading operation

does not happen frequently, we expect this 20-ms-delay

as an acceptable value and will not cause noticeable

performance degradation on the client.

4.5. OS Portal server throughput

In order to see the throughput of the OS Portal ser-

ver, we wrote a micro-benchmark to measure the num-

ber of requests the server can service in a second. In

the benchmark, we fork several client processes. After

registering to the OS Portal server, each client pro-

cess makes as many module requests as possible in a pre-

defined period of time (currently, 30 s). After the

time period, each client process reports its number of
completed module requests (i.e., requests that the cor-

responding modules are received by the client success-

fully). Therefore, we can get the number of requests the

server handles in a second by summing up the numbers

and dividing the result by the time period.

To get a clearer view of the OS Portal throughput, we

run the benchmark under four configurations, which are

shown in Table 6. In this table, the OS Portal host col-
umn shows the configurations of the host on which the

OS Portal process runs. Similarly, the client host column

Table 4

Transmission sizes of modules

Modules Approaches

NFS Socket OS Portal

FIFO 2824 2824 1240 (44%)

RR 2888 2888 1244 (43%)

PRIO 3328 3328 1700 (51%)

Fig. 7. Kernel sizes of different approaches.

Table 5

Request processing times

Task Time (ms)

Registration 4.14

Module processing 3.47

Module downloading 20.60

26 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

shows the configurations of the host on which the client

processes run. In this experiment, we run all client

processes on the same host. The connection type column

presents the connection mechanisms between the OS

Portal and the client processes. Under the remote con-

figurations (i.e., PII_REMOTE and K7_REMOTE),

clients communicate with the OS Portal via TCP/IP

sockets over 10 or 100 Mbits/s Ethernet. Under the local
configurations (i.e., PII_LOCAL and K7_LOCAL),

they use UNIX domain sockets for communication.

Fig. 8 shows the server throughput under these four

configurations. From the figure we can see that, the OS

Portal performs better under the local configurations.

This is straightforward since UNIX domain socket does

not incur the complex TCP/IP stack and the network

delay. In addition, if the client processes are relatively
fewer (i.e., fewer than 4), an increase in the client

number will usually lead to an increase in the server

throughput. This happens because the client processes

have not saturated the server yet. However, once the

server is saturated, further increase in the client number

will just result in more overheads and resource conten-

tions, and hence cause degradation in the server

throughput.

It should be noted that, the x-axis (i.e., number of

client processes) of Fig. 8 does not reflect the actual

client numbers that the OS Portal can support. As we

mentioned above, each client in this experiment spends
most of its CPU time performing module requests. This

is not the normal case because an embedded kernel will

request to the OS Portal only when it occasionally needs

a kernel module that it does not have. This figure does

reveal that the OS Portal server can support more than

1000 requests per second under the K7 configurations,

and about 400 requests per second under the PII con-

figurations. This is fairly enough for a server located in a
home or a small/medium scaled enterprise.

5. Related work

For the last two decades, many research efforts on

extensible systems have been proposed in the literature.

However, such systems usually require much more re-
sources. None of them addressed the problem of

achieving the extensibility on resource-constrained em-

bedded devices. Moreover, some of them result in the

degradation of the system performance. In the follow-

ing, we describe these research efforts. To make the

description more clear, we divide some of the research

efforts into several categories: micro-kernel, extensible

kernel, Java operating system, and LKM. Other efforts
are described following the description of the efforts in

the above categories.

5.1. Micro-kernel

Research on micro-kernels (Rashid et al., 1989a,b;

Zuberi and Shin, 1996) moves most of the traditional

operating system functionality to user-level server pro-
cesses. It simplifies the extension of the operating sys-

tems since the extension can be achieved by adding or

replacing the server processes. However, it suffers from

the performance problem. Since most operating system

services are implemented in user level, a service request

requires two more context switches and another pair of

protection-domain crossings. Moreover, micro-kernels

and traditional embedded kernels are totally different in
the kernel structure. Therefore, extending embedded

kernels with this approach involves kernel re-design. In

contrast with the micro-kernel approach, we focus on

making an existing embedded kernel become extensible

without re-designing the kernel. In addition, we use

kernel-level modules so that our system will not suffer

from the performance problem. Finally, we make use of

the server-side module linking to reduce the resource
requirements (specifically, the memory footprints) of the

client kernels.Fig. 8. Throughput of the OS Portal.

Table 6

Configurations for testing the OS Portal throughput

Configuration

name

OS Portal host Client host Connection

type

PII_REMOTE Pentium II 233

MHz, 128 MB

RAM

Pentium 300

MHz, 128 MB

RAM

TCP/IP over

10 Mbits/s

Ethernet

PII_LOCAL Pentium II 233

MHz, 128 MB

RAM

Pentium II 233

MHz, 128 MB

RAM

UNIX domain

socket

K7_REMOTE K7 600 MHz,

256 MB RAM

Pentium II 233

MHz, 128 MB

RAM

TCP/IP over

100 Mbits/s

fast Ethernet

K7_LOCAL K7 600 MHz,

256 MB RAM

K7 600 MHz,

256 MB RAM

UNIX domain

socket

D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30 27

5.2. Extensible kernel

To address the performance problem of micro-kernels,

extensible kernels allow user applications to inject codes

into the kernels so as to extend them. Because the in-

jected codes run in the kernel mode, extensible kernels
usually result in better performance than that of micro-

kernels. However, the injected codes usually cannot run

in full speed because of the security problems. Extensible

kernels often perform run-time checks to ensure that the

injected codes will not damage the kernels. For example,

SPIN (Bershad et al., 1995) uses software fault isolation

(Wahbe et al., 1993) to restrict the memory area that the

injected codes can access. Systems such as packet filters
(Mogul et al., 1987), and HiPEC (Lee et al., 1994) allow

interpretative codes to be injected and use kernel mode

interpreters to enforce the system security. Such run-

time checks do degrade the system performance.

The main reason of the performance problem is that

the kernels do not trust the extension codes. In contrast

with their approaches, we assume that kernel extensions

(i.e., kernel modules) are trusted. This assumption is
used in the previous research (Auslander et al., 1997). It

also holds for most of the UNIX implementations. In

our approach, kernel modules are developed by trusted

system programmers or third parties, and are verified

prior to execution. Therefore, they can run in full speed.

In addition, our approach requires no re-design of the

operating systems and puts efforts on reducing the re-

source requirements of the kernels.

5.3. Java operating system

Java operating systems (JOS, 1997; Saulpaugh et al.,
1999) allow the programmers to write system modules

such as TCP/IP, and file systems in Java (Ritchie, 1997).

The system modules are compiled as Java class files and

are loaded by the JVM at run time. Liao et al. (1996)

take another approach. They insert a JVM into a micro-

kernel so as to allow users to write Java programs to

extend the kernel. Similar to the previous techniques,

these approaches also suffer from performance prob-
lems. The major problem is that Java codes are inter-

preted, not compiled. Although the performance of

interpretation improves since the birth of Java, there is

still a performance gap between the interpreted and the

compiled codes. Some Java platforms take advantage of

just-in-time (JIT) compilation to improve the perfor-

mance. This technique, however, is hard to be applied

on resource-limited devices since it consumes too much
memory to perform the compilation. In addition, the

codes generated by the JIT compilation are less opti-

mized since there is not much time to perform code

optimizations.

In contrast with the Java operating systems, we use

compiled codes. Since codes are compiled off-line, there

is much time to perform optimizations. In addition, we

focus on making a C-language based embedded kernel

extensible instead of re-writing a whole kernel in Java.

And finally, we put efforts on reducing the resource re-

quirements of the kernels.

5.4. Loadable kernel module

As described earlier, many desktop operating systems

such as Linux, provide LKM to extend their kernels at
run time. After being installed, kernel modules can run

in full speed without any further run-time checks. The

major problem of the LKM is its space overheads. As

shown in Section 4, it requires much more overheads

than our approach.

Oikawa et al. (1996) take an approach similar to the

LKM. They make RT-Mach (Tokuda et al., 1990) ex-

tensible by introducing dynamic kernel modules
(DKMs). The same as LKMs, DKMs are stored as files

and are able to be loaded/unloaded at run-time. How-

ever, DKMs are managed by a user-level DKM server,

instead of the kernel. The server is responsible for

loading a DKM when it is needed, and unloading a

DKM when the kernel is short of memory. In contrast

to this approach, we manage the kernel modules at re-

mote site, reducing much local memory requirements. In
addition, we address the issue of run-time module re-

placement, which is not mentioned in their work.

In addition to the research described above, there are

still many efforts on system extensibility or customiz-

ability. At the end of this section, we give brief de-

scriptions on them.

Kohler et al. (2000) propose a configurable IP router

architecture named Click. Under this architecture, rou-
ter functions are implemented in elements, which can

finally be composed into a single Linux kernel module.

By composing different elements, the developers can

customize the router according to their needs. However,

this customization is too coarse-grained even that it does

support fine-grained components (i.e., elements). This

happens because all elements are finally linked into a

single module, and therefore the customization requires
the whole router to be unloaded before the new router

can be loaded. Router Plugins (Decasper et al., 2000) is

a software architecture for fine-grained customization of

routers. It uses the LKM mechanism supported by the

kernels to load different plugins to extend the func-

tionality of the router. Since routers are usually equip-

ped with rich resources, the researchers did not address

the resource-limited problems that we encountered.
The OSKit (Ford et al., 1997) allows users to build

their customized kernels by composing different system

components. It also has a linking toolkit, named Knit

(Reid et al., 2000), to assist users when composing these

components. Different from our work, the researchers

put most of their efforts on the link-time techniques,

28 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

instead of providing a customizable and economic run-

time environment.

Helander and Forin (1998) propose a modular system

architecture. They also describe a dynamic module-

updating mechanism that is similar to our module re-

placement technique. However, in their architecture,
the extension modules are loaded via the file system.

Therefore, it is similar to the LKM approach that we

mentioned above. As we described in Section 4, our

approach requires much less overheads than theirs.

DEIMOS (Clarke and Coulson, 1998), Kea (Veitch

and Hutchinson, 1996), and Pebble (Gabber et al., 1999)

are all extensible systems. However, they maintain

symbol tables on the local site for dynamic extension. In
addition, they do not address the problem of run-time

module replacement.

Finally, some other research (Gheith et al., 1994;

Messer and Wilkinson, 1996) allows the internal im-

plementation, or the invocation methods of a service to

be varied at run time, according to the invocation at-

tributes. However, since all of the possible implemen-

tations of a service have to be installed in prior, this
approach does not consider the resource consumption of

the kernels.

6. Limitations

Although the OSP framework provides a way to ex-

tend embedded kernels effectively. It does have some
limitations. In this section, we will describe these limi-

tations.

Scalability: In our prototype implementation, we use

single server machine as the OS Portal. Moreover, the

OS Portal maintains a persistent connection for each on-

line client. Therefore, the average request latency for a

client will become longer as the number of on-line client

increases. According to our experiment, the request la-
tency is proportional to the number of on-line clients.

When there are 100 clients, the request latency is 0.124 s

while it becomes 1.26 s as the client number reaches to

1000. The experiment reveals that the request latency

will become unacceptable if there are large number of

clients, say 10,000. We intend to use the following ap-

proaches to increase the scalability of the framework.

First, we will replace the single server machine with a
cluster of servers. Second, we intend to use connec-

tionless protocols for client-server communication to

reduce the server overheads for each client. In the future

we will implement the approaches and evaluate the re-

sult performance.

Static module interfaces: Although the client kernels

can dynamically download kernel modules to extend

their functionality, module interfaces are static. They
must be defined and implemented in the client kernels in

advance. For example, if a client kernel does not im-

plement a scheduler interface, it cannot perform module

replacement on scheduler modules. To enable the re-

placement, a scheduler interface must be incorporated

into the kernel and therefore kernel modification is

needed.

7. Conclusions and future works

In this paper, we propose the OSP framework to

make an embedded kernel extensible while keeping the

added overheads minimal. In this framework, embedded

kernels are extended via kernel modules that are stored

in the OS Portal server. We propose server-side module

linking to reduce the space overheads of the embedded

kernels. Moreover, we use the cooperation based mod-

ule replacement technique to perform on-line module
replacement.

To prove the concept of the OSP framework, we

implement a dynamically replaceable scheduling system

based on the framework. According to the performance

measurement, the space overhead of the OSP framework

is only about 1%, when compared to those of the other

approaches. Besides, its performance is acceptable for

current network technology.
In addition to the scheduling subsystem, we will

implement other subsystems in the future for the com-

pleteness of our work. Moreover, current implemen-

tation of the OSP framework uses TCP/IP as the

transport-layer protocol. However, owing to the rapid

development of wireless technologies such as Wireless

LAN and Bluetooth, it should be useful to adapt our

system to wireless network. However, we should con-
sider the problem of mobility management if we use

wireless technologies as the transport-layer mechanisms.

For example, if a client roams from an area controlled

by the current OS Portal to another, the kernel symbol

table for the client should be transferred to the new OS

Portal. In the future, we shall try to implement the OSP

framework on wireless links, measure their performance,

and perform research on the mobility management in
this framework.

Acknowledgement

This work is supported by National Science Council

under project NSC90-2218-E-009-010.

References

Accelerated Technology, 2001. The Nucleus PLUS embedded real-

time kernel. Available from <http://www.acceleratedtechnology.

com/new_content/main_pgs/nuc_plus.html>.

D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30 29

http://www.acceleratedtechnology.com/new_content/main_pgs/nuc_plus.html
http://www.acceleratedtechnology.com/new_content/main_pgs/nuc_plus.html

Auslander, M., Franke, H., Gamsa, B., Krieger, O., Stumm, M., 1997.

Customization lite. In: Proceedings of the 6th Workshop on Hot

Topics in Operating Systems, pp. 43–48.

Bershad, B., Savage, S., Pardyak, P., Sirer, E.G., Becker, D.,

Fiuczynski, M., Chambers, C., Eggers, S., 1995. Extensibility,

safety and performance in the SPIN operating system. In:

Proceedings of the 15th ACM Symposium on Operating System

Principles, pp. 267–284.

Cheng, Z.Y., Chiang, M.L., Chang, R.C., 2000. A component based

operating system for resource limited embedded device. In:

Proceedings of the IEEE International Symposium on Consumer

Electronics, pp. 27–31.

Clarke, M., Coulson, G., 1998. An architecture for dynamically

extensible operating systems. In: Proceedings of the 4th Inter-

national Conference on Configurable Distributed Systems, pp.

145–155.

Decasper, D., Dittia, Z., Parulkar, G., Plattner, B., 2000. Router

plugins: a software architecture for next generation routers. IEEE/

ACM Transactions on Networking 8 (1), 2–15.

Ekwall, B., 2001. The Linux Module Utilities, Version 2.2.2-pre6.

Available from <http://www.kernel.org/pub/linux/utils/kernel/mod-

utils/v2.2/>.

Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Shivers, O., 1997.

The flux OSKit: a substrate for OS and language research. In:

Proceedings of the 16th ACM Symposium on Operating Systems

Principles, pp. 38–51.

Free Software Foundation, 1998. The GNU binary utilities. Available

from <http://www.gnu.org/manual/binutils/>.

Gabber, E., Small, C., Bruno, J., Brustoloni, J., Silberschatz, A., 1999.

The pebble component-based operating system. In: Proceedings

of the 1999 USENIX Annual Technical Conference, pp. 267–

281.

Gheith, A., Mukherjee, B., Silva, D., Schwan, K., 1994. KTK: kernel

support for configurable objects and invocations. In: Proceedings

of 2nd International Workshop on Configurable Distributed

Systems, pp. 92–103.

Handspring Inc., 2002. Visor handhelds. Available from <http://www.

handspring.com/products/visorfamily/index.jhtml?prod_cat_name¼
Family>.

Helander, J., Forin, A., 1998. MMLite: a highly componentized system

architecture. In: Proceedings of the 8th ACM SIGOPS European

Workshop, pp. 96–103.

JOS Project, 1997. JOS: an open, portable, and extensible Java object

operating system. Available from <http://www.metamech.com/

wiki/view/Main/ AboutJOS>.

Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F., 2000.

The click modular router. ACM Transactions on Computer

Systems 18 (4), 263–297.

Lee, C.H., Chen, M.C., Chang, R.C., 1994. HiPEC: high performance

external virtual memory caching. In: Proceedings of the 1st

Symposium on Operating Systems Design and Implementation,

pp. 153–164.

Liao, W.S., See-Mong, T., Campbell, R.H., 1996. Fine-grained,

dynamic user customization of operating systems. In: Proceedings

of the 5th International Workshop on Object Orientation in

Operating Systems, pp. 62–66.

Mentor Graphics Corp, 2000. VRTXoc Real-Time Executive: a

powerhouse for system-on-chip applications. Available from

<http://www.mentor.com/embedded/vrtxos/VRTXoc_Realfinal.

pdf>.

Messer, A., Wilkinson, T., 1996. Components for operating system

design. In: Proceedings of the 5th International Workshop on

Object Orientation in Operation Systems, pp. 128–132.

Mogul, J., Rashid, R., Accetta, M., 1987. The Packer Filter: an

efficient mechanism for user-level network code. In: Proceedings of

the 11th ACM Symposium on Operating Systems Principles, pp.

39–51.

Oikawa, S., Sugiura, K., Tokuda, H., 1996. Adaptive object manage-

ment for a reconfigurable microkernel. In: Proceedings of the 5th

International Workshop on Object Orientation in Operation

Systems, pp. 67–71.

Pomerantz, O., 1999. Linux kernel module programming guide. Avail-

able from <http://www.linuxdoc.org/LDP/lkmpg/mpg.html>.

Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub,

D., Jones, M., 1989a. Mach: a system software kernel. In:

Proceedings of the 34th Computer Society International Confer-

ence, pp. 176–178.

Rashid, R., Baron, R., Forin, A., Golub, D., Jones, M., Julin, D., Orr,

D., Sanzi, R., 1989b. Mach: a foundation for open systems. In:

Proceedings of the 2nd Workshop on Workstation Operating

Systems, pp. 109–113.

Red Hat Inc., 2001. The eCOS documentation. Available from <http://

sources.redhat.com/ecos/docs-latest/>.

Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E., 2000. Knit:

component composition for systems software. In: Proceedings of

the 4th Symposium on Operating Systems Design and Implemen-

tation, pp. 347–360.

Ritchie, S., 1997. Systems programming in Java. IEEE Micro 17 (3),

30–35.

Saulpaugh, T., Clements, T., Mirho, C.A., 1999. The Inside JavaOS

Operating System. Addison-Wesley.

Sun Microsystems Inc., 2001. Java embedded server: a white paper.

Available from <http://www.sun.com/software/embeddedserver/

whitepapers/index.html>.

Tokuda, H., Nakajima, T., Rao, P., 1990. Real-Time mach: towards a

predictable real-time system. In: Proceedings of the USENIXMach

Workshop, pp. 73–82.

Veitch, C., Hutchinson, N.C., 1996. Kea––a dynamically extensible

and configurable operating system kernel. In: Proceedings of the

3rd International Conference on Configurable Distributed Systems,

pp. 236–242.

Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L., 1993. Effi-

cient software-based fault isolation. In: Proceedings of the 14th

ACM symposium on Operating Systems Principles, pp. 203–

216.

Yang, C.W., Lee, C.H., Chang, R.C., 1999. Lyra: a system framework

in supporting multimedia applications. In: Proceedings of the 1999

IEEE International Conference on Multimedia Computing and

Systems, pp. 204–208.

Zuberi, K.M., Shin, K.G., 1996. EMERALDS: a microkernel for

embedded real-time systems. In: Proceedings of the 2nd IEEE Real-

Time Technology and Applications Symposium, pp. 241–249.

Da-Wei Chang was born on July 24, 1973. He received his B.S., M.S.,
and Ph. D. degrees in Computer and Information Science from Na-
tional Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1995, 1997
and 2001 respectively. He is currently a postdoc in Computer and
Information Science at National Chiao Tung University. His research
interests include operating systems, embedded system design, and Java.

Ruei-Chuan Chang was born on January 30, 1958. He received his B.S.
degree (1979), his M.S. degree (1981), and his Ph.D. degree (1984), all
in Computer Engineering from National Chiao Tung University. He is
currently a professor in Computer and Information Science at Na-
tional Chiao Tung University, Taiwan, R.O.C. He is also an Associate
Research Fellow at the Institute of Information Science, Academia
Sinica, Taipei. His research interests include operating systems, wire-
less communication technologies, and embedded systems.

30 D.-W. Chang, R.-C. Chang / The Journal of Systems and Software 67 (2003) 19–30

http://www.kernel.org/pub/linux/utils/kernel/modutils/v2.2/
http://www.kernel.org/pub/linux/utils/kernel/modutils/v2.2/
http://www.gnu.org/manual/binutils/
http://www.handspring.com/products/visorfamily/index.jhtml?prod_cat_name=Family
http://www.handspring.com/products/visorfamily/index.jhtml?prod_cat_name=Family
http://www.handspring.com/products/visorfamily/index.jhtml?prod_cat_name=Family
http://www.metamech.com/wiki/view/Main/AboutJOS
http://www.metamech.com/wiki/view/Main/AboutJOS
http://www.mentor.com/embedded/vrtxos/VRTXoc_Realfinal.pdf
http://www.mentor.com/embedded/vrtxos/VRTXoc_Realfinal.pdf
http://www.linuxdoc.org/LDP/lkmpg/mpg.html
http://sources.redhat.com/ecos/docs-latest/
http://sources.redhat.com/ecos/docs-latest/
http://www.sun.com/software/embeddedserver/whitepapers/index.html
http://www.sun.com/software/embeddedserver/whitepapers/index.html

	OS Portal: an economic approach for making an embedded kernel extensible
	Introduction
	Alternative approaches
	Network file system based approach
	Socket based approach

	Design and implementation
	Architecture overview
	Server-side module linking
	Cooperation based module replacement
	Overall control flow

	Performance measurement
	Experimental environment
	Environment overhead
	NFS based approach
	Socket based approach
	OS Portal approach

	Module overhead
	Request processing time
	OS Portal server throughput

	Related work
	Micro-kernel
	Extensible kernel
	Java operating system
	Loadable kernel module

	Limitations
	Conclusions and future works
	Acknowledgements
	References

