
IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 7, JULY 2003 343

An Enhanced Congestion Avoidance Mechanism
for TCP Vegas

Yi-Cheng Chan, Chia-Tai Chan, and Yaw-Chung Chen, Member, IEEE

Abstract—TCP Vegas detects network congestion in the early
stage and successfully prevents periodic packet loss that usually
occurs in traditional schemes. It has been demonstrated that TCP
Vegas achieves much higher throughput than TCP Reno. However,
TCP Vegas cannot prevent unnecessary throughput degradation
when congestion occurs in the backward path. In this letter, we pro-
pose an enhanced congestion avoidance mechanism for TCP Vegas.
By distinguishing whether congestion occurs in the forward path
or not, it significantly improves the connection throughput when
the backward path is congested.

Index Terms—Congestion avoidance, TCP vegas, transport pro-
tocol.

I. INTRODUCTION

W ITH the fast growth of Internet traffic, how to effi-
ciently utilize network resources becomes an important

issue. Transmission Control Protocol (TCP) is a widely used
end-to-end transport protocol on the Internet, it has several
implementation versions (i.e., Tahoe, Reno, Vegas,…) which
intend to improve network utilization. Among these TCP
versions, Vegas can achieve much higher throughput than that
of others [1].

TCP Vegas attempts to control and avoid congestion by mon-
itoring the difference between the measured throughput and ex-
pected throughput. It uses the congestion window size and mea-
sured round-trip time (RTT) to estimate the amount of data in
the network pipe and maintain extra data with amount between
the lower threshold and the upper threshold . By ad-
justing source congestion window size, it keeps an appropriate
amount of extra data in the network to avoid congestion as well
as to maintain high throughput. However, a roughly measured
RTTmay lead to an improper adjustment of congestion window
size. If the network congestion occurs in the direction of ACK
packets (backward path), it may underestimate the actual rate
and cause an unnecessary decreasing of the congestion window
size. Ideally, congestion in the backward path should not affect
the network throughput in the forward path, which is the data
transfer direction. Obviously, the control mechanism must dis-

Manuscript received January 10, 2003. The associate editor coordinating the
review of this letter and approving it for publication was Prof. D. Petr. This work
was supported in part by the National Science Council, Taiwan, R.O.C., under
Grant NSC 91-2213-E-009-017.

Y.-C. Chan and Y.-C. Chen are with the Department of Computer Science
and Information Engineering, National Chiao Tung University, Hsinchu 30050,
Taiwan, R.O.C. (e-mail: ycchan@csie.nctu.edu.tw; ycchen@csie.nctu.edu.tw).

C.-T. Chan is with the Telecommunication Laboratories, Chunghwa Telecom
Company, Ltd, Taipei 106, Taiwan, R.O.C. (e-mail: ctchan@cht.com.tw).

Digital Object Identifier 10.1109/LCOMM.2003.814715

tinguish whether congestion occurs in the forward path or not
and adjust the congestion window size precisely.

Several works have been proposed to improve TCP perfor-
mance for asymmetric networks. These mechanisms obtain
either the forward trip time [2] or the actual flow rate on
the forward path [3] depending on TCP timestamps option.
Although solutions such as ACC (ack congestion control), AF
(ack filtering), SA (sender adaptation) and AR (ack reconstruc-
tion) have improved the Reno’s performance under asymmetric
networks [4], these approaches are not effective for handling
the Vegas’ asymmetry problem [3]. By using the relative delay
estimation along the forward path, TCP Santa Cruz [5] is
able to identify the direction of congestion. However, it is not
for rate-based Vegas. In this work, we propose an enhanced
congestion avoidance mechanism for TCP Vegas (Enhanced
Vegas), our mechanism uses TCP timestamps option to estimate
queueing delay on the forward and backward path separately
without clock synchronization. By distinguishing the direction
along where congestion occurs, Enhanced Vegas significantly
reduces the impact and improves the throughput in the case of
backward congestion.

The rest of this letter is organized as follows. Section II de-
scribes the Enhanced Vegas. Section III shows the simulation
results. Section IV summarizes this work.

II. ENHANCED VEGAS

Different from Tahoe and Reno, which detect network con-
gestion based on packet losses, TCP Vegas estimates a proper
amount of extra data to be kept in the network pipe and controls
the congestion window size accordingly. The amount is between
two thresholds and , as shown in the following:

(1)

whereExpectedthroughput is the current congestion window
size divided byBaseRTT(i.e., the minimum of ever measured
RTTs), andActualthroughput represents the current congestion
window size divided by the newly measuredRTT.

When backward congestion occurs, the increasing backward
queueing time will affect theActual throughput and enlarge
the difference between theExpectedthroughput andActual
throughput. This results in decreasing the congestion window
size. Since the network resources in the backward path should
not affect that in the forward path, it is unnecessary to reduce
the congestion window size when backward congestion occurs.

A measuredRTT can be divided into four parts: forward
fixed delay time (i.e., propagation delay and packet processing
time), forward queueing time, backward fixed delay time, and

1089-7798/03$17.00 © 2003 IEEE

344 IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 7, JULY 2003

backward queueing time. To utilize the network bandwidth
efficiently, we redefine theActual throughput as

(2)

where is the newly measuredRTT, QD(backward)is
the backward queueing time, andcwndis the current congestion
window size. Consequently, the is a throughput that
may be achieved if there is no backward queueing delay along
the path.

To realize the implementation, we make use of the TCP
timestamps option to obtain the backward queueing time.
When a source sends a packet, it inserts a timestamp into the
TCP header. As the destination acknowledges this packet, it
copies the forward timestamp and adds a backward timestamp
to the ACK packet. Assume there is a TCP sourceand its
destination . Let and be the end-to-end trip time of the
forward data packet and the backward ACK packet respectively.
We can acquire by subtracting the forward timestamp from
backward timestamp and by subtracting the backward
timestamp from the receiving time in the source (i.e., system
timestamp of source when it receives this ACK packet).
Assume is the difference of system clocks in sourceand
destination , and denotes the minimum

that the source ever measured. The trip time of a
packet between two hosts is consisted of thefixed delay time
and thequeueing delay time. Let denotes
the fixed delay time from to and
represents the forward (backward) queueing time from to

. We have the following equations:

(3)

Since , the minimum delay from to
, occurs when the queueing delay ap-

proaches zero, therefore we obtain

(4)

Here, the fixed delay time from to is expressed as
. Since , , , and all

can be measured by source. Thus the forward queueing time
and the backward queueing time can be

derived from (3) and (4) as follows:

(5)

Furthermore, theBaseRTTis equal to the sum of and
(i.e., the sum of and).

Avoids the unnecessary reduction of TCP congestion window
size, our proposed enhanced congestion avoidance mechanism
is more effective in improving the throughput of TCP connec-
tions. The Enhanced Vegas mechanism is described as follows:

1) DefineBaseRTTas the sum of estimated forward fixed
delay time and estimated backward fixed delay
time . Calculate theExpectedthroughput as the
current congestion window size divided byBaseRTT.

2) Calculate the as the current congestion window
size divided by the difference between newly measured
RTTand backward queueing delay .

3) Let .
4) Let and be the congestion window sizes for

the currentRTTand the nextRTT, respectively. The rule
for congestion window adjustment is as follows:

if
if
if

(6)

The proposed mechanism estimatesBaseRTTand queueing
time on both directions based on tracking the minimum
end-to-end trip time (,). However, if the
clock speed is different between the source and the destination,
the accumulated time differences caused by clock skews may
result in incorrect measurement of minimum end-to-end trip
time. Certain efficient algorithms have been proposed to esti-
mate clock skews from network delay measurements [6], [7].
Let and be the clock speed of sourceand destination
, respectively. The clock ratio is denoted by, .

Then we have the following equations to adjust the minimum
end-to-end trip time:

(7)

where and
denote the on the time and ,
respectively.

III. PERFORMANCEANALYSIS

We perform the simulations usingns-2 [8] to compare the
throughputs between Vegas and our proposed Enhanced Vegas.
A VBR source is used to generate the backward traffic. This
VBR source is an exponentially distributed ON–OFF source.
During ON periods, the VBR source sends data at 2 Mb/s. Sev-
eral VBR sources with different average sending rates are used
to examine our mechanism. All parameters of both Vegas and
Enhanced Vegas are the same. Without loss of generality, the
packet size is set at 1 kbytes. To ease the comparison, we as-
sume that the sources always have data to send. The network
configuration we used is shown in Fig. 1, in which the band-
width and delay of each full duplex link are depicted.

In the first simulation, we use a VBR source with 900 kb/s
averaged sending rate to examine the throughput of Vegas and
Enhanced Vegas separately. A source from either Vegas or En-
hanced Vegas starts sending data at 0 second, while VBR source
starts at 50 second. By observing the result in Fig. 2, when traffic
source is Vegas only, it can achieve high throughput and stabilize
at 1,000 Kb/s until the VBR source starts sending data. How-
ever, it shows that performance of Vegas drops dramatically as
the VBR traffic starts. On the contrary, Enhanced Vegas main-
tains a much higher throughput than Vegas. During the active
period of VBR source, the average throughput of Vegas is 325
kb/s and Enhanced Vegas is 767 kb/s. Since the traffic pattern of
the VBR source keeps the same when the throughput of Vegas

CHAN et al.: AN ENHANCED CONGESTION AVOIDANCE MECHANISM FOR TCP VEGAS 345

Fig. 1. Network configuration for the simulations.

Fig. 2. Throughput comparison between Vegas and Enhanced Vegas with the
backward traffic load is 0.9.

Fig. 3. Average throughput versus backward traffic load for Vegas and
Enhanced Vegas.

or Enhanced Vegas is examined. Thus there appear some syn-
chronized fluctuations of throughputs between Vegas and En-
hanced Vegas. The simulation results demonstrate that the pro-
posed scheme significantly improves the throughput of Vegas
when the backward path is congested.

In the second simulation, we evaluate the average throughput
of Vegas and Enhanced Vegas with different backward traffic

loads separately. Sources of either Vegas or Enhanced Vegas
and VBR start at 0 second. The VBR traffic loads vary from
0 to 1. The simulation period is 200 s for each sample point.
From the simulation results shown in Fig. 3, we can find that
the Enhanced Vegas obtains a much higher average throughput
than TCP Vegas, especially when the backward traffic load is
heavy. For example, as the backward traffic load is 1, Enhanced
Vegas achieves a 12 times higher average throughput than that
of Vegas.

IV. CONCLUSION AND FUTURE WORK

In this letter, we propose an enhanced congestion avoidance
mechanism for TCP Vegas. Comparing with other studies
[2]–[5], Enhanced Vegas provides a much easier way to
improve the connection throughput when the backward path is
congested. The simulation results show the effectiveness of our
proposed mechanism. Nevertheless, clock skew issue is still a
problem of Enhanced Vegas, such as the convergence speed of
the clock ratio. Therefore, how to eliminate the clock issues
from Enhanced Vegas would be our future work.

REFERENCES

[1] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end congestion
avoidance on a global internet,”IEEE J. Select. Areas Commun., vol.
13, pp. 1465–1480, Oct. 1995.

[2] O. Elloumi, H. Afifi, and M. Hamdi, “Improving congestion avoidance
algorithms for asymmetric networks,” inConf. Rec. 1997 IEEE Int.
Conf. Communications, pp. 1417–1421.

[3] C. P. Fu and S. C. Liew, “A remedy for performance degradation of TCP
vegas in asymmetric networks,”IEEE Commun. Lett., vol. 7, pp. 42–44,
Jan. 2003.

[4] H. Balakrishnan and V. N. Padmanabhan, “How network asymmetry af-
fects TCP,”IEEE Commun. Mag., vol. 39, pp. 60–67, Apr. 2001.

[5] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP congestion con-
trol over internet with heterogeneous transmission media,” inConf. Rec.
1999 IEEE Int. Conf. Network Protocols, pp. 213–221.

[6] S. B. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock
skew from network delay measurement,” inProc. IEEE INFOCOM’99,
vol. 1, pp. 227–234.

[7] L. Zhang, Z. Liu, and C. H. Xia, “Clock synchronization algorithms
for network measurements,” inProc. IEEE INFOCOM’2002, vol. 1, pp.
160–169.

[8] The Network Simulator: ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

