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Two-Parameter Bifurcation Analysis of Longitudinal
Flight Dynamics

The bifurcation analysis of longitudinal flight dynamics

is presented, emphasizing the influence of elevator deflection

and aircraft mass. Based on a mathematical model proposed

by Garrard and Jordan (1977), a rich variety of bifurcation

phenomena such as saddle-node bifurcation, Hopf bifurcation,

and cycle fold bifurcations are observed in the numerical

simulations of longitudinal flight dynamics of the F-8 aircraft.

The occurrence of saddle-node bifurcation and Hopf bifurcation

may result in jump behavior and pitch oscillations of flight

dynamics. The analysis leads to a division of the longitudinal

flight space into several maneuvering regions, and may provide

more understanding of the longitudinal flight dynamics.

I. INTRODUCTION

Recently, the nonlinear phenomena of flight
dynamics has attracted considerable attention [1–8].
One of the main goals of the studies is to find a
linkage between nonlinear aircraft motions, such
as stall and divergent behaviors, and the possible
bifurcation phenomena of the governing dynamic
equations. For instance, both stationary and Hopf
bifurcations are reported and studied in several aircraft
models [1–6]. The stabilization of the trim condition
of an aircraft arbitrarily close to the stall angle of the
F-8 Crusader was studied, in a manner which also
provides an impending stall warning signal to the
pilot [7–8]. Such a signal is a small-amplitude and
stable limit-cycle type pitching motion of the aircraft,
which persists to within a prescribed margin of the
impending divergent stall. It is known that the analysis
of bifurcation phenomena is useful in understanding
nonlinear system behavior. Through bifurcation
analysis, the nonlinear behavior of aircraft at high
angle-of-attack flight such as jump to new steady
states, oscillations, and hysteresis, may be predicted.
In [9], bifurcation theory was employed to analyze the
nonlinear phenomena of longitudinal flight dynamics
by choosing the elevator deflection and mass of the
aircraft as system bifurcation parameters.
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Fig. 1. System equilibria and periodic solutions for nominal third-order model.

In [9], the longitudinal flight dynamics were
studied for a fixed setting of the mass of the aircraft.
The analysis reveals that the saddle-node bifurcation
and the Hopf bifurcation may result in jump behavior
and pitch oscillation, respectively. This work continues
the study of longitudinal flight dynamics developed
by [9], emphasizing the combined effect of two
control parameters: elevator deflection and mass of
the aircraft. One of the main goals of this work is
to identify and describe the relationship between
the nonlinear behaviors of aircraft dynamics and the
bifurcation phenomena arising from the governing
dynamic equations. The analysis is carried out on
the third-order model of the longitudinal dynamics
for F-8 proposed in [10]. The analysis reveals that
the longitudinal flight space might be separated
into several maneuvering regions. Each of these
regions possesses completely different nonlinear
characteristics. Numerical continuation and bifurcation
analysis package AUTO [11] and extensive computer
simulations are employed to evaluate system behavior.

The numerical techniques consist of the continuation
of fixed points and limit cycles with respect to
the mass of the aircraft, and the continuation of
bifurcation-point branches of fixed points and limit
cycles in the two-parameter plane. Phase diagrams are
constructed by simulation to illustrate the distinctly
different dynamical behaviors associated with each
regime of the parameter space.

The paper is organized as follows. In Section
II, we develop the model of the longitudinal flight
dynamics. This is followed in Section III by the
study of the flight dynamics for various settings of
system parameters. In Section IV, the analysis of
the two-parameter bifurcation is studied. Finally,
concluding remarks are given in Section V.

II. MATHEMATICAL MODELS

In the following, we present the mathematical
model for longitudinal flight dynamics from [10],
which is employed in the analysis in the next two
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Fig. 2. System equilibra and periodic solutions for modified model with m= 4:47m0.

sections. The drag is considered to be small compared
with the lift and weight and is neglected in the
analysis. The lift force is separated into its wing and
tail components.
Based on these assumptions, the motion equations

for longitudinal dynamics with thrust neglected are
given by

m( _u+w _µ) = mg sinµ+Lw sin®+Lt sin®t (1a)

m( _w u _µ) =mg cosµ Lw cos® Lt cos®t (1b)

Iyµ̈ =Mw + lLw cos® ltLt cos®t c _µ (1c)

where
u axial velocity
w vertical velocity
® wing angle of attack
®t tail angle of attack
µ pitch angle
Iy moment of inertia about axis

Lw wing lift force
Lt tail lift force
Mw wing pitching moment
m aircraft mass
l distance between wing aerodynamic center

and aircraft center of gravity
lt distance between tail wing aerodynamic

center and aircraft center of gravity
c _µ damping moment.
It is known that the tail and wing lift forces can be

given by

Lw = CLwQS and Lt = CLtQSt,

where
CLw coefficient of wing lift
CLt coefficient of tail lift
Q dynamic pressure
S wing area
St horizontal tail area.
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Fig. 3. System equilibra and periodic solutions for modified model with m= 4:72m0.

Using

w = u tan® and _w = _u tan®+ u _®sec2® (2)

we can rewrite (1) as

_u = u _µ tan® g sinµ+
Lw
m
sin®+

Lt
m
sin®t (3a)

_®= _µ sin2®+
g

u
sinµ sin®cos®

Lw
um

sin2®cos®

Lt
um

sin®cos®sin®t+
_µ cos2®+

g

u
cos2®cosµ

Lw
um

cos3®
Lt
um

cos2®cos®t (3b)

µ̈ =
Mw
Iy
+
lLw
Iy
cos®

ltLt
Iy
cos®t

c

Iy

_µ: (3c)

Equation (3) represents the so-called “full
(fourth-order) model” of longitudinal flight dynamics
with states (u,®,µ, _µ).
Given that the aircraft flies at a constant velocity

and let q := _µ, (3) can be reduced to a third-order

model given by

_®= qcos2®+
g

u
cos2®cosµ

Lw
um

cos3®

Lt
um

cos2®cos®t (4a)

_µ = q (4b)

_q =
Mw
Iy
+
lLw
Iy
cos®

ltLt
Iy
cos®t

c

Iy
q: (4c)

Theoretical analysis of local dynamic behavior of
the system (4) has been obtained in [9] by using
system linearization and bifurcation theory. We focus
here on the study of nonlinear phenomena for system
(4) via numerical approach. Details are given in the
next two sections.

III. LOCAL BIFURCATION ANALYSIS

In this section, we adopt the third-order model of
[10] for F-8 aircraft. Based on this third-order model,
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Fig. 4. System equilibria and periodic solutions for modified model with m= 4:75m0.

Fig. 5. Location of limit points in (m,±e) space.

the local stability and bifurcations of flight dynamics
with respect to the variation of the tail deflection
angle are obtained by numerical simulations. Details
are given as below.
In [10], Garrard and Jordan proposed to

approximate the wing lift and tail lift coefficients by
two cubic polynomial functions, respectively, as given
by

Lw =QS(C
1
Lw
® C2Lw®

3) (5)

Lt =QSt(C
1
Lw
®t C2Lt®

3
t + ae±e) (6)

where ±e represents the horizontal tail deflection
angle measured clockwise from the x-axis and ae
is the linear approximation of the effect of ±e on
CLt . Since the horizontal tail of the F-8 is within
the wing wake, the downwash angle ² has to be
included in determining the tail angle-of-attack.
Here, we adopt a linear approximation, ²= a²®
from [10]. The tail angle-of-attack can then be
given by

®t = ® ²+ ±e = (1 a²)®+ ±e: (7)
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Fig. 6. Location of Hopf bifurcation points in (m,±e) space.

Fig. 7. Location of cyclic fold bifurcation points in (m,±e) space.

The aircraft data adopted from [10] is used in the
following numerical study. Here, we assume the
aircraft flies at constant velocity of u= 845:6 ft/s on
altitude of 30,000 ft.
In [7–9], an approximation of the wing lift force

coefficient is chosen to be closer to the realistic one in
the stall and post-stall regions as given by

Lw =QS(C
1
Lw
® C2Lw®

3)
1

1+
®

0:41

60 : (8)

For simplicity and without loss of generality, we
assume the moment of inertia (Iy) is proportional to

m. Adopting the wing lift coefficient as in (8), we can
rewrite the system (4) as

_®= qcos2®+0:0381cos2®cosµ

1
m
(564:434® 1693:301®3) cos3® W

1
m
(35:145® 6:560®3 + 144:096±e

79:077®2±e 316:309®±2e 421:745±3e )

cos2®cos(0:25®+ ±e) (9a)

_µ = q (9b)
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Fig. 8. System responses in time history and phase plane for m= 4:72m0 at ±e = 0:05.

_q=
1
m
264:409q+

1
m
(622:222® 1866:667®3) cos® W

1
m
(3423:386® 641:885®3 + 14035:883±e

7702:619®2±e 30810:476®±2e 41080:634±3e )

cos(0:25®+ ±e), (9c)

where

W :=
1

1+
®

0:41

60 :

First, we analyze the stability and local
bifurcations of the system (9) by treating ±e as
principal system parameter and fixing another
parameter m at different setting values. By using
code AUTO, we find that the various bifurcations
occurred in the system (9) with respect to the system
parameters change. The locations of these bifurcations
are also varied. In the following numerical study,
the figures show the equilibrium points and periodic
solutions that emerge from the bifurcation point of

the system (9) for distinct parameter condition in the
system parameter ±e [ 0:2,0], where

“——–” (solid line) stable equilibrium point,
“ ” (dotted line) unstable equilibrium point,
“o” (circle) stable limit cycle,
“x” (cross) unstable limit cycle.
Denote m0 the original mass of the F-8 aircraft.

Fig. 1 shows the bifurcation diagram for the condition
of m=m0. As observed in Fig. 1, there are two limit
points and two Hopf bifurcation points of which one
is stable and the other is unstable. The equilibrium
points are found to disappear between two limit
points, while the limit point on the right-hand side is a
saddle-node bifurcation point.

The bifurcation diagram for the condition of
m = 4:47m0 is depicted in Fig. 2. Two pairs of Hopf
bifurcation points are observed and the limit cycle
folded up in one side become stable. As the value of
the mass m increases, the left limit point becomes a
saddle-node bifurcation point at the parameter value
m > 4:5m0 as presented in Fig. 3.
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Fig. 9. System responses in time history and phase plane for m= 4:72m0 at ±e = 0:069.

It is interesting to note that the stable limit cycle
crosses the discontinuity of equilibrium points at the
parameter value of m = 4:72m0 as depicted in Fig. 3.
This might provide a solution of connecting the jump
behavior between two saddle-node bifurcation points
as ±e varies. Fig. 4 presents that the discontinuity of
system equilibria disappears at the parameter value of
m = 4:75m0. Here, two saddle-node bifurcation points
are disappeared while the two pairs of Hopf
bifurcation still exist.
From the above numerical study, it is concluded

that the parameter m may play an important role in
longitudinal flight dynamics. In the next section,
two-parameter bifurcation analysis of system (9) is
carried out by treating both of the elevator deflection
±e and the mass m as system parameters.

IV. TWO-PARAMETER BIFURCATION ANALYSIS

As presented in Section III, we know that aircraft
mass m will affect the existence of equilibrium points.
By doing rigorous simulations with different setting
value of m, we find that the two limit points of

system (9) close to each other as mass increases and
vanishes at the new value of mass as m = 4:7284m0
as depicted in Fig. 5. It is also observed from Fig.
5 that one of the two limit points is a saddle-node
bifurcation point for m 4:4696m0, while both of the
two limit points happen to be saddle-node bifurcation
points for 4:4696m0 m 4:7284m0. As observed in
simulations, not only the limit points will move, but
also the bifurcation points are rearranged as parameter
values vary. Moreover, the system (9) produces two
additional new bifurcation points for µ < 0 and µ > 0,
respectively, for m = 4:4696m0, and the periodic
solutions emerging from these bifurcation points
couple for each pair of Hopf bifurcations. Fig. 6
indicates the location of Hopf bifurcation points of m
versus ±e. It is found from Fig. 6 that two additional
Hopf bifurcation points appear at m > 4:4696m0
corresponding to µ > 0 and µ < 0. The location of
cyclic fold bifurcation in two parameter space is also
depicted in Fig. 7.

From Fig. 1, the angle of attack is found to
be limited within about 0:01 rad and the aircraft
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Fig. 10. Operation regime of longitudinal flight dynamics in (m,±e) space.

may lose its stability as the elevator deflection
angle ±e increases in order to attain larger
angle-of-attack. Motivated by the simulation results,
the angle-of-attack is found to be increased without
loss of stability by varying the elevator deflection
angle ±e and aircraft mass m . For instance, as
depicted in Fig. 3 for m = 4:72m0, the location of
the stable limit cycle and that of the equilibrium
point overlap at ±e = 0:066. In such a case, the
angle-of-attack can be promoted by changing the
value of ±e though there are no stable equilibrium
points between the two saddle-node Hopf points for
negative pitch angle µ. Indeed, as ±e decreases from
zero, the states will first remain at stable equilibrium
point, and then jump to the stable limit cycle when ±e
crosses the first critical value at which a saddle-node
bifurcation occurs. As ±e decreases further, the
oscillation will continue until ±e crosses the second
critical value at which the left saddle-node-Hopf
bifurcation (or the so-called “cyclic-fold” bifurcation
point) occurs. The system states will then converge
to a stable equilibrium again, and the angle-of-attack
can be increased efficiently by controlling the value of
±e. A hysteresis phenomenon will occur if we reverse
the changes of the elevator deflection angle. Figs. 8
and 9 show the typical time responses of the system
states before and after ±e crosses the first saddle-node
bifurcation point. The system states converge to the
stable equilibrium point for ±e = 0:05 as in Fig.
8, while they converge to a stable limit cycle for
±e = 0:069 as depicted in Fig. 9.
Fig. 10 depicts that the longitudinal flight

dynamics can be divided into several maneuvering
regions in the two-parameter space. This diagram
will be useful in providing more understanding of the

longitudinal flight dynamics. As the values of ±e and
m are chosen, the corresponding type and/or location
of bifurcation phenomena can be determined by the
diagram as in Fig. 10. The simulations presented
in Sections III and IV demonstrate the distinct
bifurcation phenomena as well as different dynamical
behaviors within each regime of parameter space.

V. CONCLUSIONS

In this paper, we have investigated the bifurcation
analysis of longitudinal flight dynamics with respect
to two important control parameters: the elevator
deflection ±e and the mass of the aircraft m. Nonlinear
phenomena, such as saddle-node bifurcation and Hopf
bifurcation, are observed in the numerical simulation
results for the dynamics of the F-8 aircraft as system
parameters vary. The occurrence of saddle-node
bifurcation and Hopf bifurcation may result in jump
behavior and pitch oscillations. These results agree
with previous observations presented in existing
literatures [1–6]. The discontinuity of the system
equilibrium caused by these bifurcations might
contribute to the sudden jump behavior in pitch axis
dynamics. Such observations might be very important
for the design of fighter aircraft when the mass
change becomes significant.
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ERRATA: Charge Equalization for Series-Connected
Batteries1

Figures 5, 6, and 7 should be replaced with the
figure below and the figures on the following page, as
the distinction between active and inactive subcircuits
in various modes was not as clear as desired.

Fig. 5. Operation modes for activating subcircuits E1.
(a) Mode I. (b) Mode II.
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