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Abstract. The oscillatory characteristics of magnetoconductance for a junction composed of a supercon-
ductor and a semiconductor, in which two parallel quantum wave guides are coupled with each other
through a potential barrier layer, are studied systematically. To model the imperfectness of the interface,
we introduce a δ−function scattering potential barrier lying close to the interface of the junction. The
magnetoconductance oscillations (MCO) in this system stem from two sources: one is the interference of
wave functions of quasi-particles due to multiple Andreev reflections at the interface; the other is attributed
to the variation of the number of the propagation modes when introducing the isolating barrier layer. The
introduction of the isolating layer in the quantum wave-guides strongly modifies MCO. We also present a
physical picture for the MCO based on a phenomenological argument. The theoretically fitted results are
in good agreement with numerical ones.

PACS. 73.40.-c Electronic transport in interface structures – 74.80.Fp Point contact; SN and SNS junctions
– 73.21.Hb Quantum wires – 85.35.Be Quantum well devices (quantum dots, quantum wires, etc.)

1 Introduction

In recent years the transport properties of quasipar-
ticles (QPs) in normal-conductor-superconductor “hy-
brid” mesoscopic structures have attracted much at-
tention [1–4]. Many interesting phenomena have been
revealed in various “hybrid” mesoscopic systems, for in-
stance, normal-metal-superconductor (NS) junctions, or
S − I − S, S − N − S, S − I − N , N − I − N − S junc-
tions [5–14]. Many of the novel characteristics of the NS
junctions originate from the well-known Andreev reflec-
tion (AR) [13]: An electron excitation above the Fermi
level in the normal metal is reflected at the normal-metal-
superconductor (NS) interface as a hole excitation below
the Fermi level. The missing charge of 2e is converted to
a supercurrent.

Most of the present technological efforts in this area are
aimed at fabricating a direct contact between a supercon-
ducting film and the two-dimensional electron gas (2DEG)
in a semiconductor heterostructure. The transport of
the QPs can be made ballistically by employing a high-
mobility 2DEG confined in a semiconductor heterostruc-
ture. Such a “hybrid” system would be affected by both
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AR and mesoscopic effects. Recently, superconductor–
semiconductor–superconductor (S–Sm–S) junctions have
been realized in strong magnetic fields [15,16].

The origin of the magnetoconductance oscillations
(MCO) in Sm–S junctions has been explored [17–19]. It
is found that the occurrence of the MCO is due to the
presence of both normal and ARs at the interface, lead-
ing to interference between the wave functions of QPs.
It is this interference that results in the MCO. The in-
terplay between the classical cyclotron motion of a QP
and the phase shift caused by the magnetic field is the
source of the MCO. The effects of disorder near the junc-
tion and roughness of the interface of Sm-S junctions also
have been investigated [17–19]. The MCO are substan-
tially suppressed by these effects.

In this paper, we investigate the transport properties
of QPs in a modified Sm-S junction, which is composed of
a superconductor (S) and a semiconductor (Sm) contain-
ing a laterally potential barrier layer inside the semicon-
ductor region. Therefore, it forms a dual–channel quan-
tum waveguide (DQW) of semiconductor coupled to each
other by this thin isolating barrier layer. To model the
imperfectness of the interface of the Sm-S junction and
the magnetic penetration depth effect at the interface, we
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introduce a δ−function scattering potential barrier lying
close to the interface of junctions. In a previous paper [20],
we have studied in detail the MCO in this pure DQW with
an infinite length in the normal state. We found that the
quantized conductance of such a structure as a function of
Fermi energy or magnetic field exhibits square–wave–like
oscillations. This feature of the conductance is closely re-
lated to the oscillatory energy-dispersion spectrum of elec-
tron. Motivated by the previous work [20], we are inter-
ested in what are the effects of this oscillatory dispersion
on the properties of the MCO in the Sm-S junctions. From
quantum mechanics calculations, we find that the MCO of
the proposed Sm-S junctions originate from two sources:
One is from interference of the wave functions of QP, due
to the coexistence of both the normal and multiple ARs at
the interface. The other is from the oscillatory variation
of the number of propagating modes with magnetic fields.
The pattern of the MCO strongly depends on the coupling
strength between the two subwaveguides inside the DQW.
We study the influences of various structural and physical
parameters of the junctions as well as the interface scat-
tering on the MCO in detail. To explain the MCO, we
present semiclassical phenomenology calculations, similar
to the paper of Asano [18], to fit the numerical results. The
theoretically fitted results are in good agreement with the
numerical ones.

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief description of the model Sm-S junc-
tion and the necessary formulae used in the calculations.
The numerical calculation results are presented in Sec-
tion 3 with analyses. Finally, the conclusion is made in
Section 4. In the Appendix, we present a detailed deriva-
tion, based on the BTK theory [5], of the reflective and
transmissive coefficients for the electron-like and hole-like
quasi-particles at the Sm-S junction under zero magnetic
field and the transmissive and reflective coefficients of
quasi-particle through a single barrier layer when the par-
ticle impacts obliquely upon the surface of the barrier.

2 Model Sm-S junction and calculation
method

The system consists of a dual-channel quantum waveguide
(DQW) in a two-dimensional electron gas (2DEG) con-
nected to a semi-infinite superconductor (S) of width W ,
as shown in Figure 1. The formed Sm-S junction is aligned
in the xy plane; and the DQW is located in x ≤ 0 region,
while the superconductor (type I or II) occupies the re-
gion x > 0. A modified Sm-S junction is produced with
an interface at x0 = 0. One very thin scattering barrier
layer with a δ−function potential of strength H is placed
at the interface to simulate the imperfectness of interface
and the magnetic penetration depth effect at the Sm-S in-
terface. Two parallel quantum waveguides (QWs) are cou-
pled through a thin layer of potential barrier with square
profile of height V0 and width ∆W . The widths of two sub-
waveguides are WI and WII, respectively. Therefore, total
width of the QW is W = WI + WII + ∆W . The DQW is
subjected to magnetic field B along the z−direction. In

Fig. 1. Schematic view of a semiconductor-superconductor
junction with a lateral potential barrier isolator inside the semi-
conductor region. The hatched region represents the supercon-
ductor. The dual quantum waveguides have widths of WI and
WII, they are coupled with each other through a square poten-
tial barrier with a thickness of ∆W and a height of V0. The
magnetic field B is applied in the ẑ direction in the semicon-
ductor only. The δ−function potential barrier is placed at the
Sm-S interface to model the interface scattering effect. The
inset shows the profile of the potential in the semiconductor
region.

the present work, we limit the applied magnetic field only
in the semiconductor region. The current flows along the
x−direction. For simplicity, we employ a hard-wall con-
finement potential for the lateral boundaries of the junc-
tion. Inside the QW, the potential is set at zero.

The Bogoliubov-de Gennes (BdeG) equation
(

H0(r) ∆(r)
∆∗(r) −H∗

0 (r)

)(
u(r)
v(r)

)

= E

(
u(r)
v(r)

)

(1)

provides a microscopic formalism for studying inhomo-
geneous superconductors and NS interfaces [9,21]. Here,
∆(r) is the pairing potential and H0(r) represents a single-
particle Hamiltonian in the effective mass approximation.
We follow BTK theory [5] and neglect the effect of a finite
bias on the scattering probabilities [22]. In the BdeG equa-
tion, we omit the phase of the pairing potential since only
the absolute value is important for the considered geom-
etry, and we choose the pairing potential to be uniform,
∆0 in the superconductor and zero in the semiconduc-
tor waveguides. We also assume that the effective masses
of electrons in the two materials can be different, m∗

N in
semiconductor and ms = m0 in superconductor.

We employ the Landau gauge of potential vector of the
magnetic field as

A =
{

(0, Bx) = (−By, 0) + ∇(Bxy) for x < 0,
(0, 0), for x ≥ 0.

(2)

The single-particle Hamiltonian is given by

H0 =
[

1
2m∗

N

(P − e

c
A)2 + Vc(y) + Hδ(x) − µN

]

, (3)

where the transverse confining potential Vc(y) is given by

Vc(y) =






∞, when |y| ≥ W/2;
V0, when − ∆W/2 < y < ∆W/2;
0, otherwise.

(4)
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µN indicates the Fermi energy in 2DEG. To model the
scattering effect due to the imperfectness of interface and
the magnetic penetration depth effect, we simply intro-
duce a thin potential barrier with a δ−function potential
of strength H at interface x0 = 0. After performing
the gauge transformation, the solution Ψ̃ to equation
H0Ψ̃ = EΨ̃ can be expressed in a variable separation form

Ψ̃(x, y) = eikxΦ̃E
k (y)ei eB

�c xy, (5)

where Φ̃E
k (y) satisfies the one-dimensional Schrödinger

equation
{

�
2

2m∗
N

[

(k +
eB

�c
y)2 − ∂2

∂y2

]

+ Vc(y) − µN

}

Φ̃E
k (y) =

EΦ̃E
k (y). (6)

We expand the wave function Φ̃E
k (y) in terms of basis

{

fl(y) =
√

2
W sin

[
πl
W

(
y + W

2

)]}

as

Φ̃E
k (y) =

∑

l

ck
l fl(y) (7)

and use the extended basis technique [23,24], for a given
positive energy E (for an electron-like QP), a set of eigen-
functions

{

Φ
(±)e
l (y)

}

and eigenvalues
{

k
(±)e
l

}

can be ob-
tained, while for a given negative energy −E (for hole-like
QP) again, the set

{

Φ
(±)h
l (y)

}

and
{

k
(±)h
l

}

can be ob-
tained, too. Thus, in the DQW region, when an electron-
like QP at mode n is injected into the Sm-S junction, the
wave function can be expressed as

ΨSm
n (x, y) =

(
1
0

)

eik(+)e
n xΦ(+)e

n (y)ei eB
�c xy

+
∑

l

Aln

(
1
0

)

eik
(−)e
l xΦ

(−)e
l (y)ei eB

�c xy

+
∑

l

Bln

(
0
1

)

eik
(−)h
l

xΦ
(−)h
l (y)e−i eB

�c xy. (8)

In the superconductor, the wave function can be ex-
pressed as

ΨS
n (x, y) =

∑

l

Cln

(
α+

β+

)

eiq+
l xfl(y) +

∑

l

Dln

(
α−
β−

)

e−iq−
l xfl(y),

(9)

where the wave number is given by

q±l =

√

2m0

�2
µS −

(
lπ

W

)2

± i
2m0

�2

√
|∆0|2 − E2, (10)

where µS denotes the Fermi energy in the superconductor.
When E < ∆0, the single-particle excitations will decay
in the superconductor. In this case, we have

α+ = α− = 1/
√

2, (11a)

β+ = β∗
− =

E − i
√|∆0|2 − E2

√
2∆0

· (11b)

When E > ∆0, the relevant single-particle excitations can
propagate through the superconductor. The correspond-
ing wave function can be expressed in the well-known form
α+ = β− = u0 and α− = β+ = v0 with

u2
0 =

1
2

(

1 +

√
E2 − |∆0|2

E

)

= 1 − v2
0 . (12)

By using the conventional matching technique, i.e., the
continuity of the wave function and its normal derivative
with the inverse effective mass weight factor, the coeffi-
cients Aln, Bln, Cln, and Dln can be fully determined.
According to the law of the current conservation, the cur-
rent flowing through the system can be calculated in the
normal region [5]

I(V ) =
2e2

h

′∑

l,n

∫ +∞

−∞
[f0(µN + E − eV ) − f0(µN + E)]

× [1 − Ree,ln + Rhe,ln]dE, (13)

where f0 denotes the Fermi distribution function and the
summation

∑′
l = Nc runs over the all propagating chan-

nels. The reflection probabilities for electron-like and hole-
like QPs are evaluated by

Ree,ln =
(

v
(−)e
l /v(+)e

n

)

|Aln|2, (14a)

Rhe,ln =
(

v
(−)h
l /v(+)e

n

)

|Bln|2, (14b)

where v
(±)e,h
l is the group velocity of the QP in channel l

and given by

v
(±)e
l =

�

m∗
N

∫ 0.5W

−0.5W

Φ
∗(±)e
l (y)

[

k
(±)e
l − eB

�c
y

]

Φ
(±)e
l (y)dy,

(15a)

v
(±)h
l =

�

m∗
N

∫ 0.5W

−0.5W

Φ
∗(±)h
l (y)

[

k
(±)h
l +

eB

�c
y

]

Φ
(±)h
l (y)dy.

(15b)

Using Ree,ln and Rhe,ln evaluated at E = eV , the dif-
ferential conductance at T = 0 K and zero bias can be
evaluated by the Takane-Ebisawa formula [7]

G(V ) =
∂I

∂V
=

2e2

h

′∑

l.n

(δl,n − Ree,ln + Rhe,ln) , (16)

where l and n are the propagation channels in 2DEG under
magnetic field, Ree,ln and Rhe,ln are evaluated at µN +E.
The current conservation law requires

′∑

l

(Ree,ln + Rhe,ln) = 1. (17)

3 Numerical results and analyses

We now present the numerical results of magnetoconduc-
tance of QPs in the system as a function of β ≡ µN/�ωc,
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where ωc = eB/cm∗
N is the cyclotron frequency, for dif-

ferent parameters. β coincides with the filling factor of
quantum-Hall physics when the normal region is a 2DEG.
As the pair potential in superconductors is typically 1 meV
and the Fermi energy in 2DEG is about 100 meV, we thus
fixed ∆0/µN = 0.02 throughout this paper. We also fixed
the width of the wire to be WkF = 40, and the incident
energy of the QPs E/∆0 = 0.

To give a better comparison and reveal the origin of
the MCO, we first display the variation of the magne-
toconductance with β in two cases of the QW with and
without the laterally isolating barrier layer in Figure 2a.
Solid and dot-dashed curves correspond to the QW with
and without isolating barrier layer, respectively. The iso-
lating barrier layer is placed along the horizontal central
line of the QW, and we set ∆0 = 0.0. In this situation,
the system corresponds to a SQW (without the isolating
barrier layer) Sm-N junction or a DQW (with an isolating
barrier layer) Sm-N junction with an interface at which the
magnetic field changes abruptly, i.e., the magnetic field is
a finite B for x ≤ 0, and 0 for x > 0. The height of the
isolating barrier is V0/µN = 0.5, its width ∆W/W = 0.05
or 0, m∗

N/m0 = 1.0, µS/µN = 1.0, Vbh = kF H/µN = 0,
kF W = 40, and µN = �

2k2
F /2m∗

N . It is clearly seen that
the magnetoconductance curve (dot-dashed line) for the
SQW Sm-N junction exhibits a well-known step increase
with the increase of β. When increasing β, i.e., when de-
creasing the magnetic fields, the number of the magnetic
populated levels is correspondingly increased, thus, new a
propagation channel is opened step-by-step, correspond-
ingly, the next new conductance step appears. However,
the leading edge of the conductance plateau, near the
threshold magnetic field of new channel opening, is al-
ways rounded due to the presence of the magnetic inter-
face at x = 0. It is the existence of the magnetic interface
that causes the enhancement of normal electron reflec-
tion, which contributes to a negative conductance. Near
every threshold magnetic field, the corresponding longitu-
dinal (along the x−axis) kinetic energy of electron-like QP
is much smaller than the magnetic scattering potential,
therefore, the electron reflection becomes striking. How-
ever, when further decreasing the magnetic field, the lon-
gitudinal kinetic energy of the electron-like QP becomes
larger than the magnetic scattering potential, thus, the
electron reflection effect becomes weak and negligible and
the conductance curve develops into an ideal plateau. The
conductance curve (solid curve) for the DQW Sm-N junc-
tion exhibits a series of peaks superimposed upon every
conductance plateau at its leading edge with the increase
of β. This behavior is robust with respect to the increase
or decrease of the number of the propagation channels
with decreasing magnetic field. This oscillatory conduc-
tance can be well explored as coming from the dispersion
behavior of electrons in the infinite long DQW, as dis-
cussed in reference [20].

We now display the variation of magnetoconduc-
tance G, in units of 2e2/h, with β ≡ µN/�ωc for the
SQW Sm-S junction and DQW Sm-S junction in Fig-
ures 2b and 2c, respectively. The relevant parameters are

Fig. 2. (a) Calculated magnetoconductance as a function of
β = µN/�ωc for two normal state structures: One is the single
QW (SQW) Sm-N junction with an interface (at x = 0) at
which the abrupt change of magnetic fields appears, i.e., the
magnetic field B = 0 for x ≥ 0 and B for x < 0; the second
structure is the DQW Sm-N junction. The DQW consists of
the coupled dual-channel quantum waveguides. The magnetic
field only applies to the DQW region. The relevant parameters
are: V0/µN = 0.5, ∆W/W = 0.05, µS/µN = 1, m∗

N/m0 = 1,
kF W = 40, and Vbh = 0. The solid curve corresponds to the
DQW Sm-N junction and the dashed curve to the SQW Sm-N
junction. (b) Calculated magnetoconductor as a function of β
for the SQW Sm-S junction. The parameters are: ∆0 = 0.02,
kF W = 40, m∗

N/m0 = 1, µN/µS = 1, and Vbh = 0. The solid
curve corresponds to G in units of 2e2/h and the dotted-dashed
curve indicates the number Nc of the propagating channels in
the SQW. (c) As Figure 2b except for DQW with ∆W/W =
0.05 and V0/µN = 0.5.
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Fig. 3. Effects of the interface scattering potential on G-β plot in the DQW Sm-S junction: (a) Vbh = 0.0, (b) 0.5, (c) 1.0, and
(d) 2.0, respectively. The other parameters are the same as those in Figure 2c. Solid curves correspond to G and dot-dashed
curves to Nc variation for reference.

the same as those in Figure 1a, except for ∆0/µN = 0.02
now. All the solid curves correspond to conductance and
dot-dashed lines to the number Nc of the propagating
channels in the 2DEG. Hereafter, we plot all figures in this
manner. For a clear comparison, we also show the conduc-
tance curve of the SQW Sm-S junction in Figure 2c by the
dashed line. In this case the AR is switched on due to the
finite pair potential of the superconductor. Figure 2b is
essentially the same as that of Figure 1a in reference [18].
The conductance decreases in a step manner with increase
of magnetic field (14 > β > 9) in Figure 2b as the sub-
bands are magnetically depopulated. The other hand, the
Andreev reflection is active now, thus, the quantization of
the conductance now is in a unit of 4e2/h, doubling the
quantization value (2e2/h) of conductance in the SQW
Sm-N junction. Normal electron reflection at the interface
of the abrupt change of magnetic field is the source of the
appearance of the rounded corner in all the conductance
plateaus.

However, in the intermediate-field region (8 > β >
4.5), G drops below the Nc-curve because the electron
reflection now is significantly enhanced and the AR be-
comes imperfect. In the uniform SQW with µS = µN and

m∗
N = m0, Ree → 1, consequently, only the hole-like QPs

are excited from the AR and they move in skipping orbits
along the interface and boundary wall. The hole-like QPs
now become the major current carriers. The quantum in-
terference of the electron wave functions disappears. The
variation of magnetoconductance with magnetic fields in
the DQW Sm-S junction is very different from that of the
SQW Sm-S junction, as shown in Figure 2c. The profiles
of G seems to be similar to the curve of Figure 2b with the
exception of superimposing upon a series of peaks when
9 > β > 2, which are generated from the oscillations of Nc.
The position of the peaks is perfectly aligned with that of
the peaks of Nc. It concludes that the whole behavior of
G is essentially dominated by the variation of Nc. These
oscillatory peaks are no longer caused by the quantum in-
terference of wave functions of QPs undergoing multiple
AR at the interface alone. A new mechanism of the MCO
in the DQW Sm-S junction takes over now.

We now survey the effects of the scattering potential at
the interface on G. The results are displayed in Figure 3
for different scattering strengths of Vbh: (a) Vbh = 0.0,
(b) 0.5, (c) 1.0, and (d) 2.0, respectively. The other
parameters remain unchanged as the same as those in
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Figure 2c. It is clearly seen that when switching on the
scattering potential, the profile of G is substantially mod-
ified. The effects are two-folds: (i) G exhibits striking os-
cillations which no longer exactly follow the oscillations of
Nc. The number of oscillation peaks is more than that of
Nc, (see Figs. 3b–3d). As the normal reflection of electron-
like QPs at the interface now is considerably enhanced due
to the introduction of scattering potential, the superposi-
tion of the multiple ARs with different phases causes the
phenomenon of “beat frequency” of wave functions, which
leads to large oscillations; (ii) the magnitude of G is signif-
icantly reduced from twice the value of Nc to that smaller
than Nc with the increase of Vbh, due to the enhancement
of Ree.

Figure 4 displays the theoretically fitted results of the
MCO in both the SQW and DQW Sm-S junctions based
on a phenomenological argument (see next paragraph in
detail): (a) µS/µN = 1, m∗

N/m0 = 1, Vbh = 0.5, and
∆W/W = 0; (b) as (a) except for ∆W/W = 0.05. The
other parameters are: kF W = 40, ∆0/µN = 0.02, and
V0/µN = 0.5. Solid lines correspond to the numerical cal-
culated results, dashed lines to theoretically fitted results
and the dot-dashed lines refer to the Nc variation for ref-
erence. The horizontal straight line with two ended arrows
in these plots indicates the magnetic field range of MCO
by theoretically fitting, which satisfies the condition:

W/2 < Lc < W, (18)

i.e., 10 > β > 5, where Lc ≡ 4β/kF is the diameter of the
cyclotron orbit of QPs.

To better understand the origin of the MCO in the
DQW Sm-S junction, we basically follow the discussions
in reference [18] to perform the relevant quantum mechan-
ical calculations. As indicated by reference [18], by using
the S-matrix in the one-dimensional Sm-S junction, we can
explain the MCO behavior in the two-dimensional Sm-S
junction. The cyclotron orbit of a QP plays an important
role in the MCO. Figure 5 shows the schematic picture
of the typical trajectories of the QP reflected at the in-
terface of the DQW Sm-S junction. The solid and dashed
lines denote the trajectory orbit of a QP in the electron
and hole branches, respectively. Figure 5a shows that an
electron-like QP is incident from the lower-left corner and
undergoes double ARs at y1 and y2 at the interface. Elec-
tron like QP and the induced hole-like QP are tunneled
or reflected once in the isolating barrier layer. Hereafter
we refer it to as Orbit #1. The position of the orbital
starting point is located at Lc − W > y > 0. Figure 5b
shows the second class of orbits (referred to as Orbit #2),
the position of this orbital starting point is located at
W/2 > y > Lc −W . Figure 5c shows the third class of or-
bits (referred to as Orbit #3), The position of the orbital
starting point is located at W > y > W/2.

We now discuss the wave functions of these three kinds
of orbits of QP in detail. For Orbit #1, an incident QP is
reflected doubly at the Sm-S interface, therefore, it pro-
duces four trajectories, i.e., two electron branches and two
hole branches, as seen in Figure 5a. The first reflected
electron-like (hole-like) QP at y1 crosses the isolating bar-
rier layer and then undergoes the second AR at y2 on the

Fig. 4. Theoretically fitted results of G-β behavior in SQW
Sm-S and DQW Sm-S junctions. (a) µS/µN = 1.0, m∗

N/m0 =
1.0, Vbh = 0.5, ∆W/W = 0 (SQW); and (b) as (a) except for
∆W/W = 0.05 (DQW). The other parameters are: kF W = 40,
∆0/µN = 0.02, and V0/µN = 0.5. The numerical results are
shown by solid curves while the theoretically fitted results are
shown by the dashed curves. The variation of Nc is indicated by
dot-dashed lines. The horizontal straight line with two ended
arrows indicates the relevant magnetic field range in which the
theoretically fitted calculation is achieved.

interface, and then impacts upon the upper boundary wall
of the DQW and moves along the upper wall of the QW
in a skipping manner. The QP acquires two additional
phases: One is from the cyclotron motion of the QP in the
magnetic field, i.e., travelling from y1 to y2 along a half
circle, and the other comes from the tunneling process of
the QP through the isolating barrier layer. The gained ex-
tra phase in the cyclotron motion for the electron-like QP
is φB = (e/�c)

∫ y2

y1
drA·(r) = −πβ, while the gained extra

phase for the hole-like QP is −φB [18], because the charge
of the hole-like QP is opposite to that of the electron-like
QP, therefore, the direction of the cyclotron motion of the
hole-like QP is opposite to that of the electron-like QP. In
the following, we will decompose the transport processes
of the QP into several sub-trajectories. We first consider
the double ARs at the Sm-S interface, once transmission
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Fig. 5. Schematic picture of various trajectories of the QPs, travelling in the DQW Sm-S junction. The solid and dashed lines
denote the trajectory motion of an electron-like QP and hole-like QP, respectively. Lc ≡ 4β/kF is the diameter of the cyclotron
orbit.

and once reflection at the isolating barrier layer by using
the S-matrix in the one-dimensional case. The effects of
the magnetic fields (φB), the tunneling (φbe,bh) and the re-
flection (φr

be,bh) in the isolating barrier layer are ascribed
to an appropriate phase shift in the wave function of QP,
as described below:

Ψ
e(1)
1 = |ree|eiφee · |tbe|eiφbe · eiφB · |ree|eiφee , (19a)

Ψ
e(1)
2 = |reh|eiφeh · |tbh|eiφbhe−iφB · |rhe|eiφhe (19b)

Ψ
h(1)
3 = |rhe|eiφhe · |tbe|eiφbe · eiφB · |ree|eiφee , (19c)

Ψ
h(1)
4 = |rhh|eiφhh · |tbh|eiφbh · e−iφB · |rhe|eiφhe , (19d)

Ψ
re(1)
5 = |rbe|eiφr

be · |ree|eiφee ,

for electron reflection at isolator layer, (19e)

Ψ
rh(1)
6 = |rbh|eiφr

bh · |rhe|eiφhe ,

for hole reflection at isolator layer. (19f)

The two paths of the QP in the electron branch in-
terfere with each other and |Ψe(1)

1 + Ψ
e(1)
2 |2 is the reflec-

tion probability for electron-like QP, while |Ψh(1)
3 +Ψ

h(1)
4 |2

is the reflection probability for hole-like QP. However,
Ψ

re(1)
5 (Ψrh(1)

6 ) does not participate in the quantum inter-
ference process because the trajectory, when approaching
the isolating barrier layer, deviates from the trajectory of

the QP described by Ψ
e(1)
1 and Ψ

e(1)
2 , therefore, they never

meet with each other. The contribution of Orbit #1 to G
is evaluated as

G1 = Θ(y)Θ((W − Lc) − y) ·
(

2e2

h

)

Ñc · p1(β)

×
[
∣
∣
∣Ψ

h(1)
3 + Ψ

h(1)
4

∣
∣
∣

2

−
∣
∣
∣Ψ

e(1)
1 + Ψ

e(1)
2

∣
∣
∣

2

+
∣
∣
∣Ψ

rh(1)
6

∣
∣
∣

2

−
∣
∣
∣Ψ

re(1)
5

∣
∣
∣

2
]

, (20)

where Θ(y) represents a Heaviside function, i.e., Θ(y) = 1
when y ≥ 0, while 0 when y < 0. p1(β) is a probability
weight factor of different orbits. Ñc denotes the effective
number of the propagating modes in the DQW.

Similarly, for Orbit #2 in Figure 5b, we have

Ψ
e(2)
1 = |tbe|eiφbe · eiφB · |ree|eiφee , (21a)

Ψ
h(2)
2 = |tbh|eiφbh · e−iφB · |rhe|eiφhe , (21b)

Ψ
re(2)
3 = |rbe|eiφr

be · |ree|eiφee ,

for electron reflection at isolator layer, (21c)

Ψ
rh(2)
4 = |rbh|eiφr

bh · |reh|eiφeh ,

for hole reflection at isolator layer. (21d)
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The contribution of Orbit #2 to G is

G2 = Θ(y − (W − Lc))Θ(W/2 − y) ·
(

2e2

h

)

Ñc

× p2(β)
[∣
∣
∣Ψ

h(2)
2

∣
∣
∣

2

−
∣
∣
∣Ψ

e(2)
1

∣
∣
∣

2

+
∣
∣
∣Ψ

rh(2)
4

∣
∣
∣

2

−
∣
∣
∣Ψ

re(2)
3

∣
∣
∣

2
]

.

(22)

Finally, for Orbit #3, we have

Ψ
e(3)
1 = |ree|eiφee(at y1), (23a)

Ψ
h(3)
2 = |rhe|eiφhe(at y1). (23b)

and the contribution of Orbit #3 to G is

G3 = [δNc,Ñc
Θ(Lc − y) + (1 − δNc,Ñc

)Θ(W − y)]

× Θ(y − W/2) ·
(

2e2

h

)

Ñc

× p3(β)
[∣
∣
∣Ψ

h(3)
2

∣
∣
∣

2

−
∣
∣
∣Ψ

e(3)
1

∣
∣
∣

2
]

. (24)

The total magnetoconductance G can be calculated as

G =
2e2

h
Ñc +

1
W

y=W∑

y=0

[G1 + G2 + G3] /

∫ W

0

dyΘ(y)
[

δNc,Ñc
Θ(Lc − y) + (1 − δNc,Ñc

)Θ(W − y)
]

.

(25)

To complete the relevant calculations, we need to exactly
estimate the related coefficients, such as ree, rhe, rhh, rhe,
tbe, tbh, rbe, and rbh, (see the Appendix for details).

We consider that some circular orbits of the QP may
directly cross and arrive at the upper boundary wall of
the DQW without touching the Sm-S interface, we in-
troduce an approximate weight factor for trajectory cir-
cles as p1(β) = p2(β) = p3(β) = 1, and G2 = G3 when
Nc = Ñc. During the fitted procedure, to acquire the bet-
ter fitting results, we introduce two auxiliary adjusting pa-

rameters, η1 and η2, such that
[

η1

∣
∣
∣Ψ

h(3)
2

∣
∣
∣

2

− η2

∣
∣
∣Ψ

e(3)
1

∣
∣
∣

2
]

with η1 = 0.8 and η2 = 1.2, instead of the original form

of
[∣
∣
∣Ψ

h(3)
2

∣
∣
∣

2

−
∣
∣
∣Ψ

e(3)
1

∣
∣
∣

2
]

in equation (24). The necessity of

these two auxiliary parameters may represent the correc-
tion for the two-dimensionality of the system.

Regarding the effective number Nc of the propagat-
ing modes, we prefer to refer to the results presented
in reference [20]. It indicates that for the DQW, in the
resonant-tunneling regime, a pair of edge states around
the barrier layer with oppositely moving directions are
coupled with each other and form a circulating localized
state, leading to the quenching of the related propagating
modes (formation of vortex flow). This orbit does not con-
tribute any net current, thus, we need to subtract these
orbits. We assume that the number of quenching modes is

∆Nc = 0.5[Nc− ν/2]Θ (Nc − ν/2 − 2) from the numerical
simulations, where ν/2 = (β +1/2) denotes the half filling
factor of the Landau levels of bulk materials in magnetic
fields. Finally, we have

Ñc = Nc − ∆Nc. (26)

We employ these equations to fit the MCO curves, the
fitted results are illustrated by the dashed lines in Fig-
ures 4a and b. The horizontal straight line with two ended
arrows in the plots indicates the fitting range of magnetic
fields. It is evident that the theoretically fitted results are
in good agreement with the numerical ones.

4 Conclusions

We present the numerical simulations to reveal the mag-
netoconductance oscillations (MCO) in junctions formed
by a superconductor (S) and a semiconductor (Sm). In the
semiconductor region, the dual-parallel coupled quantum
waveguides (DQW) are coupled through a thin isolating
barrier layer. We also introduce a thin barrier with the
δ−function potential at the Sm-S interface to model the
imperfectness of the Sm-S interface and magnetic penetra-
tion depth effect. From the detailed analyses on the ob-
tained numerical results, we conclude that the origin of the
MCO in this modified Sm-S junction has two sources: One
is the usual interference effect of wave functions of quasi-
particles (QPs) undergoing multiple ARs at the Sm-S in-
terface; the other stems from the oscillatory variation of
the number of propagating modes when introducing the
isolating barrier layer in the DQW. We propose a physical
picture of the MCO within a framework of phenomenolog-
ical argument to explain the MCO spectrum, and theoret-
ically fitted results are in good agreement with numerical
ones. Multiple ARs of QP at the Sm-S interface produce
various trajectories of QP, and the interplay between the
classical cyclotron motion of the QP and the phase shift
of the QP by magnetic field and the isolating barrier layer
plays an important role for the MCO. The oscillatory vari-
ation of the number Nc of the propagating modes in the
DQW strongly modifies the MCO. The MCO peaks al-
ways are aligned with the peaks of Nc. It is anticipated
that the MCO can be controlled by appropriately adjust-
ing physical and structural parameters of the DQW Sm-S
junctions.
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Appendix

To complete the relevant calculations of the MCO in the
DQW Sm-S junction, we need to exactly determine the
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related coefficients of ree, rhe, rhh, rhe, tbe, tbh, rbe, and
rbh. We follow BTK [5] and consider that an electron-like
QP is incident inclined with an angle θin with respect to
the normal direction of the interface and it impinges onto
the Sm-S interface from the semiconductor at zero mag-
netic field. The Sm-S junction possesses different effective
masses of electron, m∗

N (semiconductor region) and m0

(S region), as well as different Fermi energies µN (semi-
conductor region) and µS (S region). At the interface it
has an amplitude a of undergoing AR, b of electron-like
QP reflection, c of electron-like QP transmission, and d of
hole-like QP transmission. The scattering effect at the in-
terface is modelled by a δ-function potential barrier Hδ(x)
and Vbh = 2m∗

NH/�
2kF . By using the standard matching

technique with the appropriate boundary conditions [5],
we can derive the relevant coefficients as

rhe = a = 2(qm + qp)kpu0v0/γ, (A.1a)

ree = b =
[

u2
0(qm + km − iVbh)(−qp + kp − iVbh)

− v2
0(qm + kp − iVbh)(−qp + km − iVbh)

]

/γ,

(A.1b)

tee = c = 2kpu0(qm + km − iVbh)/γ, (A.1c)
the = d = 2kpv0(qp − km + iVbh)/γ, (A.1d)

γ = u2
0(qm + km − iVbh)(qp + kp + iVbh)

− v2
0(qm − kp − iVbh)(qp − km + iVbh), (A.1e)

where

qp(m) =
√

m∗
N

m0

√
µS

µN
− sin2(θin) ± i

√
(|∆0|2 − E2)/µN ,

(A.2a)

kp(m) =

√

1 − sin2(θin) ± E

µN
· (A.2b)

For the incident hole-like QP from the normal side, we
have an amplitude b′ of undergoing AR, a′ of electron re-
flection, c′ of hole-like QP transmission, and d′ of electron-
like QP transmission. Also by employing the standard
matching technique with the appropriate boundary con-
ditions, we can get the relevant coefficients as

reh = a′ = 2(qm + qp)kmu0v0/γ, (A.3a)

rhh = b′ =
[

u2
0(qp + kp + iVbh)(−qm + km + iVbh))

− v2
0(qp + km + iVbh)(−qm + kp + iVbh)

]

/γ,

(A.3b)

thh = c′ = 2kmu0(qp + kp + iVbh)/γ, (A.3c)

teh = d′ = 2kmv0(qm − kp − iVbh)/γ. (A.3d)

u0 and v0 are given by equations (11a, 11b), and (12) in
the text. We then easily find

u0(E) = u0(−E); v0(E) = −v∗0(−E);
kp(E) = km(−E); qp(±E) = q∗m(±E).

Using these relations, we can obtain the general relation-
ships

γ∗(E) = γ(−E); ree = r∗hh(−E); rhe(E) = −r∗eh(−E);
tee(E) = t∗hh(−E); the(E) = −t∗eh(−E). (A.4)

In the limit of ∆0 < µN and E = 0, the above mentioned
expressions can be reduced to [18]

ree =
√

(1 − |ξ|2)2 + (2Imξ)2/(1 + |ξ|2)eiφee = r∗hh,
(A.5a)

rhe = 2Reξ/(1 + |ξ|2)e−iπ/2 = reh, (A.5b)

where
ξ =

√

(m∗
N/µ0)(µS/µN ) + iVbh,

and

tan φee ≈ 2Vbh/[(m∗
N/m0)(µS/µN) − 1 + V 2

bh].

Therefore, we have

φhh = −φee; |ree| = |rhh|;
φhe = φeh = −π/2; |rhe| = |reh|. (A.6)

When ξ = 1, we have |ree| = 0. By using Ree,ln = 0
and the current conservation law, the conductance is G =
(4e2/h)Nc, where Nc is the number of the propagation
channels. In this situation, the AR becomes perfect.

We now calculate the transmissive and reflective coef-
ficients of the electron when it is incident with an oblique
angle θi with respect to the transverse normal of the iso-
lating barrier layer. The barrier height is V0 and its width
is ∆W .

Through standard calculations, we can get
tbe = |tbe|eiφbe , (A.7a)

|tbe| =
1

√

[cosh2(χkF ∆W ) + ( χ
2k )2(1 − k2/χ2)2 sinh2(χkF ∆W )]

,

(A.7b)

φbe =

− kkF ∆W + tan−1
[

− χ

2k
(1 − k2/χ2) tanh(χkF ∆W )

]

,

(A.7c)

and
rbe = |rbe|eiφr

be , (A.8a)

|rbe| =
(

1 +
k2

χ2

)

sinh(χkF ∆W )

× 1
√

[(1−k2/χ2)2 sinh2(χkF ∆W )+(2k/χ)2 cosh2(χkF ∆W )]
,

(A.8b)
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φr
be = tan−1

[(
2k

χ

)
1

1 − k2/χ2
coth(χkF ∆W )

]

, (A.8c)

where

k =
√

1 − sin θi + E/µN ,

χ =
√

(V0 − 1 − E)/µN + sin θi,

and

θi = [W/2 − (y + Lc/2)]/(Lc/2) =
W

Lc
− 1 − 2y

Lc
·

For the incident hole-like QP, we have tbh(E) =
t∗be(−E), |tbe(E)| = |tbh(−E)|, φbh(E) = −φbe(−E);
rbh(E) = r∗be(−E), |rbe(E)| = |rbh(−E)|, and φr

bh(E) =
−φr

be(−E); thus, we get |tbe(E)|2 + |rbe(E)|2 = |tbh(E)|2+
|rbh(E)|2 = 1.
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