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Second-Order Asymmetric BAM Design
With a Maximal Basin of Attraction

Jyh-Yeong Chang and Chien-Wen Cho

Abstract—Bidirectional associative memory (BAM) general-
izes the associative memory (AM) to be capable of performing
two-way recalling of pattern pairs. Asymmetric bidirectional
associative memory (ABAM) is a variant of BAM relaxed with
connection weight symmetry restriction and enjoys a much better
performance than a conventional BAM structure. Higher-Order
associative memories (HOAMs) are reputed for their higher
memory capacity than the first-order counterparts, yet there are
few HOAMs design schemes proposed up to date. To this end,
we are concerned in this paper with designing a second-order
asymmetric bidirectional associative memory (SOABAM) with
a maximal basin of attraction, whose extension to a HOABAM
is possible and straightforward. First, a necessary and sufficient
condition is derived for the connection weight matrix of SOABAM
that can guarantee the recall of all prototype pattern pairs. To
respect the complete recall theorem, an adaptive local training
rule, which is adaptive in the learning step size and updates only
the entries in the connection weight related to the most needful
bit of a prototype, is formulated and it leads to better results and
faster design. Then derived is a theorem, designing a SOABAM
further enlarging the quantities required to meet the complete
recall theorem will enhance the capability of evolving a noisy
pattern to converge to its association pattern vector without error.
Based on this theorem, our algorithm is also modified to ensure
each training pattern is stored with a basin of attraction as large
as possible. Computer simulations over the color graphics adapter
(CGA) fonts have demonstrated the superiority of the proposed
local training rule over other prevailing BAM schemes.

Index Terms—Asymmetric BAM, basin of attraction, Hebbian
learning, second-order associative memory.

I. INTRODUCTION

T HERE are wide-spread applications for associative
memories (AMs), which include pattern recognition, data

storage and retrieval, noise removal, and/or error correction
[1], [2]. The bidirectional associative memory (BAM) [3] is
a generalization of Hopfield AM model [4]. A BAM model
consists of neurons in two layers, the-layer and the -layer,
and a connection weight matrix between the -layer and the

-layer. A conventional BAM model admits a logical symmetry
restriction: the connection weight matrix from the-layer to
the -layer is the transpose of the connection weight matrix
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from the -layer to the -layer. A BAM performs a two-way
associative search for stored bipolar vector pairs by forward
and backward iterations between these two layers. For example,
a BAM model is designed to store the following bipolar pat-
tern pairs , , , , with two-way
retrieval capability as , where
and ; . The model iterates

and alternately
until the network reaches a stable pattern pair , which
should be one of the pattern pairs stored in the BAM system.
In the above, if there are just one set of pattern vectors, i.e.,

, to be stored in the BAM, then the model reduces
to the Hopfield network model, which is only autoassociative
and unidirectional in pattern memorization and recall.

In general, BAMs suffer from the following two drawbacks:
low storage capacity and weak error-correcting capability.
Many research efforts have been made to reduce these draw-
backs. These efforts can mainly be classified into the following
two directions. The first attempt deals with algorithmic im-
provements of the encoding schemes. In this context, multiple
training method [5], Ho-Kashyap learning [6], Hamming
stability learning [7], optimal stability training [8], and adaptive
relaxation method [9] were introduced recently. The other
attempt involves structure modification of the BAM network.
These include threshold vector augmentation [10], multilayer
BAM’s [11], feedforward BAM’s [12], and higher-order
connections [13] and [14]. Also in this line of architecture
modifications, the logic symmetry of the weight matrix in a
BAM model is relaxed to pursue a higher performance of a
BAM and leads to what is known as the asymmetric BAM
(ABAM) [15]. Embedded in the ABAM structure, enlarging
supporting function approach [16] and optimization-based
design [17] are proposed to our attentions.

The rationale behind the most encoding designs above is es-
sentially based on making the most use of the correlation ex-
isting among the bits of corresponding pattern pairs. Therefore,
certain degrees of bit error correcting capability are inherited
to all these methods, although different for each method. In
this regard, a BAM design scheme that can efficiently utilize or
create additional bit’s correlation would be more likely to out-
perform others. In line with generating a very large additional
bit’s correlation, the HOAM approach exploits the quadratic
bit’s correlation of pattern pairs and is highly reputed for its
excessively higher memory capacity than the first-order coun-
terpart [18]. The easy implementation alternative of HOAM by
optical holograms [18] and [19] constitutes another advantage
of HOAM’s. Moreover, we can easily build translation, rota-
tion, and scale invariances into a HOAM network, which is
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useful in invariant pattern recognition problems [20]. Stability
and statistical property of SOAMs [13], [14] is discussed in the
literature, yet there are few HOAM design schemes proposed
up to date. Enjoying the degrees of freedom relieved by the
second-order connections and logical asymmetry, we will pro-
pose in this paper a SOABAM design method with high perfor-
mance. This new SOABAM system not only can guarantee the
perfect recall of all pattern pairs but also can maximize the basin
of attraction of each pattern pair. The extension from designing
a SOABAM to a HOABAM is possible and straightforward.

II. COMPLETE RECALL DESIGN OFSOABAMS

For the SOABAM, storing pattern pairs ,
, where and
, as Kosko’s outer product rule [3]

leads to the following expression for connection weight matrix

&

and

Matrix is of dimensions and holds the second-order
connections from the -layer to the -layer. Likewise, another
matrix , being of dimensions and holding
the second-order connections from the-layer to the -layer,
will be given by

&

and

It is known that the following necessary and sufficient condi-
tions for the correlation matrices and are needed to guar-
antee the recall of all training patterns [5].

Lemma 1: The training pattern pair ,
, is a stable pattern pair of a SOABAM if and only if

(1)

and

(2)

We now derive the necessary and sufficient conditions for the
correlation matrices and to guarantee the recall of all
training patterns.

Theorem 1 (Complete Recall Theorem):Let

...
...

...
...

. . .
...

(3)

and

...
...

...
...

. . .
...

(4)

All prototype pattern pairs can be recalled if and only if the
correlation matrices and satisfy

(5)

and

(6)

Thus, if inequalities (1) and (2) have a solution, then there
exist positive constants and so that the following two linear
inequalities hold:

(7)

and

(8)

where .
The complete recall theorem above provides the necessary

and sufficient conditions for the correlation matricesand
to ensure the recall of all prototype pattern pairs. The theorem
is an extension of the complete recall condition in [5]. Note that
the relaxation of abandoning logical symmetry in ABAM design
admits theindependent designof the weight matrix from the

- to -layer and the weight matrix from the - to -layer.
As a consequence, the training rule and properties drawn from
the -layer to the -layer can be applied equivalently to the
case from the -layer to the -layer. For brevity, we will only
describe in detail the interesting context drawn from the-layer
to the -layer. The body of interests that can be drawn similarly
from the -layer to the -layer will not be explicitly stated
unless necessary.

To respect the above inequalities for all thepattern pairs,
we have to train the connection weight matrixstarting from
pattern pair one up to pattern pair repeatedly. Let the current
training pattern pair be denoted as , e.g., ;
and let . Stating from

to , if for some , denoted as , such that ,
i.e., , then the following updating rule at
iteration is executed to train the sublattice weights [13] of
related to as given by

& (9)

where is learning constant. Otherwise, for those’s, denoted
as , such that , leave sublattice weights
of related to unchanged. The updated weights according
to (9) by the Rosenblatt’s perceptron learning rule [21] is only
guaranteed to increase the value of . It is not necessarily
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good to recall the th bit for other pattern vectors. Namely, the
updated could make some other pattern’s
values smaller, and thus, such learning hinders this pattern’s re-
call capability in the th bit. As a result, sequentially learning
prototype pattern vector pairs according to (9) may result in
updating entries in weight matrix back and forth, and such
learning procedure is thus apt to be oscillatory and becomes dif-
ficult to converge. It usually takes hundreds or even thousands
of epochs to complete a learning task.

A more efficient way to update is to choose the smallest
among all possible and combinations, which is denoted

as here. We then update only its corresponding sublattice
entries involved in weight matrix as given by

& (10)

The smallest learning procedure will not stop until .
In this way, in every learning step we change only the sublattice
weights in related to the smallest, namely, the most needful,

to change. This updating rule will be referred to aslocal
training rule,because every time the learning changes only the
entries of connection weight related to the single entry, ,
in . Such local training rule will improve the performance
of the SOABAM learning. In the reverse direction, connection
weight matrix follows similar learning rule without further
explanation.

III. M AXIMIZING THE BASIN OF ATTRACTION

IN SOABAM DESIGN

For the SOABAM to be noise tolerant, the following theorem
will present the relationship between error-correcting capability
and the stability margin, , and , of a SOABAM.

Theorem 2: Suppose that is the Hamming
distance between an input patternand a stored pattern ,
that for , and that . If

(11)

then the input converges to its association pattern in one
recall iteration.

Proof: See the Appendix.
Theorem 2 states that for the given, the pattern will

have at least the basin of attraction , in one step. Similarly,
we can show that for the given and bounded , the pattern

will have at least the basin of attraction

in one step. Under bounded constraint of , i.e., ,
inequality (11) implies that the larger the valueis, the larger
the basin of attraction, , of the -layer is for one iteration
recall. In the absence of an analytical method for calculating
exactly the basin of attraction for more than one iteration, we
proceed on the heuristic that the size of the overall basin of at-
traction is also larger if is larger. For convenience, will be
called, in an indirect sense, the basin of attraction of the-layer
hereafter since depends on governed by (11). Because we
want to form a basin of attraction that is as large as possible, we

can choose the maximal value ofsuch that local training rule
does converge. A practical way of designinghaving maximal

value can be proceed as follows. Starting from the connec-
tion weight matrix encoded by Kosko’s BAM correlation rule,
then derive new matrix that can increase gradually until
the training rule (10) fails to converge. To make every updated

fulfill the constraint , the updated has to
go through the following hard limiter-type function as de-
fined by

if
if
if

With the introduction of to limit the magnitude of the up-
dated weight if necessary, we can respect the bounded weight
constraint. For quicker convergence of learning procedure, the
proposed local training rule is further improved toadaptive local
training rule,whose details will be discussed in the following.

IV. A DAPTIVE LOCAL TRAINING RULE FORSOABAM DESIGN

In this section, we will derive one lemma and one theorem
concerning with the quantitative trend of the behavior of the
local training rule, but the hard limiter-type function above
to bound the weight will be ignored in the derivation. From our
simulation experience, the limiting function is seldom activated
for bounding enforcement during the course of learning. The
frequency to activate limiting function increases as the
learning iteration increases, but this frequency still remains few
even in the final stage of a learning task. Therefore, it is reason-
able to neglect this random occurrence of activating in the
theoretical derivation below.

The increment of after the local training rule, (9), is
constant for a constant learning rate. This fact is illustrated
by the following lemma.

Lemma 2: If , we use the local training rule
(10), then

(12)

Proof: If , then the local training rule
(10) is adopted. We have

Substituting from (10) produces

Q.E.D.
The lemma shows that the local training rule can move

at a constant step size toward the positive direction
if learning rate is positive.

Borrowed the relaxation rule of Oh and Kothari [9] to find
a connection matrix that can attain a maximal at a faster
convergence rate, we propose that the learning rate be changed
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adaptively to a relaxation factor and the step difference be-
tween and . The local training rule can thus be
modified as

If , then is updated by

(13)

where

We denoted (13) above as theadaptive local training rule. For
a given positive constant , if the training rule (10) admits a
solution of , then the training rule (13) will also
be convergent and can converge faster. Since a larger difference
between and yields a larger learning step size, the im-
provement of convergence rate and capability is expected. The
rationale behind how to choose the adaptive learning rate, ,
in view of the relaxation factor is illustrated by the following
theorem.

Theorem 3: If and we use the above local
training rule, then

(14)

Proof: If , applying the adaptive local
training rule (13) leads to

Q.E.D.
It follows from Theorem 3 that if , then is

still less than ; while if , then will be greater
than . The training rule (13) above is similar in spirit to the
relaxation rule in [9]. In general, we restrictto the range

; a better selection of is usually made slightly larger
than 1.5 [9]. Exploiting the relaxation parametercould not
only converge to the target value easier but also could lead to
several multiples of ten times reduction in the number of epochs
to converge compared to a constant step size learning one, for
example, perceptron learning [9].

As mentioned previously, the proposed adaptive local per-
ceptron learning rule is only guaranteed to increase the value
of . It is not necessarily good to or .
With this concept in mind, we will incorporatepocket algorithm
[22] into our adaptive local training rule during the learning pro-
cedure. Perceptron learning is quite appropriate for separable
samples to be dichotomized, i.e., problems for which some set
of weights is available that correctly classifies linearly sepa-
rable training patterns after a finite number of mistakes. Non-
separable problems are a different story. The fact that no set of
weights can correctly classify all training patterns implies that
a set of weights which correctly classifies as large a fraction of
the training patterns as possible is preferred. Pocket algorithm is
developed in perceptron learning to determine a set of weight in
this optimal sense [22]. Adapting the concept behind the pocket
algorithm, we save “in the pocket” of the weight matrix ,

the Global connection matrix that produces the largest
value during the course of adaptive local training algorithm. To
improve the learning speed and accuracy at every learning step,
we generate the increment of, , randomly. Moreover, the
magnitude of will decrease as the number of training it-
eration increases. Gradually decreasing the learning step size,
and hence learning rate, is helpful in improving training con-
vergence and is widely adopted in neural and adaptive learning
routines [2].

To conclude, the following algorithm is presented for
SOABAM design with maximal basin of attraction.

Algorithm 1 (Maximal Basin of Attraction Algorithm):

Step 1) Initialize. , constant.

&

, , and .
Generate and compute .

Step 2) Train for the pattern bit using the adaptive
local training rule (13). Compute

then . If , then
, and .

Step 3) Generate randomly and compute
. If (maximal number of iteration),

then go to Step 2. Otherwise, go to Step 4.
Step 4) Output the solution: , , and

stop.

V. SIMULATION RESULTS FORABAM D ESIGNS

To validate the effectiveness of our proposed SOABAM
schemes, the benchmark set of IBM PC color graphic adapter
(CGA) character pairs of pixel sizes 7 7 were utilized.
Twenty-six uppercase English letter, -layer together with
the corresponding lowercase counterparts,-layer, constitutes
the prototype pattern pairs for BAM storage. For processing
convenience, each one of the 52 prototypes is vectorized row
by row, in which the black pixels are coded by1 while the
white pixels are coded by 1. Thus, either - or -layer is
composed of 26 bipolar vectors of dimension 49, i.e.,
and in our notation used.

A. Learning Scheme Comparisons via FOABAM Design

The improvement verification of various learning schemes
mentioned above can be done either on first-order or
second-order ABAM design. For efficiency purpose, the
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TABLE I
COMPARISON OFATTAINABLE b AND b , CPU TIME REQUIRED, AND NUMBER OF ENTRY UPDATES OFFOABAM DESIGN

BY CONVENTIONAL PERCEPTRON ANDPROPORTIONAL PERCEPTRONLEARNING RULES (CPU TIME AND NUMBER OF

ENTRY UPDATES ARECOMPUTED FORWARD AND BACKWARD DESIGN LOOPSALTOGETHERHEREAFTER)

improvement experiment will be made over the first-order
ABAM (FOABAM) design since the design time required
by the SOABAM is very long and thus time consuming,
which will be seen in the later of this section. These learning
schemes are concerned with gradually enlargingand
of a FOABAM through iterative learning. They are basically
perceptron learning or its variants and are verified in the
following way. At each learning epoch, the increment ofis
normally kept constant of ten, i.e., . If the training
iteration cannot converge within 20 learning epochs, then a
new learning iteration is invoked by reducing by half. If
a learning iteration can converge within 20 epochs, then
will be resumed to its normal value ten again. The learning
procedure will not stop until .

The performance comparisons of the different learning
schemes are evaluated by the following three experiments.
First, we will demonstrate the superiority of theproportional
perceptron learning,the training step size in every entry
update of the connection weight matrix is in proportion to
the magnitude of the increment of , over the conventional
(nonproportional) perceptron learning in the FOABAM de-
sign. For the currently presented patterns and , if

, the perceptron learning rule updates theth
row of the connection matrix by

(15)

Otherwise, leave the weight unchanged. If the learning constant
is set to be , a necessary update of the presented pat-

tern’s bit will lead to a unitary increment of . A more effi-
cient update of may be proceeded by allowing the effective
learning constant to be in proportion to the step size of ,

, as

(16)

We call above theproportional perceptron learning rule. For
comparison, the number of entry updates of and , CPU
time, running on an IBM Pentium PC-800 MHz, required to
finish a design, and reachable and , were used as the per-
formance index. To have a whole picture, the performance index
commented below is usually given as the one counting both
the forward and backward design loops altogether, unless stated
otherwise. On the other hand, the numerical values listed in
the table are generally given by the forward and backward de-
signs separately to have more details. As such, Table I displays
the results of these two learning rules to design CGA pattern
pairs by FOABAM models. From the table, the design by con-
ventional perceptron learning needs entry updates

TABLE II
COMPARISON OFATTAINABLE b AND b , CPU TIME REQUIRED,

AND NUMBER OF ENTRY UPDATES OFFOABAM DESIGN BY ADAPTIVE

LEARNING RULES WITH DIFFERENTRELAXATION FACTORS�

TABLE III
COMPARISON OFATTAINABLE b AND b OF FOABAM DESIGN

BY ADAPTIVE LOCAL AND ADAPTIVE LEARNING RULES

and 18.04 mins CPU time, whereas by proportional perceptron
needs entry updates and 5.51 mins CPU time, respec-
tively. As to reachable basin of attraction, the conventional per-
ceptron learning rule converges to and ,
respectively, and the proportional perceptron learning rule at-
tains and , respectively. Proportional
learning increases more than 32% attraction radius, counting
and altogether hereafter, compared with the conventional per-
ceptron learning, while needs only about one-fifth of the number
of entry updates by the conventional one. Moreover, the im-
provement of the proportional perceptron learning can be fur-
ther enhanced by introducing the relaxation factorinto the
proportional perceptron learning rule as given by

(17)

where . The proportional
perceptron learning together with relaxation factor inclusion is
called theadaptive learning rule. As noted in the previous sec-
tion and [9], should be slightly larger than 1.5 for good per-
formance; here we choose in comparison to other two
selections: and . The learning performances
of these three relaxation values were summarized in Table II.
From the table, the design by adaptive learning at
needs entry updates and 3.53 min CPU time, whereas
adaptive learning at and 8.0 needs and

entry updates and 8.31 and 1.66 min CPU time, re-
spectively. The proportional perceptron learning rule listed in
Table I is equivalent to adaptive learning with . For
attainable basin of attraction, the better relaxed adaptive per-
ceptron learning rule, , converges to and

, which is almost identical to those obtained by
the proportional perceptron learning rule at relaxation factor

, but the entry updates are reduced to 67% of .
Small relaxation can reach about 91% of attraction



426 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 4, JULY 2003

TABLE IV
AVERAGE ERRORCORRECTIONPROBABILITY prob(r) VERSUSHAMMING DISTANCE r OF VARIOUS BAM DESIGN SCHEMES

TABLE V
COMPARISON OFATTAINABLE b AND b AND CPU TIME REQUIRED OF

SOABAM DESIGN BY ADAPTIVE LOCAL AND ADAPTIVE LEARNING RULES

Fig. 1. Average error correction probabilityprob(r) versus hamming distance
r of various BAM design schemes.

radius of good relaxation , but requires 34 times larger
in the number of entry updates. On the contrary, large relax-
ation needs 76% less entry updates of but can
reach only about 44% of attraction radius obtained by .
Too large , 8.0 for example, leads to oscillatory in the learning
steps; it could lead to fewer entry updates but becomes harder
to converge to a good attraction radius, and even worse cannot
converge at all sometimes. On the other hand, too small, 0.32
for example, leads to very small, i.e., conservative, step size in
the learning steps; it requires larger entry updates in number but
still suffers from the problem of unable to converge to a good
attraction radius. Moreover, introducing local learning feature
into the adaptive learning rule leads to the proposedadaptive
local learning ruleas given by

(18)

where , and and
are the numbers that produce smallest, , among all
possible and ; and , at iteration .
The adaptive local learning can further improve the learning per-
formance in the following two folds: the easiness and fastness
to converge during the learning phase and further enlarging the
attainable attraction radius. Table III shows the attraction radius
is further enlarged to its twice owing to the addition of local

learning to the adaptive training rule. The easier and faster to
converge is eminent especially to a difficult (design) problem,
as will be demonstrated in the SOABAM design below. In the
FOABAM design here, this nature is not evident from our em-
pirical experiment. For such a problem not too difficult to de-
sign, the expected advantage may perhaps have been offset by
the additional minimum finding of and pocket algorithm.

B. Performance Comparisons of Various BAM Designs

1) Recall Rate Comparisons:Using the proposed adaptive
local training rule to design the connection matrix of an
SOABAM from the - to -layer having maximal attraction
radius . In a similar manner, an independent design loop
can produce the connection matrix from the - to -layer
having maximal attraction radius . To compare the error
correcting capability of a BAM design, several well known
methods including ABAM [15], GBAM [16], feedforward
BAM [12], and optimized ABAM [17] are used for com-
parison. The average error correction probability
defined below will be utilized as the performance index for
this purpose. Let denote the probability that a given
distorted pattern of which lies on the Hamming ball of
radius , can be successfully recalled to
the corresponding pattern vector . Pattern vector is
said to be recalled successfully if within 100 times of two-way
recalling a -bit distorted can reach and then remain fixed
in its association pattern pair correctly. Otherwise,
it is considered not to be recalled successfully. Let be
the average of over all the 26 possible . The
average error correction probability is the average
of and computed. In this study, we generated
respectively for each CGA characters 100-bit distorted
and randomly to compute and . Table IV lists
the versus erroneous bit numberof different BAM
design schemes, which is also shown in Fig. 1. From the table,
our correction probability and the second best, feedforward
BAM, are excellent for small numbers, up to six, of bit error,
but our method outperforms the feedforward approach greatly
afterwards, for example by 12% when and by 31%
when . Our new methods can remain as high as 98.6%
recognition rate when the patterns are within 5-bit distortion,
and can retain 90% recall rate tolerant up to a 9-bit error of
prototype patterns.

In the following, the advantage gained from the first-order
BAM model to a second-order one will be summarized. To the
best of the author’s knowledge, GBAM model is the best design
scheme among numerous first-order BAM design algorithms
developed. The first-order ABAM model designed by our pro-
posed learning rule also produces a very good recall rate, which
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TABLE VI
AVERAGE ERROR CORRECTION PROBABILITY prob(r) VERSUS HAMMING DISTANCE r OF ADAPTIVE

LOCAL AND ADAPTIVE LEARNING RULES OFSOABAM DESIGN

is competitive to the best GBAM model. In terms of recall rate,
our FOABAM design outperforms GBAM design when
and 2; GBAM is better than ours afterwards. As one can expect,
our SOABAM design model outperforms the FOABAM design
model in the recall rate by a great margin except for single bit
error case, . This superiority implicitly implies that the
proposed SOABAM model has greatly increased the memory
capacity of a BAM model [7] and [16]. The new SOABAM de-
sign has suggested a way to build a memorized memory model
for CGA letter set from almost incapable memorized models de-
signed by several first-order BAM algorithms.

2) Basin of Attraction and Convergence Time Improvements
of Adaptive Local Training Rule:The computer CPU time
required to design SOABAM by the proposed adaptive local
training rule with and by adaptive training rule with

also are shown in Table V. From the table, it is seen
that the CPU time, a Pentium III-800 PC also, required by
the adaptive local training rule is only one-fiftieth of that by
the adaptive training rule. SOABAM design by the adaptive
learning is very time consuming, which require CPU time
12 037.2 mins to reach and , in which
these reachable maximal and are almost one-third of
those obtained by the new local training. Comparison of recall
rates of SOABAM design by the adaptive local rule and the
adaptive perceptron learning are summarized in Table VI. Both
learning schemes produce excellent recall capability, and the
better one still goes to the proposed adaptive local learning rule.

VI. CONCLUSION

In this paper, we have derived the adaptive local training rule
for SOABAM design. A necessary and sufficient condition that
can guarantee the recall of all prototype pattern pairs is first de-
rived. Then, a new theorem to design a SOABAM to enlarge the
basin of attraction of training pattern pairs is proposed. Accord-
ingly, a new adaptive local training rule to design a SOABAM
is then formulated. The adaptive nature of the new learning rule
is ascribed to a relaxation mechanism inclusion and the learning
rate being proportional to the difference between the current
value and the target value to be learned. That, every training it-
eration only updates the minimal weight entries which are most
needful, signifies the local nature of our learning rule. In imple-
mentation aspect, our new training rule is further incorporated
with pocket algorithm concept to save the best design connec-
tion weight matrix during the course of iteration learning proce-
dure. The new adaptive local learning rule can not only design a
SOABAM 50 times faster but also converge to an attraction ra-
dius three times larger than an adaptive only one. The simulation
studies and comparisons on the familiar 77 pixel character
set have proven the effectiveness of the new training scheme
over existing BAM design approaches. Extending the proposed
SOABAM design to HOABAM is possible and straightforward.

APPENDIX

Theorem 2: Suppose that is the Hamming
distance between an input patternand a stored pattern ,
that for , and that . If

(19)

then the input converges to in one recall iteration.
Proof: Without loss of generality, suppose the different

bits between and are located at the first neurons. That
is, if and if . The next
state is

The above equation can be satisfied if the following inequality
holds

(20)
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From the assumptions, we can obtain the following two
inequalities

and

Obviously, inequality (20) can be met if ,
which is given by assumption (19). This is because

In this case, the input converges to in one
iteration. Q.E.D.
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