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Second-Order Asymmetric BAM Design
With a Maximal Basin of Attraction

Jyh-Yeong Chang and Chien-Wen Cho

~ Abstract—Bidirectional associative memory (BAM) general- from the X -layer to theY -layer. A BAM performs a two-way
izes the associative memory (AM) to be capable of performing associative search for stored bipolar vector pairs by forward
two-way recalling of pattern pairs. Asymmetric bidirectional 54 hackward iterations between these two layers. For example,

associative memory (ABAM) is a variant of BAM relaxed with . . . .
connection weight symmetry restriction and enjoys a much better a BAM model is designed to store the followidg bipolar pat-

performance than a conventional BAM structure. Higher-Order  t€rn pairg X!, Y1), (X2, Y?),..., (XM, YM), with two-way
associative memories (HOAMs) are reputed for their higher retrieval capability asX™ «—— Y™, whereX™ € {—1, +1}"
memory capacity than the first-order counterparts, yet there are gndy™ ¢ {-1,+1}*; m =1, 2, ..., M. The model iterates
few HOAMs design schemes proposed up to date. To this end,chw — Sgn(Wyold) andynew _ Sgn(WTXold) alternately

we are concerned in this paper with designing a second-order . .
asymmetric bidirectional associative memory (SOABAM) with until the network reaches astablt_a pattern p_X'r’ Y), which

a maximal basin of attraction, whose extension to a HOABAM Should be one of the pattern pairs stored in the BAM system.
is possible and straightforward. First, a necessary and sufficient In the above, if there are just one set of pattern vectors, i.e.,
condition is derived for the connection weight matrix of SOABAM  y™ — X™ tg be stored in the BAM, then the model reduces
that can guarantee the recall of all prototype pattern pairs. To 4 the Hopfield network model, which is only autoassociative
respect the complete recall theorem, an adaptive local training - . . ’ o

rule, which is adaptive in the learning step size and updates only and unidirectional in pattern memorlzatlor_l and recall.

the entries in the connection weight related to the most needful  In general, BAMs suffer from the following two drawbacks:

bit of a prototype, is formulated and it leads to better results and low storage capacity and weak error-correcting capability.
faster design. Then derived is a theorem, designing a SOABAM Many research efforts have been made to reduce these draw-
further enlarging the quantities required to meet the complete 40 s These efforts can mainly be classified into the following
recall theorem will enhance the capability of evolving a noisy . ; . . . .
pattern to converge to its association pattern vector without error. two directions. The first _attempt deals W'th algorithmic 'm'
Based on this theorem, our algorithm is also modified to ensure Provements of the encoding schemes. In this context, multiple
each training pattern is stored with a basin of attraction as large training method [5], Ho-Kashyap learning [6], Hamming
as possible. Computer simulations over the color graphics adapter stability learning [7], optimal stability training [8], and adaptive
(CGA) fonts have demonstrated the superiority of the proposed rg|axation method [9] were introduced recently. The other
local training rule over other prevailing BAM schemes. attempt involves structure modification of the BAM network.

Index Terms—Asymmetric BAM, basin of attraction, Hebbian  These include threshold vector augmentation [10], multilayer

learning, second-order associative memory. BAM's [11], feedforward BAM's [12], and higher-order
connections [13] and [14]. Also in this line of architecture
|. INTRODUCTION modifications, the logic symmetry of the weight matrix in a

. — .. BAM model is relaxed to pursue a higher performance of a
HERE are Wlde-sp_rea_d applications _ for a_s_somatngM and leads to what is known as the asymmetric BAM
memories (AMs), which include pattern recognition, dat BAM) [15]. Embedded in the ABAM structure, enlarging

storage and retrieval, noise removal, and/or error correcti Upporting function approach [16] and optimiéation—based

[1], [2]. The bidirectional associative memory (BAM) [3] isdesign [17] are proposed to our attentions.

a gep?rahfzatlon of 'Hcipflelld AM %?el [4]. /gt?gyll model The rationale behind the most encoding designs above is es-
CONSISIS 0T NEUrons In two fayers, ayeran -layer, sentially based on making the most use of the correlation ex-

;;\/n;j a co:\nectlon \t/yelgrllgzi/:rw zetlwzentthéf-lqyelr and thet isting among the bits of corresponding pattern pairs. Therefore,

“layer. .conven lonal mogdetadmits alogical Symmetry o ioip, degrees of bit error correcting capability are inherited
restriction: the connection weight matrix from th’elgyer to to all these methods, although different for each method. In
the X-layer is the transpose of the connection weight matriis regard, a BAM design scheme that can efficiently utilize or

create additional bit’s correlation would be more likely to out-
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useful in invariant pattern recognition problems [20]. Stability Fyll7 Fy21 Eﬁ[

and statistical property of SOAMs [13], [14] is discussed in the Fl o :

literature, yet there are few HOAM design schemes proposed F,= Y210 ' ) (4)
up to date. Enjoying the degrees of freedom relieved by the : A

second-order connections and logical asymmetry, we will pro- Fl 2 ... pM

pose in this paper a SOABAM design method with high perfor- Yp? !

mance. This new SOABAM system not only can guarantee tAd prototype pattern pairs can be recalled if and only if the
perfect recall of all pattern pairs but also can maximize the bagirrelation matrice$” andW satisfy

of attraction of each pattern pair. The extension from designing F,>0 (5)

a SOABAM to a HOABAM is possible and straightforward.

and
Il. COMPLETE RECALL DESIGN OF SOABAMS F,>0. (6)
For the SOABAM, storing pattern pairgX™, Y™), Thus, if inequalities (1) and (2) have a solution, then there
m = 1,2,...,M, where X™ € {-1,+1}" and existpositive constants andb, so thatthe following two linear

Y™ € {-1,+1}?, as Kosko's outer product rule [3]inequalities hold:
leads to the following expression for connection weight matrix

p p
U = [uiji] Fl = Z Z Yy wgk | gt > by >0
i=1 j=1
uLJk—Zyz y_]xk VL&levzv/p k:1,2,...,n (7)
andk_1,2,...,n and
Matrix U is of dimensiong x p x n and holds the second-order Fp = Z Z T wijk | - yp 2 by >0
connections from th& -layer to theX -layer. Likewise, another i=1 j=1
matrix W = [w;;x], being of dimensiona x n x p and holding k=1,2,....p (8)

the second-order connections from tkielayer to theY -layer,

will be given by wherem = 1,2, ..., M.

The complete recall theorem above provides the necessary
M . . and sufficient conditions for the correlation matri¢ésand IV
Wijk = Z Ti i Y s Vidj=1,2...,n to ensure the recall of all prototype pattern pairs. The theorem
is an extension of the complete recall condition in [5]. Note that
the relaxation of abandoning logical symmetry in ABAM design
It is known that the following necessary and sufficient condadmits thendependent desigof the weight matrix/ from the
tions for the correlation matricd$ andW are needed to guar- Y - to X -layer and the weight matri¥” from the X - to Y -layer.
antee the recall of all training patterns [5]. As a consequence, the training rule and properties drawn from
Lemma 1: The training pattern paiftX™, Y™), m = 1, 2, theY-layer to theX-layer can be applied equivalently to the
, M, is a stable pattern pair of a SOABAM if and only if ~ case from theX -layer to theY -layer. For brevity, we will only
, describe in detail the interesting context drawn fromithiayer
m m.m m to theX -layer. The body of interests that can be drawn similarly
Far = ; ; Yy g | - 2 >0 from the X -layer to theY -layer will not be explicitly stated
unless necessary.
=12 @ To respect the above inequalities for all the pattern pairs,
and we have to train the connection weight matkixstarting from
pattern pair one up to pattern paif repeatedly. Let the current
zi' e wik | -y >0 training pattern pair be denoted(agmv, Y™e), e.g.m = my;
L=t and letnet(z;") = >0 >0 _1 ¥y} “uijx,. . Stating from
1, 2, 2 k=1ton, |f for somek denoted ag., such thatF" < 0,

We now derive the necessary and sufficient conditions for tI'TS ‘f:k Zé Sgn(nett( 4 t))t ther:hthe f(:)l:ol/;/lng upde;}t;nglrlsjle ?t
correlation matriced/ and W to guarantee the recall of all ieraiiont is executed to train the sublattice weights [13)0

training patterns. related tow* as given by

andk =1,2,...,p.

=,

ol

S

m
Yk

[
M:

“

k

Theorem 1 (Complete Recall Theorentbet wijr, (t) = wijr, (t — 1) + -y y;nx;?
F3}17 Fa?l Fé\f Vi&j=1,2,...,p 9)
Fr, @ whereq is learning constant. Otherwise, for thdse, denoted
F.= . C : () ask,, such thatr;"e = sgn(net(z)’*)), leave sublattice weights
: of U related toLZ“ unchanged. The updated weights according
F' F? ... FM to (9) by the Rosenblatt’s perceptron learning rule [21] is only

Tn? Ty Tn

and guaranteed to increase the valuergf- . It is not necessarily
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good to recall thé: . .th bit for other pattern vectors. Namely, thecan choose the maximal valuetgf such that local training rule

updatedU could make some other patternlgjc, m # m. does converge. A practical way of designiridhaving maximal

values smaller, and thus, such learning hinders this pattern’skg-value can be proceed as follows. Starting from the connec-

call capability in thek.th bit. As a result, sequentially learningtion weight matrixJ encoded by Kosko’s BAM correlation rule,

prototype pattern vector pairs according to (9) may result then derive new matri¥/ that can increasg, gradually until

updating entries in weight matri&¢ back and forth, and such the training rule (10) fails to converge. To make every updated

learning procedure is thus apt to be oscillatory and becomes dif;, fulfill the constraint|u;;x| < D, the updated.;;; has to

ficult to converge. It usually takes hundreds or even thousamgis through the following hard limiter-type functi@n(«) as de-

of epochs to complete a learning task. fined by
A more efficient way to updat& is to choose the smallest

F; among all possible» andk combinations, which is denoted

asky - here. We then update only its corresponding sublattice

entries involved in weight matrik’ as given by

O(z) =1 z, if —-D<z<D

{—D, ifz < —-D
D, if > D.

e (B) = wije, (t — 1) + - gy g™ With the introgiuction ofb(z) to limit the magnitude of the up--
W R ¢ g0 ke dated weight if necessary, we can respect the bounded weight
Vi&dj=1,2,...,p. (10)  constraint. For quicker convergence of learning procedure, the
The smallesf™ learning procedure will not stop unfft,, > 0. proposed local training rule is further improvediaptive local
In this way, in every learning step we change only the sublatti@ining rule, whose details will be discussed in the following.
weights inU related to the smallest, namely, the most needful,
F;" to change. This updating rule will be referred tolasal IV. ADAPTIVE LOCAL TRAINING RULE FOR SOABAM DESIGN

training rule, because every time the learning changes only the|, this section, we will derive one lemma and one theorem

entries of connection weiglft related to the single entryi*,  concerning with the quantitative trend of the behavior of the

in F,,. Such local training rule will improve the performancqqca| training rule, but the hard limiter-type functidriz) above
of the SOABAM learning. In the reverse direction, connectiop, jy,ynd the weight will be ignored in the derivation. From our
weight matrix W follows similar learning rule without further gjm jation experience, the limiting function is seldom activated
explanation. for bounding enforcement during the course of learning. The
frequency to activate limiting functio®(z) increases as the
lll. MAXIMIZING THE BASIN OF ATTRACTION learning iteration increases, but this frequency still remains few
IN SOABAM DESIGN even in the final stage of a learning task. Therefore, it is reason-
For the SOABAM to be noise tolerant, the following theorenble to neglect this random occurrence of activatirg) in the
will present the relationship between error-correcting capabiliteoretical derivation below.
and the stability margirh,., andb,, of a SOABAM. The increment off7« after the local training rule, (9), is
Theorem 2: Suppose thall, = H(A, Y™) is the Hamming constant for a constant learning rate This fact is illustrated
distance between an input pattetrand a stored pattersi™, by the following lemma.

thatF" > b, > 0fork =1, 2, ..., n,and thatu;;z| < D. If Lemma2: If F"<(t—1) < b,, we use the local training rule
) ; (10), then
p z
H,=H(AY") < -+ — 24 = 11 m m
y=HAYT) < =5+ 5P+ 5 (11) Fre(t) = F(t—1) + a - p2 (12)

then the inputd converges to its association patté¥fi* in one
recall iteration.
Proof: See the Appendix.

Proof: If Fx”;j(t — 1) < b,, then the local training rule
(10) is adopted. We have

Theorem 2 states that for the givep, the patterny™ will PP
have at least the basin of attractiéfy, in one step. Similarly, Fre(t) = Z Z Yy s wige, (1) | w
we can show that for the giver) and boundeab; ;, the pattern i=1 j=1
X" will have at least the basin of attractidf, Substitutingu . (£) from (10) produces
n 1 b,
—— 4+ —4/n2+ 2 PP
22 D Ere)= | S0 3wy i, (= 1) |- o p?

in one step. Under bounded constrainugf, i.e.,|u;jx| < D,
inequality (11) implies that the larger the vallieis, the larger
the basin of attraction,,, of the Y -layer is for one iteration
recall. In the absence of an analytical method for calculating Q.E.D.
exactly the basin of attraction for more than one iteration, we The lemma shows that the local training rule can move
proceed on the heuristic that the size of the overall basin of &« (¢ — 1) at a constant step size toward the positive direction
traction is also larger #.. is larger. For conveniencg, will be if learning ratex is positive.

called, in an indirect sense, the basin of attraction ottHayer Borrowed the relaxation rule of Oh and Kothari [9] to find
hereafter sincél,, depends on, governed by (11). Because wea connection matri¥/ that can attain a maximal, at a faster
want to form a basin of attraction that is as large as possible, a@vergence rate, we propose that the learning rate be changed

i=1 j=1
me 2
:Frks(t_l)—i—ap
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adaptively to a relaxation factor and the step difference be-the Global connection matri& that produces the largest”
tweenb, and £’ (t — 1). The local training rule can thus bevalue during the course of adaptive local training algorithm. To
modified as ) improve the learning speed and accuracy at every learning step,
If F7s(t — 1) < by, thenu,y, is updated by we generate the incrementilgf, Ab,., randomly. Moreover, the
- _ N M. m. m. magnitude ofAb, will decrease as the number of training it-
uijik, (1) = (I)(u”ks (= 1)+ aw(t) -y " o] ) (13) eration increases. Gradually decreasing the learning step size,

where and hence learning rate, is helpful in improving training con-
by — F™s (t — 1) vergence and is widely adopted in neural and adaptive learning
ag(t)=A ———— routines [2].
p To conclude, the following algorithm is presented for

We denoted (13) above as thdaptive local training ruleFor SOABAM design with maximal basin of attraction.

a given positive constardt,, if the training rule (10) admits a  Algorithm 1 (Maximal Basin of Attractioh,. Algorithm):
solution ofF;’;j > b, > 0, then the training rule (13) will also  Step 1) Initializeb, = 0, D = constant.

be convergent and can converge faster. Since a larger difference

M

betweernb, and F"- yields a larger learning step size, the im- o momom o )
provement of convergence rate and capability is expected. 'Il}éfék(o) = (z_:l $i¥i Tk ) ’ & =12 p
rationale behind how to choose the adaptive learningdatg), km:_L 2 ..., n.
in view of the relaxation factok is illustrated by the following '
theorem. by = F;*(0) = mini<pm<pmini<p<n £y, (0)

Theorem 3: If e (t — 1) < b, and we use the above local » p
training rule, then = 15}3&[ ming <g<n z; 2; Yty g (0) | - g

Fre(t) = be = (1= N)(Fret =10 =b) . (14) ==

gmin «— F"(0), GU(0) « U(0), andent « 0.
Generate\b,, and computeé, = b2 + Ab,.
Step 2) TrainU for the pattern bitc}’* using the adaptive

Proof: If F;Z;j(t — 1) < b,, applying the adaptive local
training rule (13) leads to

ms _ pms 2 . S
Fore(t) = by =F (6 = 1) + au(t) - p” — by local training rule (13). Compute
br — F;ﬂs t—1 o __ 1mg _ . : m
CEM (1) A ;2( ) b, by =F* (t) = mini<m<wm 12}32:11:"‘“ (t)
p p
:(1—)\)(Fgfs(t—1)—bx>. . . N
= iy i, | 2 2w ) |k
Q.E.D. i=1 j=1
It follows from Theorem 3 that i\ < 1, thenF"+(¢t) is then ent t 411 Fe(t in. then
still less tharb, ; while if A > 1, then £ (¢) will be greater Nent o ent 4 1M FGL(E) > g min,
z , @, gmin « " (1), GU « U andent «+ 0.

thanb,.. The training rule (13) above is similar in spirit to the Step 3)
relaxation rule in [9]. In general, we restristto the range <

A < 2; a better selection ok is usually made slightly larger then go to Step 2. Otherwise, go to Step 4.

than 1.5 [9]. Exploiting the relaxation_ parameteicould not Step 4) Output the solutiod? — GU, b, — g min, and
only converge to the target value easier but also could lead to stop.

several multiples of ten times reduction in the number of epochs
to converge compared to a constant step size learning one, for
example, perceptron learning [9].

As mentioned previously, the proposed adaptive local per-T0 Vvalidate the effectiveness of our proposed SOABAM
ceptron learning rule is only guaranteed to increase the vag@emes, the benchmark set of IBM PC color graphic adapter
of FI=. Itis not necessarily good 5", m # m, or k # k. (CGA) character pairs of pixel sizes ¥ 7 were utilized.
With this concept in mind, we will incorporaiocket algorithm Twenty-six uppercase English letteK-layer together with
[22] into our adaptive local training rule during the learning pradthe corresponding lowercase counterpartdayer, constitutes
cedure. Perceptron learning is quite appropriate for separaile prototype pattern pairs for BAM storage. For processing
samples to be dichotomized, i.e., problems for which some §&venience, each one of the 52 prototypes is vectorized row
of weights is available that correctly classifies linearly sep& row, in which the black pixels are coded byl while the
rable training patterns after a finite number of mistakes. Nokhite pixels are coded by-1. Thus, eitherX- or Y-layer is
separable problems are a different story. The fact that no se€gmposed of 26 bipolar vectors of dimension 49, ild. = 26
weights can correctly classify all training patterns implies tha&ndn = p = 49 in our notation used.

a set of weights which correctly classifies as large a fraction of
the training patterns as possible is preferred. Pocket algorithn‘ﬁs
developed in perceptron learning to determine a set of weight inThe improvement verification of various learning schemes
this optimal sense [22]. Adapting the concept behind the pockaentioned above can be done either on first-order or
algorithm, we save “in the pocket” of the weight mat/, second-order ABAM design. For efficiency purpose, the

Generaté;b; randomly and compute, = b2 +
Ab,. If ent < thd (maximal number of iteration),

V. SIMULATION RESULTS FORABAM D ESIGNS

Learning Scheme Comparisons via FOABAM Design
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TABLE |
COMPARISON OFATTAINABLE b, AND b,, CPU TIME REQUIRED, AND NUMBER OF ENTRY UPDATES OF FOABAM DESIGN
BY CONVENTIONAL PERCEPTRON ANDPROPORTIONAL PERCEPTRONLEARNING RULES (CPU TIME AND NUMBER OF
ENTRY UPDATES ARECOMPUTED FORWARD AND BACKWARD DESIGN LOOPSALTOGETHER HEREAFTER

[ by CPU Time (min) | Number of Entry Updates (x10°%)
(Conventional) Perceptron || 23.75 | 46.52 18.04 11.92
Proportional Perceptron 29.24 | 63.78 5.51 2.28
improvement experiment will be made over the first-order TABLE I
; ; ; ; ; COMPARISON OFATTAINABLE b, AND b,,, CPU TIME REQUIRED,
ABAM (FOABAM) .deSIgn since the deSIQD time reqUIred AND NUMBER OF ENTRY UPDATES OFFOABAM DESIGN BY ADAPTIVE
by the SOABAM is very long and thus time consuming, LEARNING RULES WITH DIFFERENT RELAXATION FACTORS A
which will be seen in the later of this section. These learnina - e . o )
. . z PU Time (min Number of Entry Updates (x10
schemes are concerneq Wlt.h graduglly enlargipgand by =ic 19545 6368 353 50
of a FOABAM through iterative learning. They are basicallyx=0-32 || 26.66 | 57.53 8.31 50.97
. . . g . A=8.0 7.96 | 32.24 1.66 0.36
perceptron learning or its variants and are verified in the
following way. At each learning epoch, the incremenbgfis
normally kept constant of ten, i.eAb, = 10. If the trainin TABLE I
. . y kep . .eA r . g COMPARISON OFATTAINABLE b, AND b, OF FOABAM DESIGN
iteration cannot converge within 20 learning epochs, then a BY ADAPTIVE LOCAL AND ADAPTIVE LEARNING RULES

new learning iteration is invoked by reducidgp, by half. If
a learning iteration can converge within 20 epochs, thén

[ by
Adaptive Local (A =1.6) || 59.69 | 130.19

will be resumed to its normal value ten again. The learning Adaptive (A = 1.6) 28.49 | 63.88

procedure will not stop until\b, < 1.

The performance comparisons of the different leaminghd 18.04 mins CPU time, whereas by proportional perceptron
schemes are evaluated by the following three experimenigeds.28 x 106 entry updates and 5.51 mins CPU time, respec-

First, we will demonstrate the superiority of tpeoportional

tively. As to reachable basin of attraction, the conventional per-

perceptron learning,the training step size in every entryceptron learning rule convergesitp = 23.75 andb, = 46.52,
update of the connection weight matiliX is in proportion to respectively, and the proportional perceptron learning rule at-
the magnitude of the increment 6f, over the conventional tainsp, = 29.24 and b, = 63.78, respectively. Proportional
(nonproportional) perceptron learning in the FOABAM detearning increases more than 32% attraction radius, coubting

sign. For the currently presented patterfig® and Y™, if
b, < F.(t — 1), the perceptron learning rule updates ttie
row of the connection matrik’ by
u,;j(t):<I>(u7;j(t—1)+ao-:v:ny;»"), Vi=1,2,...,p,
i=1L,2 ....,ny;m=1,2, ..., M. (15)

Otherwise, leave the weight unchanged. If the learning constant
g is set to bel/p, a necessary update of the presented pgfﬁ

tern’s bity’" will lead to a unitary increment d@f,. A more effi-

andb, altogether hereafter, compared with the conventional per-
ceptron learning, while needs only about one-fifth of the number
of entry updates by the conventional one. Moreover, the im-
provement of the proportional perceptron learning can be fur-
ther enhanced by introducing the relaxation factointo the
proportional perceptron learning rule as given by

(t) =@ (uij(t — 1) + au(t) - 2"y}")
Vi=12,...,p,5=1,2,....nsm=1,2,.... M

cient update ofi;; may be proceeded by allowing the effective a7

learning constant to be in proportion to the step sizAbf(¢),
b, — F.(t — 1), as
uij(t) = ® (uij(t — 1) + ag - Aby () - z"yT")
Vi=1,2,...,p,j=1,2,....n
m=1,2,..., M. (16)

We call above theroportional perceptron learning ruleFor
comparison, the number of entry updates.gf andw;;, CPU

wherea, (t) = A-ag-Ab,(t) = X\-Ab,(t)/p. The proportional
perceptron learning together with relaxation factor inclusion is
called theadaptive learning ruleAs noted in the previous sec-
tion and [9],A should be slightly larger than 1.5 for good per-
formance; here we chooge= 1.6 in comparison to other two
selectionsA = 0.32 and\ = 8.0. The learning performances
of these three relaxation values were summarized in Table II.
From the table, the design by adaptive learninghat 1.6

time, running on an IBM Pentium PC-800 MHz, required tmeedsl .50 x 108 entry updates and 3.53 min CPU time, whereas
finish a design, and reachallle andb,, were used as the per-adaptive learning at = 0.32 and 8.0 need50.97 x 10° and
formance index. To have a whole picture, the performance ind@s6 x 10° entry updates and 8.31 and 1.66 min CPU time, re-
commented below is usually given as the one counting batpectively. The proportional perceptron learning rule listed in
the forward and backward design loops altogether, unless statatlle | is equivalent to adaptive learning with= 1.0. For
otherwise. On the other hand, the numerical values listed attainable basin of attraction, the better relaxed adaptive per-
the table are generally given by the forward and backward dmeptron learning rule\ = 1.6, converges té, = 28.49 and
signs separately to have more details. As such, Table | displéys= 63.88, which is almost identical to those obtained by
the results of these two learning rules to design CGA pattettme proportional perceptron learning rule at relaxation factor
pairs by FOABAM models. From the table, the design by conx = 1.0, but the entry updates are reduced to 67% ef 1.0.
ventional perceptron learning needs92 x 106 entry updates Small relaxation\ = 0.32 can reach about 91% of attraction
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TABLE IV
AVERAGE ERRORCORRECTIONPROBABILITY prob(r) VERSUSHAMMING DISTANCE r OF VARIOUS BAM D ESIGN SCHEMES

r=0|r=1|r=2|r=3|r=4|r=5|r=6|r=7|r=8|r=9|r=10

SOABAM 1.000 | 1.000 | 0.999 | 0.998 | 0.993 | 0.985 | 0.974 | 0.952 | 0.938 | 0.900 | 0.849
FEEDF. [121 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.986 | 0.957 | 0.899 | 0.814 | 0.689 | 0.539
FOABAM 1.000 | 0.973 | 0.833 | 0.674 | 0.536 | 0.398 | 0.317 | 0.251 | 0.220 | 0.158 | 0.130
GBAM [16] 1.000 | 0.944 | 0.829 | 0.702 | 0.581 | 0.466 | 0.369 | 0.337 | 0.281 | 0.206 | 0.175
OABAM [17] || 1.000 | 0.889 | 0.566 | 0.422 | 0.306 | 0.275 | 0.248 | 0.231 | 0.214 | 0.193 | 0.161
ABAM [15] 1.000 | 0.804 | 0.527 | 0.294 | 0.186 | 0.167 | 0.151 | 0.136 | 0.129 | 0.122 | 0.116

TABLE V learning to the adaptive training rule. The easier and faster to
COMPARISON OFATTAINABLE b, AND b, AND CPU TIME REQUIRED OF H i H I i
SOABAM DESIGN BY ADAPTIVE LOCAL ZND ADAPTIVE LEARNING RULES Co”"?rge Is eminent eSp?CIa”y to a difficult (quIQn) problem,
as will be demonstrated in the SOABAM design below. In the
, b by _| CPU Time (min) FOABAM design here, this nature is not evident from our em-
Adaptive Local (A = 1.6) 13002 | 18614 243.1 R . e
Adaptive (A = 1.6) 4596 | 6665 12037.2 pirical experiment. For such a problem not too difficult to de-
sign, the expected advantage may perhaps have been offset by
the additional minimum finding of’;" and pocket algorithm.

o
©

B. Performance Comparisons of Various BAM Designs

e
o

1) Recall Rate ComparisondJsing the proposed adaptive
local training rule to design the connection matfix of an
SOABAM from theY - to X -layer having maximal attraction
radius b,. In a similar manner, an independent design loop
can produce the connection matiiX from the X - to Y -layer
having maximal attraction radius,. To compare the error

— correcting capability of a BAM design, several well known
E;g;g;gﬂ ] methods including ABAM [15], GBAM [16], feedforward

—< GBAM [16]

~ Sasam[i7 1 BAM [12], and optimized ABAM [17] are used for com-

-~ ABAM [15]

o , , , , . o , : parison. The average error correction probabilityob(r)
o 1 2 3 4 5 6 7 8 9 10

Hamming distance r defined below will be utilized as the performance index for

. _ N o this purpose. LeP(X™, r) denote the probability that a given
Fig.1. Average error correction probabilityob(r) versus hamming distance distorted pattern of{™ which lies on the Hamming ball of
r of various BAM design schemes. .
radiusr, r € {0, 1, 2, ...} can be successfully recalled to
the corresponding pattern vectdr. Pattern vectorX™ is
said to be recalled successfully if within 100 times of two-way
al)gcalling ar-bit distortedX™ can reach and then remain fixed
in its association pattern paiX™, Y™) correctly. Otherwise,
it is considered not to be recalled successfully. Betr) be

e average of?(X™, r) over all the 26 possible&{"™. The
rage error correction probabilifyrob(r) is the average
P,(r) and P,(r) computed. In this study, we generated

o
3
T

g
o

Error correction probability prob(r)
o o
» I
T T

o
W
T

o
N

radius of good relaxation = 1.6, but requires 34 times larger
in the number of entry updates. On the contrary, large rel
ation A = 8.0 needs 76% less entry updatesiof 1.6 but can

reach only about 44% of attraction radius obtained\by 1.6.

Too large), 8.0 for example, leads to oscillatory in the learnin
steps; it could lead to fewer entry updates but becomes har
to converge to a good attraction radius, and even worse canpp

converge at all sometimes. On thE." other hand, tpo Sm@ljsz_ respectively for each CGA characters 100it distorted X™
for example, leads to very small, i.e., conservative, step size Rdy ™ randomly to compute, (r) and P, (r). Table IV lists
x Yy .

trt]'eil Ieafrfmngfstep;;]n reqlgllres Iafrger(i)r:tr)t/ updates in ?umber% prob(r) versus erroneous bit numberof different BAM
stlt sutlers from the probiem ot unable to converge 1o a gog esign schemes, which is also shown in Fig. 1. From the table,

gt;[ratcglon (;ad![gs. IM oreover, :ntTodgcusg tlr? cal Iearn:;dg Ie atur(‘j':‘ur correction probability and the second best, feedforward
Into the adaptive fearning rule leads to the propoaedptive BAM, are excellent for small numbers, up to six, of bit error,

local learning ruleas given by but our method outperforms the feedforward approach greatly
uij, (t) = @ (uij, (t — 1) + o (t) x;ﬂy;n) afterwards, for example by 12% when = 8 anc_i by 31%
Vi=1,2....p (18) whenr__: 10. Our new methods can remain as hlg_h as 98_.6%
Ty recognition rate when the patterns are within 5-bit distortion,
wherea,(t) = A - ag - Ab,(t) = A - Ab,(t)/p, andm, andjs, and can retain 90% recall rate tolerant up to a 9-bit error of
are the numbers that produce smallngJt, Fe (t), among all prototype patterns.
possiblej andm; 1 < 7 < nmandl <m < M, at iterationt. In the following, the advantage gained from the first-order
The adaptive local learning can furtherimprove the learning pd8AM model to a second-order one will be summarized. To the
formance in the following two folds: the easiness and fastnessst of the author’'s knowledge, GBAM model is the best design
to converge during the learning phase and further enlarging sheme among numerous first-order BAM design algorithms
attainable attraction radius. Table Il shows the attraction radideveloped. The first-order ABAM model designed by our pro-
is further enlarged to its twice owing to the addition of locgbosed learning rule also produces a very good recall rate, which
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TABLE VI
AVERAGE ERROR CORRECTION PROBABILITY prob(r) VERSUS HAMMING DISTANCE r OF ADAPTIVE
LOCAL AND ADAPTIVE LEARNING RULES OF SOABAM DESIGN

r=0|r=1|r=2|r=3|r=4|r=5|r=6|r=7|r=8|r=9|r=10
Adaptive Local || 1.000 | 1.000 | 0.999 | 0.998 | 0.993 | 0.985 | 0.974 | 0.952 | 0.929 | 0.900 | 0.849
Adaptive 1.000 | 1.000 | 0.999 | 0.995 | 0.990 | 0.978 | 0.957 | 0.936 | 0.912 | 0.879 | 0.825

is competitive to the best GBAM model. In terms of recall rate, APPENDIX

our FOABAM design outperforms GBAM design when= 1 Theorem 2: Suppose thall, = H(A, Y™) is the Hamming

and 2; GBAM is better than ours afterwards. As one can expegfstance between an input patteﬁnand a stored patterri™,
our SOABAM design model outperforms the FOABAM demgmhatpm >b, >0fork=1,2 ..., n,andthaju;| < D.If

model in the recall rate by a great margin except for single bit 1 b
error caser = 1. This superiority implicitly implies that the H,=H(A Y™)< —5 +3 p*+ 5’” (19)
proposed SOABAM model has greatly increased the memaiyen the inputd converges toX™ in one recaII iteration.
capacity of a BAM model [7] and [16]. The new SOABAM de- Proof: Without loss of generality, suppose the different
sign has suggested a way to build a memorized memory mobis betweem andY ™ are located at the firdi,, neurons. That
for CGA letter set from almost incapable memorized models dé- Ax = —y;" if k < H, andA;, = y;" if k > H,. The next
signed by several first-order BAM algorithms. stateA; is

2) Basin of Attraction and Convergence Time Improvements,
of Adaptive Local Training RuleThe computer CPU time Aj, =sgn ZAJ'Ai“iJ'k
required to design SOABAM by the proposed adaptive local j=li=1
training rule withA = 1.6 and by adaptive training rule with P H,y
A = 1.6 also are shown in Table V. From the table, it is seen =sgn Z A;j Z —yM gk + Z Yi Wik
that the CPU time, a Pentium [1I-800 PC also, required by j=1 i=1 i=Hy+1
the adaptive local training rule is only one-fiftieth of that by »
the a_dap?ive traini_ng rule. SOABAM d_esign b)_/ the adaptive =sgn ZA] Zyz Uik — 2 Zyz Uijk
learning is very time consuming, which require CPU time e}
12037.2 mins to reach, = 4596 andby = 6665, in which -H ,
these reachable maximéa), and b, are almost one-third of —sen Zy g — 2 Zy Wik
those obtained by the new local training. Comparison of recall : " v
rates of SOABAM design by the adaptive local rule and the -
adaptive perceptron learning are summarized in Table VI. Both
learning schemes produce excellent recall capability, and the + Z Y5 Zy7 Uijk — 2 Zyv Wik
better one still goes to the proposed adaptive local learning rule. J=Hy+1

p
o m m, m, .
VI. CONCLUSION = sett Z yi | Do i = 2 Z Yi Wijk

In this paper, we have derived the adaptive local training rule A, »
for SOABAM design. A necessary and sufficient condition that _9 Z Y Z Y — 2 Z Ui
can guarantee the recall of all prototype pattern pairs is first de- v v
rived. Then, a new theorem to design a SOABAM to enlarge the
basin of attraction of training pattern pairs is proposed. Accord- m,m L
ingly, a new adaptive local training rule to design a SOABAM ~ — 581 Z Z Yj 2 Z 1/] yi" ijn
is then formulated. The adaptive nature of the new learning rule J
is ascribed to a relaxation mechanism inclusion and the learning H, H, Hy p
rate being proportional to the difference between the current +4 Yi Y ik — 2 Zy]my:”u“k
value and the target value to be learned. That, every training it- i=1 i=1 j=1 i=1
eration only updates the minimal weight entries which are most =z}
needful, signifies the local nature of our learning rule. In impleFhe above equation can be satisfied if the following inequality
mentation aspect, our new training rule is further incorporaté&@lds
with pocket algorithm concept to save the best design connec- & " m m
tion weight matrix during the course of iteration learning proce- Z Z Yi Yi Wijh | Tk

P

NE

dure. The new adaptive local learning rule can not only design a =t =t

SOABAM 50 times faster but also converge to an attraction ra- v Hy

dius three times larger than an adaptive only one. The simulation 212 yiyi e — 4 Z Z Yi i wijk
studies and comparisons on the familiax 77 pixel character j=1i=1 j=1 =1

set have proven the effectiveness of the new training scheme Hy p

over existing BAM design approaches. Extending the proposed + 2 Z Y7y wijk | -y (20)

SOABAM design to HOABAM is possible and straightforward. j=1 i=1
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From the assumptions, we can obtain the following two[11]

inequalities
p p
SO ury wik |- ait > by
i=1 j=1
and
p H,
23yl wie — 4 Z Zy] Y uijn
7=1 i=1 j=1 i=1
H, p
+ 23 Y i |y

<2

1

~
Il
=

2

T

Y

M=

luijr| + 4 Z Z |wijk] +2 Z Z|uwk|

1 1 =1 j=1 7j=1 i=1

<.
Il
<.
Il

< 4pHyD +4H2D.

Obviously, inequality (20) can be metif > 4pH,D+4H:D,
which is given by assumption (19). This is because

Fyr > by

In this case,
iteration.

(1]
(2]

(3]
4

(5]

(6]
(7]
(8]

&)

(20]

>4pH,D + 4H.D

p

Z ZUJ Yi ul]k_4z ZUJ 1/1 Uijk

j=1 i=1 7=1 =1
Hy, p

+ 2 Z Zy}nyznuijk
j=1 i=1

the inputA converges toX™

in one
Q.E.D.
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