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ABSTRACT

RNA molecules play an important role in many
biological activities. Knowing its secondary struc-
ture can help us better understand the molecule’s
ability to function. The methods for RNA structure
determination have traditionally been implemented
through biochemical, biophysical and phylogenetic
analyses. As the advance of computer technology,
an increasing number of computational approaches
have recently been developed. They have different
goals and apply various algorithms. For example,
some focus on secondary structure prediction for a
single sequence; some aim at finding a global
alignment of multiple sequences. Some predict the
structure based on free energy minimization; some
make comparative sequence analyses to determine
the structure. In this paper, we describe how to
correctly use GPRM, a genetic programming
approach to finding common secondary structure
elements in a set of unaligned coregulated or homo-
logous RNA sequences. GPRM can be accessed at
http://bioinfo.cis.nctu.edu.tw/service/gprm/.

INTRODUCTION

It is known that RNAs perform a wide variety of biological
activities, ranging from enzyme-like catalysis to protein
synthesis. Many of the tasks are accomplished by the binding
of proteins to specific sites in RNA molecules (1–3). However,
unlike DNA binding proteins, which recognize binding sites of
conserved sequences, RNA protein binding sites are more
conserved in structures than in sequences. Knowing RNA
structures can help us not only gain a deeper insight of the
regulation activities, but also identify new members of a specific
coregulated RNA family. There have been many various
computational methods developed for RNA secondary structure
prediction. According to the number of RNA sequences for
which to predict the secondary structure, a method can be
considered as single-sequence or multiple-sequence structure
prediction. The goal of single-sequence structure prediction is

to find the possible folding of a single RNA sequence (4–8),
while the goal of multiple-sequence structure prediction falls
into two categories. One category is focused on finding a global
structure alignment (9,10); the other concentrates on common
structure element prediction (11–14). In this paper, we describe
GPRM, a tool specifically designed to identify common
secondary structure elements within a set of homologous or
functionally related RNA sequences.

GPRM operates on a population of possible RNA structure
elements. With the wealth of structure information kept in a
population and the flexibility of genetic operators, GPRM
utilizes genetic programming to explore the search space of
RNA secondary structure elements. It has been tested on some
datasets previously used to verify other prediction systems, and
on pseudoknots that most current systems cannot deal with
(14). In the following sections, we describe its purpose and
limitations, the sequence input, the parameters and finally the
output.

MATERIALS AND METHODS

Purpose and limitations

Unlike most current approaches, we consider structure
prediction as a supervised learning problem. Given pre-
classified training examples, supervised learning is to learn a
discriminative concept that distinguishes the examples of
different classes. GPRM treats the given family of coregulated
RNA sequences as positive examples and negative examples
are the sequences randomly generated based on the observed
frequencies of sequence alphabet in positive examples. GPRM
is aimed at the structure elements that can be used to
distinguish the given family from random sequences. As a
sufficiently large family is required to better justify the
structure elements learned, it is not appropriate to apply
GPRM to a single RNA sequence or a small dataset, e.g. a
family of fewer than 10 sequences. The elements found by
GPRM from a single sequence or a small dataset may be
meaningless.

GPRM is a stochastic optimization process. It involves an
attempt to optimize a fitness function by modifying and
combining tentative structure elements in a population. Due to
the non-deterministic characteristics, it is difficult to estimate
GPRM’s running time in advance. The required CPU time may
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vary from seconds to hours or even days, depending on the
complexity of the target structure elements. The advantage of
GPRM lies in the fact that in its entire process, there is no
difference between the handling of simple stem-loop structures
and any other more complex structures such as pseudoknots.
Though it does not guarantee the optimal solution or the same
result from multiple runs, GPRM gives the approximately best
answers. Its home page is shown in Figure 1.

Sequence input and parameters

For the time being, GPRM only accepts RNA sequences in the
FASTA format. Any blank (‘ ’) or dash (‘–’) in a sequence is
ignored, and symbols other than A, G, C, T/U are reported as
errors. The length of each sequence is limited to 1000 nt and
the total number of nucleotides in a given set cannot exceed
60 000, owing to the hardware limitation of our current PC
server. All the constraints can be relaxed after we transfer
GPRM to other high-end computer platforms. The input
sequences can be either uploaded from the user’s local disks or
directly typed into a small window on the web page. For the
purpose of reference, an additional name should be assigned to
the sequence dataset.

Users are required to select the value of several parameters
before running GPRM. These parameters are used to either
specify the configuration of a structure element or control the
evolutionary process in GPRM. All the parameters are detailed
as follows.

Basepairning size. This parameter is used to specify the
range of stem lengths. A wider range can represent more can-
didate elements, but it also increases the running time. On the
other hand, a narrow range may over-constrain the search space
and consequently make GPRM converge prematurely to wrong
structures. The background knowledge of structure elements

helps us specify an appropriate range. However, the correct
stem length is often unknown beforehand. In case of no back-
ground knowledge, we suggest users run GPRM multiple
times using various ranges. An appropriate range can usually
be inferred from multiple results.

Nonpairing size. Nonpairing size specifies the range of loop
lengths. Similar to basepairing, the correct nonpairing size is
generally unknown. Therefore, when background knowledge
is limited, we advise users to run GPRM with different loop
lengths and later derive the appropriate size from the results.

Number of stems. This parameter specifies the number of
stems in the target structure. Like the two parameters above,
the correct parameter value is usually unknown in advance.
Users can run GPRM with different numbers when no back-
ground knowledge is available. The exact number of stems
in the target structure element can be obtained from the com-
parison of the results.

Mismatch allowance. In addition to canonical A–U and G–C
base pairs, mispaired bases also occur in RNA secondary struc-
tures, e.g. the G–U pair. This parameter specifies the maximal
number of mispaired bases in a stem other than the G–U pair.
The default is zero, which means each base pair in a stem must
be either a canonical pair or the G–U pair. If the allowance is
set to two, at most two mismatches (other than G–U) are
allowed in each stem of the structure element.

Basepairing overlap allowance. A structure element may
occur multiple times in a sequence. Two occurrences are con-
sidered overlapped if any stem of one occurrence is overlapped
with a stem of the other. The basepairing overlap allowance
limits the size of the overlapping part. The lower allowance,

Figure 1. The web page of GPRM. Users can click on the parameters, e.g. Mutation Rate, to see a brief explanation.
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the smaller overlapping part permitted. GPRM uses this para-
meter to filter out spurious structure element occurrences.
When the overlapping part exceeds the allowance, the occur-
rence with shorter stems is discarded.

Negative set size. Based on supervised learning, GPRM tries
to identify in a given RNA family significant consensus struc-
ture elements that can be used to distinguish the family mem-
bers from non-members (15). Random sequences are treated as
non-members that form the negative set, and the members of a
given family form the positive set. The negative set can be one
to five times as large as the given family. If the number of
family members is relatively small (e.g. <15), it is recom-
mended to use a larger negative set. A larger negative set
can represent non-members more realistically, but it also
increases GPRM’s running time.

Top candidates. This parameter specifies how many candi-
date structure elements are reported. These candidates are
ranked by the fitness value. The definition of the fitness func-
tion is detailed in (14). Note that since the fitness value does
not always reflect the true biological significance, the top-
ranked candidate may not be the correct answer. Therefore,
we suggest users examine more than one candidate.

Mutation rate. GPRM’s mutation operator changes the con-
figuration of a structure element selected from the population
to simulate mutation in nature that causes sporadic and random
alterations in genetic materials. Mutation is a non-deterministic
process. We use the mutation rate to represent its probability.
In GPRM, mutation is the primary operator to optimize poten-
tial structure elements by modifying their configurations. The
default mutation rate is set as high as 0.9 to encourage more
mutation operations.

Crossover rate. Unlike mutation, GPRM’s crossover opera-
tion is performed on two elements randomly picked from the
population. Its purpose is to exchange the configuration
between two tentative elements to generate two better offspring.
The crossover rate is the probability that GPRM performs cross-
over operation. Since the current version of GPRM only allows
configuration exchange between two elements with similar
structures, the default crossover rate is set at 0.5 only.

Population size. To constrain the search space, GPRM only
operates on a population of tentative structure elements.
However, when the search space of candidate elements
increases, e.g. owing to a larger range of the basepairing
size, the population size needs to be increased as well for
accommodating more various elements to avoid overlooking
crucial candidates.

Output

A sample partial output of GPRM is presented in Figure 2.
There are three parts in an output. The first part includes the
dataset name (e.g. ‘test IRE’ in Fig. 2) for reference and the
parameter values specified by the user. The second part is the
predicted common structure elements in the given family.

GPRM represents a structure element with two kinds of
segments, pairing or nonpairing. It uses brackets and
parentheses to indicate a pairing segment and a nonpairing
segment, respectively. The numbers in brackets and parenth-
eses present the range of segment lengths, e.g. [5,8] means the
length of the pairing segment (i.e. a stem) is between five and
eight nucleotides. The pairing relation is simply illustrated by
color, e.g. two ‘[5,8]’ segments in red are paired as shown in
Figure 2. The remaining output is the list of the element
occurrences within each sequence in the conventional paired
parenthesis format. It shows the starting and the ending
position of each pairing segment as well as the subsequence
that form the secondary structure.

RESULTS

GPRM is freely accessible at http://bioinfo.cis.nctu.edu.tw/
service/gprm/. Corrections, suggestions and feedback should
be sent to yhu@cis.nctu.edu.tw.

Figure 2. A sample output of GPRM. An output is divided into three parts. The
first is the dataset reference name, e.g. IRE-like, the parameter values specified
by the user and the starting time. The second is the predicted common structure
element in the given family. The remaining of an output shows the structure
element occurrences in each sequence in the paired parenthesis format.
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DISCUSSION

In this paper, we describe how to run GPRM properly. GPRM
has a flexible RNA secondary structure representation. It is
capable of dealing with structures more complex than simple
stem-loops, such as pseudoknots.

GPRM is aimed at finding common secondary structure
elements, not a global alignment, in a sufficiently large family
(e.g. >15 members) of unaligned RNA sequences. It is not
applicable to finding the possible folding of a single sequence.
Besides, owing to the hardware limitation of our current PC server,
GPRM is currently limited to finding structure elements with no
more than five stems. This constraint is expected to be relaxed after
we install GPRM on other higher-end computer platforms.
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