
A new closed-form solution for a radial two-layer
drawdown equation for groundwater under constant-flux

pumping in a finite-radius well

Hund-Der Yeh a,*, Shaw-Yang Yang b, Huan-Yi Peng a

a Institute of Environmental Engineering, National Chiao-Tung University, No. 75 Po-Ai Street, Hsinchu 300, Taiwan
b Department of Civil Engineering, Van-Nung Institute of Technology, Chungli 320, Taiwan

Received 9 November 2002; received in revised form 14 March 2003; accepted 15 March 2003

Abstract

A mathematical model is presented for describing the groundwater flow in a radial two-layer confined aquifer system with a

constant-flux pumping well that has a wellbore skin and finite well radius. The Laplace-domain solution for the model is first derived

by the Laplace transforms; and the time-domain solution in terms of the aquifer drawdown is then obtained form the Laplace

inversion using the Bromwich integral method. When neglecting the well radius, our Laplace-domain solution is shown to reduce to

a Laplace-domain solution given by Butler [J. Hydrol. 101 (1988) 15]. A unified numerical approach including a root search ap-

proach, the Gaussian quadrature, and the Shanks method is employed for evaluating this time-domain solution. The evaluated

results of the solution agree well with those of the Laplace-domain solution estimated by the modified Crump algorithm. This new

solution can be used either to predict the spatial and temporal drawdown distributions in both the skin and formation zones or to

investigate the effects of the skin type, skin thickness and well radius on the drawdown distribution.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The constant-flux test can be employed to determine

the in situ hydraulic properties of soil and rock forma-

tions, during which, the well discharge (or injection) rate

is maintained at a constant value. The resulting mea-

sured drawdown data from the observation wells can be
used to determine the aquifer parameters, i.e., trans-

missivity and storage coefficient. Several previous re-

searchers have discussed such problems in a single-layer

aquifer system (called a uniform aquifer system) and

provided the mathematical models or results for engi-

neering applications. The studies published in the areas

of petroleum engineering, heat conduction, and ground-

water hydraulics may be classified into two types. One
type neglects the well radius, considering the well as a

point source (e.g., [28]). Based on this assumption,

Streltsova and McKinley [26] discussed the drawdown

or buildup calculations for a well in a reservoir with

various heterogeneous properties, mostly dealing with

no-flow and constant pressure boundaries. However, in

reality the radius of pumping well is nonzero; thus, this

assumption may lead to some error in data analyses [20].

The other type of study deals with a finite-radius well

which is subject to a constant-flux pumping (e.g.,
[11,14,15,25]). Carslaw and Jaeger [1940, reported by

Jaeger, 17] derived a closed-form solution for a heat

conduction problem by using the Laplace transforms

and a contour integral method. Their solution for tem-

perature distribution in an infinite medium was ex-

pressed in an integral form that covers a range from zero

to infinity and has an integrand comprised of the

product and the square of the Bessel functions. Tabular
values estimated by the various approximate formulas

were given by Ingersoll et al. [14,15] for dimensionless

temperature change versus dimensionless time and by

Hantush [11] for dimensionless drawdown versus di-

mensionless time at dimensionless distances of 1, 2, 5

and 10. Papadopulos and Cooper [22] presented a closed-

form solution for the drawdown in a large-diameter
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well which accounts for the effect of well storage. A set

of type curves evaluated from their solution provides a

useful tool to analyze pumping-test data for the aquifer

parameters. Their solution can be closely approximated

by the Theis solution for small well radius and/or large
aquifer transmissivity [7]. Streltsova [25] also evaluated

the numerical values for dimensionless drawdown at the

well as a function of dimensionless time, giving the re-

sults in tabular form.

In addition, a finite thickness of wellbore skin may

develop during the well constructions as a result of

drilling through a mud or the extensive well develop-

ment. Consequently, a uniform aquifer may then have a
skin zone near the well and become a radial two-layer

system (also called a composite system). This skin zone

may affect the drawdown of pumping, with the magni-

tude of the drawdown depending on the thickness and

permeability contrast between the skin and the forma-

tion. The well drilling causes an invasion of drilling mud

into the aquifer and may produce a positive wellbore

skin (also called positive skin [20] or low-conductivity
skin) that has lower permeability than that of the orig-

inal formation. In contrast, extensive well development

and/or substantial spalling and fracturing of the bore-

hole wall may increase the permeability of the adjacent

formation around the well. Under such circumstances,

the disturbed formation is referred to as a negative well-

bore skin (also called negative skin [20] or high-con-

ductivity skin). Furthermore, geochemical precipitation
or dissolution around the well may also respectively

reduce or enhance the skin permeability. In any case, the

thickness of the skin zone may range from a few milli-

meters to several meters and thus must be considered in

pumping-test data analyses [20]. Barker and Herbert [2]

considered a problem for a constant-rate pumping at a

well situated at the center of a disc of anomalous

transmissivity and storage coefficient in an aquifer which
is called a patchy aquifer. The radius of the disc may be

of 60 m, and such a patchy aquifer can also be treated as

a two-layer aquifer system.

The effects of the well storage as well as the wellbore

skin on the results of pumping tests have been investi-

gated in the petroleum industry (e.g., [3,8,18]) and the

groundwater hydraulics (e.g., [2,4]). The solutions are

available for the aquifer system accounting for the well
storage and the infinitesimally small well radius of the

pumping well. Barker and Herbert [2] and Butler [4]

presented a Laplace-domain solution for the transient,

pumping-induced drawdown without considering the

well radius. In addition, Barker and Herbert [2] also

explicitly derived Jacob�s drawdown equation from their

Laplace-domain solution at long-time condition. Wi-

kramaratna [29] developed a closed-form solution for
describing an abstraction from a vertical multiple-layer

confined aquifer with no cross flow when applying

Papadopulos and Cooper�s solution [22]. His solution

takes account of well storage, so the solution can be

applied both to large- and small-diameter wells. Nova-

kowski [20] presented a composite analytical solution

for a radial two-layer system using the Laplace trans-

form method, producing type curves by using the nu-
merical inversion from the Laplace-domain solution.

These type curves were used to interpret the effects of the

well storage and the finite-thickness skin on the pump-

ing-test data. Novakowski [21] also reviewed the La-

place-domain solutions, which account for the effects of

well storage and finite-thickness skin for the slug and

pumping tests, and also provided a computer program

which can generate data for the type curves. Hemker
[12] presented an integration of both analytical and

numerical techniques to find a solution for the general

problem of computing well flow in vertically heteroge-

neous aquifers. Lebbe [19] proposed a unique and gen-

eralized interpretation method for single and multiple

pumping tests made in an aquifer with layered hetero-

geneity and with or without lateral anisotropy. Butler

and Liu [5] presented an analytical solution for draw-
down due to pumping in a uniform aquifer (single-layer

system), which contains an arbitrarily located disk of

anomalous properties. The well diameter is assumed to

be infinitesimally small, i.e., the well is considered as a

point source. So far, the existing solutions for composite

models in a radial two-layer confined aquifer system

under constant-flux pumping are only in the Laplace

domain, and the time-domain results are obtained with
resort to numerical inversions. None of the existing so-

lutions is to present a closed-form solution in the time

domain for such a radial two-layer system.

Although the Laplace-domain solutions are capable

of plotting type curves; yet the accuracy of the results

obtained from numerical inversions may be unknown or

even poor in some cases. The time-domain solution is

especially useful in cases like parameter identification as
well as verification for numerical models, where the

Laplace-domain solution may be of limited or no use.

The objectives of this paper are to derive a new time-

domain solution for the drawdown distribution in a

radial two-layer aquifer system with a finite-radius and

constant-flux pumping well and to provide an efficient

numerical approach for evaluating the solution (di-

mensionless drawdown) at specified dimensionless time
and distance. The derived solution is in terms of an in-

tegral that covers a range from zero to infinity and has

an integrand comprising many product terms of the

Bessel functions of the first and second kinds of zero and

first orders. The numerical approach, including a root

search scheme, a numerical integration method, and

the Shanks method, is proposed to evaluate the time-

domain solution. This solution can be used to investi-
gate the effects of the skin type, the skin thickness, and

the well radius on the drawdown distribution in a radial

two-layer confined aquifer system.
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2. Mathematical model

2.1. Radial two-layer drawdown equation

Several assumptions made for modeling the aqui-
fer system are: (1) the aquifer is homogeneous, isotro-

pic, and infinite-extent with a constant thickness; (2) the

well is fully penetrated and with a finite radius; (3) the

pumping rate is maintained at a constant value through-

out the whole test period; and (4) the skin is a finite

thickness near the well. Fig. 1 depicts the well with a

constant pumping rate and the cross-section configura-

tions in a radial two-layer confined aquifer system. The
governing equations describing the drawdowns, s (or

sðr; tÞ), in the skin and formation zones are, respectively,

o2s1
or2

þ 1

r
os1
or

¼ S1
T1

os1
ot

; rw 5 r5 r1 ð1Þ

and

o2s2
or2

þ 1

r
os2
or

¼ S2
T2

os2
ot

; r1 5 r < 1 ð2Þ

where subscripts 1 and 2 respectively denote the skin
and formation zones, and t is the time from the start of

the test. The variable r is the radial distance from the

centerline of the well, rw is the radius of the well, and r1
is the radial distance from the centerline of the well to

the outer skin envelope (or the radius of the disc of the

patchy aquifer). Parameters T and S are respectively the

transmissivity and the storage coefficient.

The drawdown is initially equal to zero in both the
skin and the formation. Thus, the initial conditions for

Eqs. (1) and (2) may be written as

s1ðr; 0Þ ¼ s2ðr; 0Þ ¼ 0 ð3Þ
The drawdown tends to zero as r approaches infinity.

Therefore, the outer boundary condition for the for-

mation may be specified as

s2ð1; tÞ ¼ 0 ð4Þ

Using the Darcy law, the boundary condition for

maintaining a constant flux across the well is expressed

as

� os
or

����
r¼rw

¼ Q
2prwT1

; t > 0 ð5Þ

where Q is a constant-pumping rate. Note that a term
representing the rate of decrease in the volume of water

within the well should be added to the left-hand-side of

Eq. (5) if the effect of the wellbore storage is to be

considered [22].

Finally, the continuities of the drawdown and the

flow rate between the skin and the formation require

that

s1ðr1; tÞ ¼ s2ðr1; tÞ; t > 0 ð6Þ

and

T1
os1ðr1; tÞ

or
¼ T2

os2ðr1; tÞ
or

; t > 0 ð7Þ

2.2. Laplace-domain solution

The Laplace transforms [13] are applied to the gov-

erning equations and the boundary conditions for the

drawdown distributions in the skin and the formation.
The results of the Laplace-domain solution �ss are re-

spectively

�ss1 ¼
Q

4pT2

1

p
2T2

rwT1q1

U2K0ðq1rÞ þ U1I0ðq1rÞ
U2K1ðq1rwÞ � U1I1ðq1rwÞ

� �
ð8Þ

and

�ss2 ¼
Q

4pT2

1

p
2T2

rwT1q1

ðU2K0ðq1r1Þ þ U1I0ðq1r1ÞÞK0ðq2rÞ
ðU2K1ðq1rwÞ � U1I1ðq1rwÞÞK0ðq2r1Þ

� �

ð9Þ

where q21 ¼ pS1=T1, q22 ¼ pS2=T2, and p is the Laplace

variable. The notations I0ð�Þ and K0ð�Þ are respectively

the modified Bessel functions of the first and second

kinds of order zero, and I1ð�Þ and K1ð�Þ are respectively
the modified Bessel functions of the first and second

kinds of order first. Variables U1 and U2 are respectively
defined as

U1 ¼ K1ðq1r1ÞK0ðq2r1Þ �
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
K0ðq1r1ÞK1ðq2r1Þ ð10Þ

and

U2 ¼ I1ðq1r1ÞK0ðq2r1Þ þ
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
I0ðq1r1ÞK1ðq2r1Þ ð11Þ

Note that Eqs. (8) and (9) can reduce to the Laplace-

domain solutions presented by Butler [4] when neglect-

ing the well radius (rw ! 0) as shown in Appendix A.Fig. 1. The well and aquifer configurations.
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2.3. Time-domain solution

The solution of Eq. (8) in the time domain obtained

by using the Bromwich integral [13, p. 624] is shown in

Appendix B; and the drawdown distribution for the skin
zone, s1 is

s1 ¼
Q

4pT2

4T2
prwT1

Z 1

0

ð1
�

� e�ðT1=S1Þu2tÞ

	 A1ðuÞB1ðuÞ þ A2ðuÞB2ðuÞ
B2
1ðuÞ þ B2

2ðuÞ
du
u2

�
ð12Þ

with

A1ðuÞ ¼ ½J1ðr1uÞY0ðjr1uÞY0ðruÞ � Y1ðr1uÞY0ðjr1uÞJ0ðruÞ�

�
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
½J0ðr1uÞY1ðjr1uÞY0ðruÞ

� Y0ðr1uÞY1ðjr1uÞJ0ðruÞ� ð13Þ

A2ðuÞ ¼ ½Y1ðr1uÞJ0ðjr1uÞJ0ðruÞ � J1ðr1uÞJ0ðjr1uÞY0ðruÞ�

�
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
½Y0ðr1uÞJ1ðjr1uÞJ0ðruÞ

� J0ðr1uÞJ1ðjr1uÞY0ðruÞ� ð14Þ

B1ðuÞ ¼ ½J1ðr1uÞJ0ðjr1uÞY1ðrwuÞ � Y1ðr1uÞJ0ðjr1uÞJ1ðrwuÞ�

�
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
½J0ðr1uÞJ1ðjr1uÞY1ðrwuÞ

� Y0ðr1uÞJ1ðjr1uÞJ1ðrwuÞ� ð15Þ

and

B2ðuÞ ¼ ½J1ðr1uÞY0ðjr1uÞY1ðrwuÞ � Y1ðr1uÞY0ðjr1uÞJ1ðrwuÞ�

�
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
½J0ðr1uÞY1ðjr1uÞY1ðrwuÞ

� Y0ðr1uÞY1ðjr1uÞJ1ðrwuÞ� ð16Þ

where u is a dummy variable and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1S2=T2S1

p
. Note

that J0ð�Þ and Y0ð�Þ are respectively the Bessel functions

of the first and second kinds of order zero, and J1ð�Þ and
Y1ð�Þ are respectively the Bessel functions of the first and
second kinds of order first.

The drawdown distribution for the formation, s2, can
be obtained in a similar manner as

s2 ¼
Q

4pT2

8T2
p2rwr1T1

Z 1

0

ð1
�

� e�ðT1=S1Þu2tÞ

	 Y0ðjruÞB1ðuÞ � J0ðjruÞB2ðuÞ
B2
1ðuÞ þ B2

2ðuÞ
du
u3

�
ð17Þ

Notably, the term inside the bracket of Eq. (12) or (17)

can be considered as the well function for a constant

pumping from a finite-radius well in a radial two-layer

aquifer system.

2.4. Dimensionless solutions

Defining dimensionless variables a ¼ T2=T1, b ¼ S2=S1,
s ¼ T2t=S2r2w, q ¼ r=rw, q1 ¼ r1=rw, r ¼ sð4pT2Þ=Q, and
r ¼ �ssð4pT2Þ=Q. The Laplace-domain solutions for di-
mensionless drawdown, r, derived from Eqs. (8) and (9)

may be respectively expressed as

r1 ¼
1

p
2affiffiffi
p

p
=j

/2K0ð
ffiffiffi
p

p
q=jÞ þ /1I0ð

ffiffiffi
p

p
q=jÞ

/2K1ð
ffiffiffi
p

p
=jÞ � /1I1ð

ffiffiffi
p

p
=jÞ

� �
ð18Þ

and

r2 ¼
1

p
2affiffiffi
p

p
=j

ð/2K0ð
ffiffiffi
p

p
q1=jÞ þ /1I0ð

ffiffiffi
p

p
q1=jÞÞK0ð

ffiffiffi
p

p
qÞ

ð/2K1ð
ffiffiffi
p

p
=jÞ � /1I1ð

ffiffiffi
p

p
=jÞÞK0ð

ffiffiffi
p

p
q1Þ

� �

ð19Þ
where

/1 ¼ K1ð
ffiffiffi
p

p
q1=jÞK0ð

ffiffiffi
p

p
q1Þ

�
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
K0ð

ffiffiffi
p

p
q1=jÞK1ð

ffiffiffi
p

p
q1Þ ð20Þ

and

/2 ¼ I1ð
ffiffiffi
p

p
q1=jÞK0ð

ffiffiffi
p

p
q1Þ

þ
ffiffiffiffiffiffiffiffiffi
S2T2
S1T1

r
I0ð

ffiffiffi
p

p
q1=jÞK1ð

ffiffiffi
p

p
q1Þ ð21Þ

Accordingly, the dimensionless-drawdown solutions,

r, derived from Eqs. (12) and (17) are respectively

r1 ¼
4a
p

Z 1

0

ð1� e�bsw2=aÞ

	 ½A1ðwÞB1ðwÞ þ A2ðwÞB2ðwÞ�
½B2

1ðwÞ þ B2
2ðwÞ�

dw
w2

ð22Þ

and

r2 ¼
8a

p2q1

Z 1

0

ð1� e�bsw2=aÞ

	 ½Y0ðjqwÞB1ðwÞ � J0ðjqwÞB2ðwÞ�
½B2

1ðwÞ þ B2
2ðwÞ�

dw
w3

ð23Þ

where w ¼ rwu,

A1ðwÞ ¼ ½J1ðq1wÞY0ðjq1wÞY0ðqwÞ
� Y1ðq1wÞY0ðjq1wÞJ0ðqwÞ� �

ffiffiffiffiffiffi
ab

p
½J0ðq1wÞ

	 Y1ðjq1wÞY0ðqwÞ � Y0ðq1wÞY1ðjq1wÞJ0ðqwÞ�
ð24Þ

A2ðwÞ ¼ ½Y1ðq1wÞJ0ðjq1wÞJ0ðqwÞ
� J1ðq1wÞJ0ðjq1wÞY0ðqwÞ� �

ffiffiffiffiffiffi
ab

p
½Y0ðq1wÞ

	 J1ðjq1wÞJ0ðqwÞ � J0ðq1wÞJ1ðjq1wÞY0ðqwÞ�
ð25Þ

B1ðwÞ ¼ ½J1ðq1wÞJ0ðjq1wÞY1ðwÞ
� Y1ðq1wÞJ0ðjq1wÞJ1ðwÞ� �

ffiffiffiffiffiffi
ab

p
½J0ðq1wÞ

	 J1ðjq1wÞY1ðwÞ � Y0ðq1wÞJ1ðjq1wÞJ1ðwÞ� ð26Þ
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and

B2ðwÞ ¼ ½J1ðq1wÞY0ðjq1wÞY1ðwÞ � Y1ðq1wÞY0ðjq1wÞJ1ðwÞ�
�

ffiffiffiffiffiffi
ab

p
½J0ðq1wÞY1ðjq1wÞY1ðwÞ

� Y0ðq1wÞY1ðjq1wÞJ1ðwÞ� ð27Þ

The dimensionless drawdown in a single-layer aquifer

system is given as [11,14]

rðq; sÞ ¼ 4

p

Z 1

0

ð1� e�sw2Þ

	 ½Y0ðqwÞJ1ðwÞ � J0ðqwÞY1ðwÞ�
½J 21 ðwÞ þ Y 2

1 ðwÞ�
dw
w2

ð28Þ

If the dimensionless aquifer properties in a radial two-
layer aquifer system are assumed to equal unity for each

parameter, i.e., a ¼ b ¼ 1; then, both Eqs. (22) and (23)

can reduce to Eq. (28) algebraically.

3. Numerical evaluations

The improper integrals of Eqs. (22) and (23) may be

difficult to directly evaluate due to the slow convergence

of the Bessel functions and their products. However, the

integral may be transformed as a sum of infinite series

and each term of the series is obtained by integrating the
area under the integrand and between two consecutive

roots along the horizontal axis. Thus, these two inte-

grals are evaluated by the proposed approach including

a root search scheme, the Gaussian quadrature, and the

Shanks method [23]. The root search scheme employs

the Newton method to search for the next root if there is

only a single-peak wave within any two consecutive

roots. On the other hand, a combination of the bisection
method and the Newton method is adopted to search for

next root when the double-peak wave happens between

two consecutive roots. The Gaussian quadrature is used

for performing the numerical integration within the

chosen interval. The Shanks method is applied to ac-

celerate convergence when evaluating the Bessel func-

tions and the alternating series obtained from evaluating

the integral.

3.1. Root search scheme

In the root search scheme, initial guess values are

required to find the sequential roots. A reasonable es-

timate of the increment obtained from the solution of a

single-layer system is chosen to approximate the first
(none-zero) root of the solution for a two-layer system.

The dimensionless distance, q, is a critical factor to de-

termine the location of the non-zero roots. For q > 1,

the asymptotic expansion of the large positive ith-root
for the bracket term on the right-hand-side (RHS) of

Eq. (28), wi, is [1, p. 374]

wi ¼ cþ d
c
þ e� d2

c3
þ � � � ; i ¼ 1; 2; . . . ; n ð29Þ

where c ¼ ði� 1=2Þp=ðq � 1Þ, d ¼ ð3q þ 1Þ=½8qðq � 1Þ�,
and e ¼ ð�63q3 � 25Þ=½6ð4qÞ3ðq � 1Þ�.

When q is small, Eq. (29) gives good approximations

for the first few non-zero roots of the integrand of Eq.
(28). The interval between the first two roots is ap-

proximately equal to p=2ðq � 1Þ, which is obtained by

simply neglecting the second and remaining terms of

Eq. (29). Therefore, the increment D1 from the origin to

the first (none-zero) root approximately equals p=2ðq�
1Þ. When q is large, the approximate result of using the

increment D1 to estimate the large roots of the inte-

grand will be very poor; in other words, other incre-
ments that give good approximations to the larger

roots are needed. As a reasonable guess for the second

increment, D2 is chosen to be equal to the first (non-

zero) root w1; thus, the second root w2 is approximately

equal to 2w1 Similarly, the remaining increments Di are

chosen as wi�1 � wi�2; and therefore, the remaining

roots may be approximately equal to wi ¼ wi�1 þ Di

where i ¼ 3; 4; . . ..

3.2. Evaluation of integral

Both the six-term and ten-term formulas of the

Gaussian quadrature are used together to carry out the

numerical integration for the area under the integrand.

Starting from the origin, a small step-size, Dw, is chosen
for the integration. The integration results after apply-

ing the six-term and ten-term formulas are defined as A6

and A10 respectively. The difference of two integration

results is defined as DA ¼ jA10 � A6j. A half step-size
(Dw=2) will be used if DA > 10�7 and the same inte-

gration procedure will be repeated again. The same

step-size (Dw) is employed if 10�8 5DA5 10�7 and a

double step-size (2Dw) is chosen if DA < 10�8 for next

integration. This scheme ensures that each integration

result over a small step-size is accurate to seven decimal

places.

For q ¼ 1 (i.e., at the rim of the well), the plot of the
integrand is a single-peak curve. The initial step-size,

Dw, is chosen very small, say 10�5, for the integrand of

Eq. (22); then, both the six-term and ten-term formulas

of the Gaussian quadrature are used at the same time to

carry out the integration. The integration procedure

described above is applied to successive integrations

from zero to infinity. As long as the result of the inte-

gration is less than 10�10, the remaining integration to-
ward infinity is estimated by changing the variable to

be y ¼ 1=w, and the transformed integral in terms of y
is directly evaluated by the Gaussian quadrature [12,

p. 304]. Finally, the dimensionless drawdown repre-

sented by Eq. (22) for q ¼ 1 can be obtained by simply

adding all the integration results from each small step.
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For q > 1, the curve of the integrand exhibits two

peaks within two adjacent roots when the aquifer has

a positive skin (a > 1), and a single peak when the

aquifer has a negative skin (a < 1) or uniform formation

(a ¼ 1). The root search approach is used to find the
sequential roots; whereas a combination of the bisection

method and the Newton method is adopted if a > 1 and

the Newton method is adopted for a51. The initial step-
size is chosen to be the half distance between two ad-

jacent roots, i.e., Dwi ¼ ðwi � wi�1Þ=2. The proposed

integration procedure is applied over the w-axis. Note
that the last step-size is chosen such that the end of the

last step-size should be located right at the next root.
The area between any two adjacent roots, which repre-

sents a term of an infinite series, is then obtained by

adding the sum of the results obtaining from the inte-

gration for each step-size. It should be noted that the

integrands of Eqs. (22) and (23) exhibit oscillatory be-

havior because of the nature of the Bessel functions, so

the resultant infinite series may have the problem of

slow convergence. Since the Shanks method had been
shown to be a very efficient algorithm for accelerating

the convergence of a slowly convergent series [23,30], it

is employed here to accelerate the convergence in sum-

ming the alternating series.

3.3. Numerical inversion

The Laplace-domain solution for mathematical mod-
els in many engineering problems may be tractable,

yet the corresponding solution in the time domain may

not be possible or easily solved. Under such circum-

stances, methods of numerical Laplace inversion such

as the Stehfest algorithm [24], the Talbot method [27],

or the Crump algorithm [9] may be used. Herein, the

modified Crump algorithm [10,16] is adopted to invert

the Laplace-domain solutions (Eqs. (18) and (19)) to an
accuracy of five decimal places. Then, the numerical

inversion results are compared with the values of the

time-domain solution estimated by the proposed ap-

proach.

4. Results and discussion

In this section, the dimensionless time–drawdown

and distance–drawdown curves are plotted to investi-

gate the influences of various factors on the drawdown

distribution for the case of q1 ¼ 3. The time-domain
solutions of Eqs. (22) and (23) are evaluated by the

proposed approach; while the Laplace-domain solutions

of Eqs. (18) and (19) are evaluated by the modified

Crump algorithm. The double-precision format is used

for all evaluations and the convergence criterion for the

Shanks method is set as 10�7.

4.1. Comparison of the time-domain solution and inversion

from the Laplace-domain solution

Figs. 2 and 3 respectively show the dimensionless

time–drawdown and distance–drawdown curves based
on the closed-form and Laplace-domain solutions for

q ¼ 1, 3 and 5 when a ¼ 0:5, 1 or 2. The formation has a

negative skin if a ¼ 0:5 and a positive skin if a ¼ 2; while

the formation has only a single layer for a ¼ 1. Notably,

the results of the Laplace-domain solution agree very

well with those of the closed-form solution as indicated

in Figs. 2 and 3. These comparisons may suggest that

both solutions are correctly evaluated.
Within the skin zone (15 q5 3), Fig. 2 shows that the

dimensionless time–drawdown curve for a single-layer

formation appears significantly different from that with

a positive or negative skin. The well with positive skin

produces the largest dimensionless drawdown, the single

layer is the second, and the well with negative skin yields

the smallest among these three drawdown curves. The

positive skin has lower conductivity and requires a lar-
ger head loss to maintain the constant flow rate, while

the negative skin requires a lower head loss, compared

with the solution of a single-layer system. Within the

aquifer formation (i.e., q= 3), the dimensionless draw-

down for the system with a positive skin is smaller than

Fig. 2. The time-domain solution evaluated by the proposed approach

and the Laplace-domain solution evaluated by the modified Crump

algorithm for q ¼ 1, 3 and 5 while a ¼ 0:5, 1 or 2. The solid line

represents the time-domain solution, and the symbols d, m and w

represent the numerical inversion solutions.
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that without skin or with a negative skin at the same

dimensionless time. The larger dimensionless drawdown

in the formation reflects the effect of lower hydraulic

conductivity of a positive skin. On the other hand, the

smaller dimensionless drawdown reveals the impact of a

negative skin with larger conductivity. Fig. 2 indicates

that the dimensionless drawdowns for a constant-flux

pumping may be divided into three distinct periods, i.e.,
small time (s < 1), intermediate time (15 s5 30), and

large time (s > 30) if the wellbore skin is presented. This

indicates that the dimensionless-drawdown differences

between the single-layer and two-layer aquifers are

negligible at small- and large-dimensionless times. On

the other hand, the observed differences of dimension-

less drawdowns are quite large at intermediate-dimen-

sionless time as indicated in Fig. 2 since the relative
differences may reach 30% or even higher.

Fig. 3 displays the dimensionless distance-drawdown

curves for a ¼ 0:5, 1 and 2 when s ¼ 0:1, 10 or 1000.

Within the skin zone (15 q5 3), the dimensionless-

drawdown differences between the single-layer and two-

layer aquifers decrease from the wellbore to the interface

of the skin and formation zones. In addition, a larger a
yields larger dimensionless drawdown near the wellbore
and the dimensionless drawdown for various a increases

with s. In contrast, the dimensionless drawdown with a

positive skin is slightly smaller than that without skin

(single-layer aquifer) or with a negative skin when q= 3.

4.2. Effect of skin type

The effect of the skin zone on the drawdown near the

well is noteworthy in engineering practice. Fig. 4 depicts

the dimensionless time–drawdown curves at the well-

bore (q ¼ 1) when a ¼ 0:1, 0.5, 1, 5 or 10. In this figure,
the dimensionless drawdown curves for the system with

a positive skin are represented by a ¼ 5 and 10, and with

a negative skin by a ¼ 0:1 and 0.5. The dimensionless

drawdowns at s ¼ 10 are respectively 10.03 and 16.01

for a ¼ 5 and 10, 1.53 and 2.33 for a ¼ 0:1 and 0.5, and

3.30 for a ¼ 1. This Indicates that the dimensionless

drawdown increases significantly with a values, espe-

cially for positive skins. Observed from the dimension-
less time–drawdown curves shown in Fig. 4, the

dimensionless drawdown is significantly affected by the

positive skin than by the negative skin. When an aquifer

has a positive skin and is subjected to pumping, the

replenishment from the formation is slower because the

permeability of a positive skin is smaller than that of

the original formation. Thus, the dimensionless draw-

down increases quickly with time. In contrast, the
change of dimensionless drawdown due to a negative

skin is minor because of the larger permeability and

faster replenishment from the formation.

Interestingly, the curves plotted in Fig. 4 indicate that

the dimensionless drawdown is proportional to the

Fig. 4. Dimensionless time–drawdown curves for q ¼ 1 while a ¼ 0:1,

0.5, 1, 5 or 10.

Fig. 3. The time-domain solution evaluated by the proposed approach

and the Laplace-domain solution evaluated by the modified Crump

algorithm for s ¼ 0:1, 10 and 1000 while a ¼ 0:5, 1 or 2. The solid line

represents the time-domain solution and the symbols d, m and w

represent the numerical inversion solutions.
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natural logarithm of pumping time when s > 102. This

behavior follows Jacob�s equation [7], implying that the

derived solutions for a two-layer system asymptotically

approach Jacob�s equation after a long time.

4.3. Effect of skin thickness

This section investigates the effect of skin thickness in

the case of a system with a positive skin. The dimen-

sionless time–drawdown curves for a ¼ 10 while q ¼ 1,

3 or 10 are depicted in Fig. 5 to explore the influences

of the dimensionless skin thicknesses (e.g., q1 ¼ 3 and

10). Note that the dimensionless skin thickness is equal

to q1 � q. Fig. 5 shows that with a smaller dimension-
less radial distance (q), there is a larger dimensionless

drawdown. In addition, the dimensionless drawdown

increases with the skin thickness for the same q. The well
pumping produces a drawdown cone near the well and

the hydraulic gradient acts to drive the water flows from

the aquifer to the well. Therefore, thicker skin makes

aquifer water take more time to flow toward the well

and naturally results in larger drawdown near the well.

4.4. Effect of well radius

The effect of the well radius on the dimensionless

drawdown due to a constant-flux pumping can be ex-

plored by comparing our closed-form solution with the

Laplace-domain solution for a point source case pre-

sented by Butler [4]. Fig. 6 depicts the dimensionless

drawdown curves plotted based on the closed-form so-
lution and Butler�s Laplace-domain solution for q1 ¼ 10

and a ¼ 10 when q ¼ 1, 5 or 10. The axis of dimen-

sionless time is chosen as s=q2ðT2t=S2r2Þ, also used in

Butler [4], for comparison purposes. The differences of

dimensionless drawdowns between these two solutions
for q ¼ 1 are very large when s=q2 ¼ 1, and small while

s=q2
= 1000. Fig. 6 indicates that if q is small then ne-

glecting the effect of well radius may cause significant

errors in the drawdown estimation, especially for the

case of a large well radius. The dimensionless draw-

downs for the aquifer system with and without consid-

eration of the well radius are almost equal when the

dimensionless time is large, say s=q2
= 1000. In reality,

both dimensionless drawdown curves approach Jacob�s
equation at a very long time.

5. Summary and conclusions

An aquifer is considered to be a radial two-layer
system if a skin exists near the wellbore. In addition, a

patchy aquifer with a well situated at the center of a disc

with anomalous properties can also be considered as a

radial two-layer system. A mathematical model for an

aquifer having a fully penetrating well with a finite-

thickness skin and constant-flux pumping is presented.

The Laplace-domain solution for the model is derived

by the Laplace transforms, and the time-domain solu-
tion in terms of the aquifer drawdown is then obtained

after taking the Laplace inversion using the Bromwich

integral method. A unified numerical method is pro-

posed to efficiently evaluate this solution with accuracy

to five decimal places. The values of the time-domain

solution evaluated by the proposed approach agree very
Fig. 5. Dimensionless time–drawdown curves for a ¼ 10, and q1 ¼ 3

and 10 while q ¼ 1, 3 or 10.

Fig. 6. Comparisons between the closed-form solution and Butler�s
solution for q1 ¼ 10 and a ¼ 10 when q ¼ 1, 5 or 10.
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well with those of the Laplace-domain solution when

numerically inverted by the modified Crump algorithm.

These results suggest that both the Laplace-domain so-

lution and the time-domain solution are correctly eval-

uated. The Laplace-domain solutions for a two-layer
aquifer system with a finite-radius well are shown to

reduce to those presented by Butler [4] if the well radius

is neglected. The estimated drawdowns for a two-layer

system are equal to those of the solution for a single-

layer system, i.e., a ¼ b ¼ 1 for a uniform aquifer. Also,

the dimensionless drawdown curves plotted for the time-

domain solution have been demonstrated to approach

the Jacob line for long dimensionless time and distance.
This newly derived solution is used to produce the

dimensionless-drawdown curves for investigating the

effects of the skin type, the skin thickness, and the well

radius on the drawdown distribution. The results show

that the differences of dimensionless drawdown between

the solutions of the single-layer and two-layer systems

are negligible at short and long dimensionless times;

however, the differences may reach 30% or even higher
at intermediate dimensionless time. On the effect of well

radius, the solution for the aquifer system without

considering the well radius will yield large errors in es-

timating dimensionless drawdowns within the skin zone

at early time. However, the effect of the well radius

on dimensionless drawdown gradually diminishes as

the pumping time increases. Thus, the solution for an

aquifer system without considering the well radius is
applicable only under the conditions of being over a

long time, with small well radius, and/or having large

skin thickness. Furthermore, the skin thickness also af-

fects the estimated drawdown in an aquifer system. The

dimensionless drawdown for a system with a positive

skin apparently increases with the skin thickness and

decreases with the radial distance.
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Appendix A. Laplace-domain solution for a point source

case

Since I1ð0Þ ¼ 0, the limit of Eq. (8) as rw approaches 0
becomes

�ss1
���
rw!0

¼ Q
4pT2

1

p
2T2
T1

U2K0ðq1rÞ þ U1I0ðq1rÞ
U2

� �
lim
rw!0

1

q1rwK1ðq1rwÞ

� �

ðA:1Þ

Carslaw and Jaeger [6, p. 489] gave a formula

I0ðzÞK1ðzÞ þ K0ðzÞI1ðzÞ ¼
1

z
ðA:2Þ

The term U2K0ðq1r1Þ þ U1I0ðq1r1Þ in the numerator of

Eq. (9) reduces to K0ðq2r1Þ=ðq1r1Þ when applying Eq.

(A.2). With I1ð0Þ ¼ 0, the limit of Eq. (9) as rw ap-

proaches 0 becomes

�ss2
���
rw!0

¼ Q
4pT2

1

p
2T2

q1r1T1

K0ðq2rÞ
U2

� �
lim
rw!0

1

q1rwK1ðq1rwÞ

� �

ðA:3Þ

Based on I0ð0Þ ¼ 1 and I1ð0Þ ¼ 0, the limit of Eq. (A.2)

as z approaches zero becomes

lim
z!0

½zK1ðzÞ� ¼ 1 ðA:4Þ

Accordingly, Eqs. (A.1) and (A.3) respectively reduce

to

�ss1
���
rw!0

¼ Q
4pT2

1

p
2T2
T1

U2K0ðq1rÞ � U1I0ðq1rÞ
U2

� �
ðA:5Þ

and

�ss2
���
rw!0

¼ Q
4pT2

1

p
2T2

q1r1T1

K0ðq2rÞ
U2

� �
ðA:6Þ

which is the Laplace-domain solution presented by

Butler [4] when neglecting the well radius (rw ! 0). Note

that both Eqs. (A.5) and (A.6) were originally given in

different form by Barker and Herbert [2], and later

slightly revised by Butler [4]; and Eq. (A.6) was also

given in Butler and Liu [5, p. 268].

Appendix B. Derivation of Eq. (12)

The convolution theorem [13, p. 63] states that

L�1ff ðpÞ � gðpÞg ¼
Z t

0

F ðt � gÞGðgÞdg ðB:1Þ

The inversion of Eq. (8) will lead to the solution of

drawdown in a skin zone, thus

s1 ¼ L�1f�ss1g ¼ L�1ff1ðpÞ � g1ðpÞg ðB:2Þ

Let f1ðpÞ ¼ 1=p and g1ðpÞ represent the term on the

RHS of Eq. (8) except 1=p. Applying the Bromwich

integral with L�1ff1ðpÞg ¼ F ðtÞ ¼ 1 yields [13, p. 624]

G1ðtÞ ¼ L�1fg1ðpÞg ¼ 1

2pi

Z fþi1

f�i1
eptg1ðpÞdp ðB:3Þ

where p is a complex variable, i is an imaginary unit, and
f is a large, real, and positive constant so that all the

poles lie to the left of the line (f � i1; f þ i1Þ.
A single branch point with no singularity (pole) at

p ¼ 0 exists in the integrand of Eq. (8). Thus, this inte-

gration may require using a contour integral for the
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Laplace inversion. The contour of the integrand is

shown in Fig. 7 with a cut of the p plane along a negative
real axis, where e is taken sufficiently small to exclude all
poles from the circle about the origin. The closed con-

tour comprises the part AB of the Bromwich line from
minus infinity to infinity, semicircles BCD and GHA of

radius R, lines DE and FG parallel to the real axis, and a

circle EF of radius e about the origin. Along the small

circle EF, the integration around the origin when e ap-
proaches zero is carried out by using the Cauchy integral

and the value of integration is equal to zero. The inte-

grals taken along BCD and GHA tend to zero when R
approaches infinity. Therefore, Eq. (8) can be super-
seded by the sum of the integrals along DE and FG. In

other words, Eq. (B.3) can be written as

G1ðtÞ ¼ lim
e!0
R!1

�1
2pi

Z
DE

eptg1ðpÞdp
�

þ
Z
FG
eptg1ðpÞdp

�

ðB:4Þ

By defining p ¼ u2 e�piT1=S1, q1 ¼ ui, and q2 ¼ jui, the
first term on the RHS of Eq. (B.4) becomes

G1DEðtÞ ¼
Q

2p2rwT1

Z 1

0

e�ðT1=S1Þu2tg1ðuÞ
du
u2

ðB:5Þ

Two formulas give the relationship for the Bessel

funtions and the modified Bessel functions [6, p. 490,

Eqs. (25) and (26)]

Kv ze�
1
2
pi

� 	
¼ � 1

2
pi e�

1
2
vpi½�JvðzÞ � iYvðzÞ� ðB:6Þ

and

Iv ze�
1
2
pi

� 	
¼ e�

1
2
vpiJvðzÞ ðB:7Þ

where v ¼ 0; 1; 2; . . .. Based on Eqs (B.6) and (B.7), Eq.

(B.5) leads to

G1DEðtÞ ¼
Q

2p2rwT1

Z 1

0

e
�T1

S1
u2t �A1ðuÞ � iA2ðuÞ

B1ðuÞ þ iB2ðuÞ
du ðB:8Þ

where A1, A2, B1 and B2 were as defined in Eqs. (13)–(16),

respectively.
Likewise, by introducing p ¼ u2 epiT1=S1, q1 ¼ �ui,

and q2 ¼ �jui, the integral along FG gives minus the

conjugate of Eq. (B.8) as

G1FGðtÞ ¼
Q

2p2rwT1

Z 1

0

e�ðT1=S1Þu2t

	 �A1ðuÞ þ iA2ðuÞ
B1ðuÞ � iB2ðuÞ

du ðB:9Þ

The result of the contour integral can then be ob-

tained by combining Eqs. (B.8) and (B.9) as

G1ðtÞ ¼
Q

p2rwT1

Z 1

0

e
�T1

S1
u2t

	 A1ðuÞB1ðuÞ þ A2ðuÞB2ðuÞ
B2
1ðuÞ þ B2

2ðuÞ
du ðB:10Þ

Therefore, the complete solution for drawdown distri-

bution in an aquifer with a constant pumping obtained

by the convolution is

s1ðr; tÞ ¼
Z t

0

1 � G1ðgÞdg ðB:11Þ

The result of Eq. (B.11) after the integration is

s1 ¼
Q

4pT2

4T2
prwT1

Z 1

0

1
��

� e
�T1

S1
u2t
	

	 A1ðuÞB1ðuÞ þ A2ðuÞB2ðuÞ
B2
1ðuÞ þ B2

2ðuÞ
du
u2

�
ðB:12Þ

which is the equation of Eq. (12).
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