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Hydrogen atom in a high magnetic field
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The low-lying energy levels of a hydrogen atom in a uniformly strong magnetic field B (B ( 10
G) are calculated in a simple perturbative variational approach which combines the spirit of the
variational principle and the conventional pertubation method. The total Hamiltonian is separated
into four parts: a one-dimensional hydrogen-atom system; a two-dimensional harmonic-oscillator
system; a z-component angular-momentum operator; and a perturbation part which contains an
undetermined variable parameter but is independent of B. The first three parts can be solved
exactly. The variational parameter introduced in the Hamiltonian can be determined by requiring
the energy-correction expansion to converge as fast as possible. It is found that our calculated
ground-state energy is in good agreement with those obtained by the previous works that used the
wave-function-expansion approach for high magnetic fields up to y = 7 (i.e., 10 G for atoms).

PACS number(s): 31.20.Gm, 31.30.—i, 32.60.+i

I. INTRODUCTION

The problem of hydrogenlike systems in an exter-
nal magnetic field is fundamental in various domains of
physics and has received a great deal of attention in re-
cent years [1—11]. Calculations of the energy levels of a
hydrogenlike atom are essential for astrophysics [12—15]
and solid-state physics involving excitons or shallow
donors [16,17]. The possible existence of extremely high
magnetic Belds in white dwarfs and neutron stars has mo-
tivated the investigation of their efFects on the electronic
structure and spectrum of atoms. This Beld reaches
an intensity of 10 —10 G. It is known that in the
low-Beld limit, the conventional perturbation and varia-
tional methods have been proved to be valid, while in the
high-field limit the expansion perturbation and variation
method [1,4,7,9] and adiabatic techniques [10,11] were
usually employed. In the past few years, a great deal of
work has been devoted to obtaining the energy values and
the wave functions of the whole range of Beld strength.
Praddaude [1] expanded the wave functions of the hydro-
gen atom under a magnetic field (up to p = 3.0) in terms
of Laguerre polynomials. Kaschiev et al. [3] solved bound
states of the H atom by using the finite-element method
in a strong magnetic Beld B with 10' ( B ( 10" G.
Chen et aL [9] proposed an expansion variational method
to study the energy spectrum of a hydrogenlike system in
an arbitrary magnetic field (up to 10 G). After optimiz-
ing two variational parameters, they found the numerical
results were accurate in the case of both low- and high-
field limit. Liu and Starace [10] performed an adiabatic-
approximation calculation on the low-lying energy levels
of an atomic hydrogen. for fields above 10 G in cylin-
drical coordinates. Both upper and lower bounds on the
true level energies and binding energies were obtained.

Although the variational approach can provide reason-
able results, the accuracy of the variational methods de-
pends on the choice of the trial wave functions. But in
the usual cases, to select a "good" trial wave function

sometimes yields the problem of how to balance between
simplicity and accuracy. In the expansion wave function
or expansion variational methods, many expansion terms
have to be included to obtain a reasonably accurate re-
sult. These approaches involve intrinsically huge numeri-
cal complication and thus make the problem become very
tedious. Dai and Chuu [17] performed a variational per-
turbative approach to study the donor impurity states
of cadmium sulfide semiconductor in the magnetic Beld.
In their approach the energy correction due to the mag-
netic field was treated as the perturbation which is able
to be optimized by varying the parameter introduced in
the Hamiltonian. Therefore their treatment can be essen-
tially applied to the case of lower magnetic field strength.
In this work, we improve their treatment and present a
simpler approach which not only combines the spirit of
the conventional variational and perturbative approaches
but also can be applied to the case of higher magnetic
field strength. The numerical procedures involved in the
calculation are very simple and easy to handle. The
results reported here are accurate up to about 10 G,
which covers not only the whole range of laboratory ac-
cessible fields but also an important part of the range of
astrophysical interest. This paper is organized as follows:
in Sec. II we present the theory; in Sec. III we report
our numerical results. A short summary will be given in
the last section.

II. THEORY

The hydrogen atom in a uniformly high magnetic Beld
B can be accurately described over a large range of field
strengths B by the simple nonrelativistic single particle
Hamiltonian
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H = Hy + Hyj + HID) + Hg~ ) (2)

where

where the energy is expressed in terms of the effective
4

Rydberg Bo ——2~&, , where e is the static dielectric con-
stant and p is the reduced mass of the system and the
length is expressed in terms of the efFective Bohr radius

hao ——'", . The z component of the angular-momentum0
operator L, is defined as —icr/Op and the dimensionless
parameter p is the reduced field strength and can be ex-
pressed as p = ehB/2cpR&. p = 1 for H = 2.35 x 10s T
in the case of the hydrogen atom in vacuum. In the above
expression, we have neglected the relativistic correction
and the efFects of spin-orbit coupling. This is because it
is known that the relativistic correction is negligible for
fields with p ( 10 and the effects of spin-orbit coupling
can be neglected for fields with p ) 10 and in this work
the only interesting range of p lies in 0.0002 ( p ( 7.

It is known that the eigenvalue problem described by
the Hamiltonian in Eq. (1) cannot be solved exactly. As
mentioned above, we will treat this problem in a rather
different way by introducing a parameter A into H by
adding and subtracting a term to make the Hamil-

I I

tonian separable into four parts:

and

2A
Hyy =

The parameter A plays essentially the same role as
the "efFective-charge" parameter commonly used in the
molecular calculation. The solutions for Hy are one-
dimensional hydrogenic wave functions:

g~(z, A) = Ne ~"'z qEq(1 —n; 2; 2~2Az),

where N is the normalization constant. The eigenvalues
can be expressed as E& (A) = ——, , n = 1, 2, ..., where(o)

«E» is the degenerate hypergeometric function.
The solutions of the term Hyy are the two-dimensional

harmonic-oscillator wave functions:

ggg = N„N H„(Px)H (Py)e ~l +" l,

where P = v 2p. The normalization constant N„ is
deBned as ( „, ) ~ . The corresponding eigenvalues

E&& ——(n+ m+ 1)p, n, m = 0, 1, 2, ... .
The solution of Hype is the z-component angular-

momentum wave functions, i.e. , the spherical harmonic
functions:

02 2A
H

c9z2 fz/
'

Hrri = ZL~ ~ (5)

Ari = &' (~, p),

with eigenvalues E&&& ——pm, m = 0, 1, 2, ... .
The last term Hy~ is now treated as the perturbation

part. By using @y(z, A)ggy(x, y)@yn(o, p) as the unper-
turbed eigenfunctions, the energy correction of Hpv can
be evaluated as the conventional perturbation method.
For illustration only, we present here the first-order en-
ergy correction for the ground state:

(A) = 2A + 24 A (4p)~4p — p e ~~ Ho(2~2p) — Hy(2V2Ap)
r2 2Ap

No(2~2Ap) — Ng(2v 2Ap) dp,
)2 2Ap

(10)

where H (2~2Ap) and N (2~2Ap) are the nth-order Struve and Neurnan functions. The second term of the right
hand side of the above equation contains the following types of integrals:

p e ~~ Ho(2~2Ap) dp,

p e ~~ Hg (2~2A p) dp, (12)

p e ~~ No(2y 2Ap) dp,

p e ~~ Ng(2~2Ap) dp. (14)
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The first two integrals can be evaluated as

P"+'&(-', + 2+ —", ) ( v+ a+1 3 3 P')
(15)

where „Fq is the generalized hypergeometric functions and can be expressed as the following series:

~ - (~i)a(~2)1. (~„)~z"

where (n„)i, = (otz)(n„+ 1) . (n„+ jc). The last two terms can be evaluated as

p e ~~ No(2v 2Ap) dp =— " (
e ~

l 1+, f, (p, A)
4 p'

(——;)(--')1
A

(—-')(—-')(-')
(17)

where

n n —1
Az A2

(18)

the Kramer function K (z) is defined as

K„(z) = e '' '"" cosh(vt)dt,

and

OO
A

1

p e ~~ N(i2V2Ap) dp = — e ~ 1+ s gi(p, A)
0 27l p

(—2)(—2) 1 (—2)(2)(2) 1

(-;)(-,') 2' '
(-,')(-,')(-,') 3'

where

2A2 1
n

A A2
(21)

K„(z) is the Kramer function.
The higher-order energy corrections LE„&

LE &, . . . can be obtained in the same way. After eval-

uating the correction AE &, the total energy can be(i)

expressed as

AE„, (A) = 0.

(ii) Another method to choose A is to set [17]

(24)

This can be satisfied by requiring the parameter A to
satisfy [18]

E„i (A) =E, +Eii +E„,+DE„, +RE„,(o) (o) (o) (~) (2)

+~E(2) (22)
OE„( (A)

t9A
(25)

There are several ways to choose the parameter A.

(i) The suitable value of the parameter A can be cho-
sen to make the perturbation expansion expressed in Eq.
(22) converge most quickly so that only the first few
terms will be enough. Hence A is to be d.etermined by
the condition

~

AE
&

(A)/E~i~(A) ~= minimum .

This is because, in spite of the appearance of A, the exact
result described by the total Hamiltonian H is indepen-
dent of the parameter A. However, in most cases only
the approximation result is accessible; in order to obtain
the approximation which most closely mimics the exact
result's independence of A, the parameter should be cho-
sen so as to minimize the E ~ (A) s sensitivity to small
variations in its value.
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TABLE I. The ground-state energy (in units of effective rydberg Ro) and binding energy (BE)
(in units of efFective rydberg Ro) p —E~ l for a hydrogen atom in a uniform magnetic field with
p = 0.02 —7.0. The corresponding values of the variational parameter A are also shown.

0.02 1.420
0.10 1.445
0.20 1.470
0.50 1.513
1.00 1.525
2.00 1.447
3.00 1.288
4.00 1.060
5.00 0.719
6.00 0.467
7.00 0.098

A RE (units
of Bo)
1.018
1.095
1.181
1.394
1.662
2.047
2.329
2.562
2.759
2.891
3.505

This work
—0.998
—0.995
—0.981
—0.894
—0.662
—0.047

0.671
1.438
2.241
3.109
3.495

—0.981
—0.894
—0.659
—0.035

0.686
1.459
2.265

—0.979
—0.888
—0.649
—0.013

0.718
1.498
2.310

—0.981
—0.894
—0.661
—0.041

0.676
1.446
2.249

—0.642
0.029
0.755
1.549
2.465

Ground-state energy (units of Ro)
Ref. [9] Ref. [17] Ref. [18] Ref. [19]

—1.000
—0.995
—0.981

Ref. [20]
—0.998
—0.995
—0.981
—0.894
—0.662
—0.044

0.671
1.438

Ref. [21]

—0.981

—0.662
—0.045

0.671
1.438
2.239

In this work, we determine A by using Eq. (24). For ground state, the above condition is reduced to solve the
following algebraic equation for the parameter A:

(—2)(&) 1
l
I+ .'»(~, ~)+ .' .' —,~z(~, &)+" I+4virr ( z

'
(z (2) 2! ' ) 4 2PP

= 0. (26)

III. RESULTS AND DISCUSSION

The lower-lying state energies of the hydrogenlike atom
under a uniformly arbitrary magnetic field with strength
ranging from p 0 to 7.0 (i.e. , 10io G) are calculated
by using the perturbative variational technique. The di-
mensionless parameter p is the reduced field strength
(p =

2
".&. ). It measures the magnetic field strength

in units of 2.35 x 10 T. Table I presents the ground-
state energies and binding energies of the hydrogenlike
atom for magnetic field ranges from p = 0.02 to 7.0. In
general, it is quite dificult to estimate the error present
in a calculation of any approximation approach. To see
how accurate our results are, we compare our results with
those of other previous works. We will be mainly con-
cerned with the states of n & 3 manifolds, for which they
have already been published. In Table I, our calculated
binding energy and ground-state energy are presented
in the third and fourth columns; several previous results
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FIG. l. Ionization energy (in eV) of the ground state of
a hydrogenlike atom as a function of the magnetic field (in
T& solid line). Dotted line was calculated by Chen and Gil
(Ref. 19) and broken line was obtained by Gallas (Ref. 20).
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TABLE II. The lower-lying excited-state energies(in units of effective rydberg Ro) for a hydrogen
atom in a magnetic field with p = 0.2. The variational parameter A is shown in the second column.
For comparison, some previous results are listed in the last three columns.

State

280
2p —]

2po

2p+ y

380
3p-1
3po

3p+ &

3d
3d-1
3cLp

3d+ ]

3d+2

1.088
1.097
1.217
1.095
0.737
0.569
1.095
0.846
0.644
0.710
1.073
0.710
0.805

This work
—0.096
—0.301
—0.170

0.100
0.132
0.019
0.050
0.421

—0.161
—0.063

0.056
0.337
0.638

Excited-state energies
Ref. [1S]
—0.096
—0.300
—0.170

0.100
0.121
0.024
0.052
0.424

—0.162
—0.063

0.056
0.337
0.638

(units of Ro)
Ref. [20]
—0.098
—0.301
—0.170

0.101
0.117
0.018
0.050
0.418

—0.163
—0.064

0.055
0.336
0.637

Ref. [17]
—0.097
—0.302
—0.170

0.254
0.020
0.060

—0.161
—0.062

0.058

[9,17,19—22] are listed also in Table I for comparison. The
ionization energy is defined as the difference between the
energies of the lowest bound state and lowest free state.
The results indicate that the dependence of the energy on
B is rather weak for p ( 0.1. At B = 4.7 x 10 G (i.e. ,

2.0), the ground-state binding energy is 27.84 eV
(i.e., 2.047R&), compared to 27.03 eV obtained by Peek
and Katriel [2] using numerical solving of a pair of self-
consistent equations in prolate spherical coordinates, and
27.8 eV obtained by Surmelian and O' Connell [23] using
a linear combination of Slater type orbitals. Clearly, one
can see from Table I that our calculated results are supe-
rior to those of Gallas's work [20], which used the wave-
function-expansion method by making a calculation with
mixing eigenfunction up to 20 terms in the interesting
range of magnetic strength. One can also note that our
methods are also in good agreement with the results of
other previous work [19] using the expansion variational
method. Gallas [20] used the variational approach with a
simple hydrogenic basis while our approach contains also

the perturbative correction which will be dominant in the
intermediate magnetic field strength. One can note that
Gallas's work [20] loses accuracy as the energies go above
the ionization limit; however, our approach can improve
them, needing no huge numerical elaboration. One of the
best previous theoretical works was performed by Rosner
et al. [21]; however, one can see from Table I that our re-
sults are as good as theirs

Figure 1 presents the ionization energy for a hydrogen-
like atom under a uniform magnetic field for field strength
from 4.0 x 10 T to 2.0 x 10 T. For comparison, we also
present the calculated results of previous works [19,20]
in Fig. 1. One can see from Fig. 1 that our calculated
ionization energy agrees quite well with those obtained
by the expansion variation method. For a magnetic field
larger than 2.0 x 10 T, the present results deteriorate
rapidly. This clearly indicates that our approach is valid
for moderate high magnetic fields such as those typical
of white dwarfs, but not for the much higher magnetic
Gelds of neutron stars or pulsars.

TABLE III. The lower-lying excited state energies (in units of effective rydberg Ro) for a hydro-
gen atom in a magnetic field with p = 1.0. The variational parameter A is shown in the second
column. For comparison, some previous results are listed in the last three columns.

State

280
2p-1
2po

2p+
3so

3p—1

3pQ

3p+1
3d—2

3d—1
3cEp

3d+ g

3d+2

1.131
1.911
1.442
1.710
0.314
1.000
1 ~ 183
1.000
1.011
1.285
1.020
1.284
1.203

This work
0.680
0.087
0.480
2.088
0.930
0.750
0.825
2.750
0.295
0.857
0.870
2.588
4.295

Excited-state energies (units of Ro)
Ref. [ls]

0.686
0.089
0.481
2.089
0.934
0.745
0.822
2.755
0.297
0.588
0.871
2.588
4.297

Ref. [20]
0.679
0.087
0.480
2.087
0.928
0.749
0.820
2.748
0.294
0.587
0.868
2.587
4.294
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FIG. 2. Calculated excited energies (in units of effective
rydberg Rs) for the lowest 14 energy states.

FIG. 3. The variational parameter A as a function of mag-
netic strength p.

Tables II and III present our calculated excited states
for a hydrogenlike atom under the uniform magnetic Beld
for field strengths p = 0.2 and p = 1.0. The state la-
b@lings are adopted as those for the hydrogen energy
levels in the absence of a magnetic Beld. For compari-
son, we also list the calculated results of some previous
works [19,21,17]. The second columns in Tables II and
III present the variational parameter A we used in our
calculation, the third columns list our results, and the
remaining three columns present the calculated results
of Chen and Gil [19], Rosner et al. [21], and Dai and
Chuu [17]. One can see from Table II that our calculated
excited energy levels are better than the results of Chen
and Gil [19], which used complicated expansion varia-
tional method of the trial function up to the lowest six
even-parity hydrogenlike basis functions. Our results are
as good as the work of Rosner et al. [21], which used
the wave-function-expansion method. The variation of
our calculated state energies for the lower 14 states with
the magnetic field strength p from 0 to 6 is shown in
Fig. 2. One can see from the figure that there exist a
number of energy level crossings as a function of p. This
happens when the Coulomb levels lose their identity and
start to resemble the pure magnetic levels. For example,
the crossing of the 3d 2 and the 2pp levels occurs because
the large magnetic moment of the 3d 2 level makes the
upturn due to the second-order magnetic efI'ect more dif-
ficult. Since the 2pp level has no magnetic moment, the
second-order efrect of the magnetic field is the only one
operative. One can also note from the figure that some
excited states are degenerate and all the state energies
increase as the magnetic Beld increases.

Figure 3 shows the variational parameter A as a func-
tion of magnetic field strength p. One can note from
Fig. 3 that the parameter A Brst increases as magnetic

field strength p increases, then it decreases as mag-
netic field increases more strongly, while in the region
of 0.0 ( p ( 2.0 the variation of A is almost constant.
As the Beld strength p is larger than 7 the variational
parameter A becomes negative. This indicates that our
approach breaks down for magnetic field strength larger
than 7.0 (which is about 10 o G for atoms) because in
this case the wave function in Eq. (7) is no longer the
solution of Eq. (3).

IV. SUMMARY

In summary, we have proposed a simple but efIicient
method to investigate the level structure of the hydro-
genlike atom under a uniform high magnetic field. Our
calculated results show that our approach is superior at
least for moderate high magnetic Gelds up to 2.0 x 10
G even though our method is very simple in the nu-
merical treatments. Moreover, by using simple one-
dimensional hydrogenlike wave functions and two dimen-
sional harmonic-oscillator wave functions, the physical
picture is very strongly manifested and the expressions
of the binding energy and transition probability calcula-
tions are easily extended to higher-order states. Finally,
this algorithm is expected to be very useful for solving
problems in which the Hamiltonian can be reasonably
separated with an unperturbed Hamiltonian part which
has exact eigenfunctions to follow.
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