DiffServ Edge Routers over
Network Processors:
Implementation and Evaluation

Ying-Dar Lin and Yi-Neng Lin, National Chiao Tung University

Shun-Chin Yang and Yu-Sheng Lin, Industrial Technology Research Institute

Abstract

Network processors are emerging as a programmable alternative to the traditional ASIC-
based solutions in scaling up the data plane processing of network services. This
work, rather than proposing new algorithms, illustrates the process of, and examines
the performance issues in, prototyping a DiffServ edge router with IXP1200. The
external benchmarks reveal that although the system can scale to wire speed of 1.8
Gb/s in simple IP forwarding, the throughput declines to 180-290 Mb/s when Diff-
Serv is performed due to the double bottlenecks of SRAM and microengines.
Through internal benchmarks, the performance bottleneck was found to be able to
shift from one place to another given different network services and algorithms. Most
of the results reported here should be applicable to other NPs since they have similar

architectures and components.

ncreasing link bandwidth demands faster nodal process-

ing, especially of data plane traffic. Nodal data plane pro-

cessing ranges from routing table lookup to various

classifications for firewalls, differentiated services (Diff-
Serv), and Web switching. The traditional general-purpose
processor architecture is no longer sufficiently scalable for
wire speed processing, and some application-specific integrat-
ed circuit (ASIC) components or co-processors are commonly
used to offload the data plane processing, while leaving only
control plane processing to the original processor.

Several ASIC-driven products have been announced in the
market, such as acceleration cards for encryption/decryption,
virtual private network (VPN) gateways, layer 3 switches, Diff-
Serv routers, and Web switches. While accelerating data plane
packet processing with special hardware blocks, much wider
memory buses, and faster execution processes, these ASICs
lack the flexibility of reprogrammability and have a long
development cycle, usually of months or even years. The cost
of possible design failures is also high.

Network processors are emerging as an alternative solution
to ASICs for providing reprogrammability while retaining
scalability for data plane packet processing. This study
employed the Intel IXP1200 [1] network processor, which
consists of one StrongARM core and six co-processors,
referred to as microengines, so that developers can embed the
control plane and data plane traffic management modules
into the StrongARM core and microengines, respectively.
Scalability concerns in data plane packet processing could be

This work was supported in part by a research grant from Industrial Tech-
nology Research Institute (ITRI), Taiwan, and in part by a research grant
and an equipment donation from Intel Corporation.

satisfied with the four zero context switching overhead hard-
ware contexts in each of the six microengines and the instruc-
tions specifically for networking.

Spalink, Karlin, Peterson, and Gottlieb [2] demonstrated
and evaluated the IXP1200 in IP forwarding, concluding that
the SDRAM storing packets is the bottleneck. However, such
results cannot be generalized to today’s complex services,
which may need a great deal of SRAM table accesses and
computing power. This work therefore aims to implement a
more sophisticated service, DiffServ, using two existing algo-
rithms for classification and scheduling, and identify scalability
issues and possible performance bottlenecks in IXP1200. Two
topics in benchmarking the implemented system are investi-
gated. First, can this DiffServ implementation scale to a large
number of classification rules? Although DiffServ defines only
a limited number of traffic classes, the number of classifica-
tion rules in the DiffServ edge routers (i.e., the number of
flows) could be large. Second, where are the potential bottle-
necks and what are their causes? The exact bottleneck is antic-
ipated to depend on the specific service and its algorithmic
implementation.

The rest of this article is organized as follows. We briefly
review the architecture of IXP1200. We then present the
design and implementation of DiffServ over IXP1200. Next,
we illustrate the results of external and internal benchmarks
through experiment and simulation. A summary of this work
and possible ways to remove bottlenecks are discussed.

Architecture of IXP1200

Closely examining the hardware architecture of IXP1200
shown in Fig. 1 helps to elucidate our DiffServ implementa-
tion. The 32-bit 200 MHz StrongARM core governs the ini-

28 0890-8044/03/$17.00 © 2003 IEEE

IEEE Network ¢ July/August 2003

tialization of the whole system and part of
the packet processing. A memory man-
agement unit is also included to translate
virtual addresses into physical addresses

and control memory access permission.
The six 200 MHz microengines, sup-

SDRAM

IXP1200
network process

(up to 256 Mbytes)|

porting four hardware contexts (i.e.,
threads), are primarily used to receive,
manipulate, and transmit packets. For

SRAM

32 A
PCl bus .
unit <" " StrongARM core
s . SsbRAM |, | ;
| memory unit [~ " [*+—>| [Microengine 2

v

32 SDRAM

A
A
A

A 4

(up to 8 Mbytes)

networking purposes, microengines also
support zero context switching overhead,
single-cycle ALU with shifter, and other

Boot ROM

AAAA AL

Microengine 6

"| memory unit |

(up to 8 Mbytes) P

specifically designed instructions for bit,
byte, and longword operations.

The SRAM is used to store lookup
tables and pointers in scheduling queues
for packet forwarding, while the SDRAM
is used to store mass data of packets. The
64-bit IX bus interface unit is responsible

» Y

TFIFOL:JIJ|1RFIFQ_ o L:JIJ|1

IX bus interface unit

Ready bus
sequencer

64 1 FIFO bus (IXbus) 66/85 MHz

for servicing medium access control
(MAC) interface ports on the IX bus, and

10 Mb/100 Mb/1 Gb
Ethernet MAC

| | ‘
A4
H Another

moving data to and from the receive and
transmit first-in first-out buffers (FIFOs).

IXP 1200

It provides a 4.2 Gb/s (64 bits at 66 MHz)
interface to MAC devices, meaning that it
can afford 2.1 Gb/s of the input ports and
2.1 Gb/s of the output ports. In addition, two IXP1200 net-
work processors can be directly supported on the IX bus with-
out additional support logic.

The operations of IXP1200 hardware components when
handling packet forwarding services are described below. At
boot time, the StrongARM loads the boot image from boot
ROM or via serial/Ethernet connection, and initializes other
functional units, including loading the routing table into
SRAM and microcode into microengines. The system is now
ready to receive packets. When the ready bus sequencer
detects an incoming packet in a MAC, it notifies the corre-
sponding receiver thread to retrieve and store the packet in
the receive FIFO (RFIFO). After completing the routing
table lookup, the receiver thread moves the packet to
SDRAM in order to wait to be forwarded. A transmitter
thread of another microengine later forwards the packet in
SDRAM through the transmit FIFO (TFIFO) to another
MAC. Multiple receiver, transmitter, and scheduler threads
may be distributed to six microengines, although some
restrictions apply.

Design and Implementation of DiffServ on

IXP1200

This section briefly introduces DiffServ and then explains how
to map DiffServ components onto an IXP1200. The imple-
mentation of two major components, classifier and scheduler,
in DiffServ using two algorithms, Multidimensional Range
Matching and the weighted form of Deficit Round-Robin, is
described.

DiffServ Briefing

DiffServ [3] mechanisms enable users to receive different lev-
els of service from a provider to support various types of
applications. According to the service configuration in a Diff-
Serv edge node, packets are classified with multiple fields
(MFs), leaky bucket policed, and marked to receive a particu-
lar forwarding per-hop behavior (PHB), which defines how
packets with a particular behavior are treated at this node.
Each predefined PHB is mapped to one DiffServ code point

M Figure 1. The hardware architecture of IXP1200.

(DSCP) value used in class-based scheduling: expedited for-
warding (EF) or one of four assured forwardings (AFs).

The service differentiation of packets is often manifested as
delay and loss rate. Packets of higher classes are more likely
to be scheduled before those of lower classes, resulting in
lower latency and loss rate.

Detailed Packet Flow in IXP1200

Figure 2 illustrates the key components and the packet pro-
cessing flow. The ready bus sequencer periodically polls the
MAC buffer and sets the receive flag in a global rec_rdy regis-
ter when a packet comes. Once the receiver thread responsi-
ble for the MAC port detects the flag, it asks the receive state
machine to move the packet, in units of 64-byte MAC packets
(MPs), a basic data unit in the system, from the MAC buffer
into RFIFO.

Mapping DiffServ Components

Figure 3 shows the software architecture of DiffServ and its
corresponding task allocation on IXP1200. Six modules (the
shaded blocks) are inserted into the original software of sim-
ple IP forwarding.

The DiffServ processing is described below. Once received
at a transfer register from an RFIFO and verified as legal, a
packet header is passed to the range matching classifier for
the matching process. If the packet’s header matches one of
the classification rules and is classified as, for example, EF
traffic, it is admitted or discarded according to the policing
bandwidth specified in the classification rule. If admitted, it is
marked with a DSCP in the header. After longest prefix
matching in routing table lookup, the packet is queued in the
corresponding queue of the output port, and waits to be
scheduled; that is, the packet’s descriptor is enqueued in
SRAM while the packet itself is stored in SDRAM. The
scheduler thread chooses one transmitter thread and assigns it
a port, which contains six queues (one EF, four AFs, and one
best effort, BE), to serve. The transmitter thread examines the
queue with the highest priority to determine whether a packet
is waiting to be sent, and whether the queue has sufficient
quanta as credits for transmitting that packet in Deficit
Round-Robin scheduling. If it has enough quanta, the trans-

IEEE Network ¢ July/August 2003

29

SDRAM

ThreadO of MEO

-

Poll MAC buffer and set the rec_rdy
flag of the port

Poll rec_rdy of the port

Issue a reference to Rx State

SDRAM transfer

Machine

Move one MP to RFIFO

If SOP, move half of the MP
(header) to SRAM xfer regs for
classification, half to SDRAM

g LU

registers (x8)

Policy
rules and
routing
table

SRAM

SRAM transfer

o

Load rules into SRAM xfer regs
(classification iteration)
Policing, marking, routing table
lookup and enqueue (after

registers (x8)

classification)

v

i Store the packet header to
1 SDRAM
' 9. Store the rest of the MPs to

Receive
state
machine

i rec_rdy SDRAM

10. DRR scheduling and the transmit
Ready bus

* If SOP, process from 1 to 8,
otherwise from 1 to 4, then skip

Per-port
MAC buffer

to TFIFO, MAC buffer
sequencer

to 9

W Figure 2. Detailed DiffServ packet flow in 1XP1200.

mitter thread fetches the packet’s descriptor in SRAM and
sends the entire packet in SDRAM to TFIFO for output.
Otherwise, the thread examines the next queue for packets to
be sent, and the quanta.

The 24 threads are equally divided into two groups: eight
Fast Ethernet (FE) 10/100M ports and one Gigabit Ethernet
GbE) port. Each group has 12 threads, eight of which are
used as receivers (assigned to two microengines), three as
transmitters, and one as a scheduler (assigned to one micro-
engine). Each 10/100M receiver thread is responsible for a
specific 10/100M port, while eight GbE receiver threads
serve one GbE port. The transmitter threads, however, are
not bound to specific ports. They output packets to ports
according to assignments from the scheduler thread. Static
task allocation, instead of dynamic task allocation, is
employed for the following reasons. First, the 1000 control
store of a microengine may not be sufficiently large to hold
microcode of two threads of different types, for example,
receiver (1012 instructions) and transmitter (552 instruc-
tions), whose summed size of instructions exceeds the control
store size. However, the transmitter and scheduler (144
instructions), whose summed size is below 1024,

which is also a classification algorithm and has a lower memo-
ry requirement. Nonetheless, the complexity of the algorithm
makes implementation with microcode difficult. Several
scheduling algorithms are not considered for the same reason,
including, for example, Weighted Fair Queuing [6], which
involves complex multiplications.

Multidimensional Range Matching [7] is thus used as a
classifier, to exploit its more stable and lower memory require-
ment, and efficiency in setting up flexible classification rules.
The weighted form of Deficit Round-Robin [8] is adopted in
the scheduler, which can be implemented easily (requiring
only addition) and effectively ensures weighted sharing among
various flows. The following two subsections briefly describe
the implementation of these two algorithms.

Classifier — The concept of Multidimensional Range Match-
ing used to implement the classifier is described below. The n
classification rules in a dimension form at most (2n — 1)
intervals, and at most n rules may overlap in one interval.
Each interval is associated with a bit vector (BV), which is
512 bits in this implementation and stored in SRAM to rep-

can coexist in one microengine. Therefore,
threads of the same type are best grouped in
one microengine. Second, choosing dynamic
allocation complicates the programming, and
the communication overhead between threads or
microengines would be huge as tasks could not
be clearly divided among threads.

Algorithm Adoption and Implementation

Related Work — Classification and scheduling
are two critical modules that influence the per-
formance of a DiffServ implementation. Several
methods have been proposed for the above two
purposes; however, many of them are not practi-
cally applicable due to limitations of the plat-
form, including memory size (2 Mbytes of

Receiver thread

StrongARM
8 threads for 8 10/100 ports
(microengine0,1) tiﬁ?llgt
% 8 threads for 1 Gb/s port e
. (microengine2,3)

1 threads for 10/100 ports (microengine 4)
Scheduler thread 1 threads for 1 Gb/s port (microengine 5)

SRAM) and coding overhead; for example, |

Recursive Flow Classification [4], which has an
unstable memory size requirement ranging from
1 to 1000 Mbytes; similar behavior can also be
seen in Cross-Producting [5].

Transmitter threa

d 3 threads for 10/100 ports (microengine 4)
3 threads for 1 Gb/s port (microengine 5)

Another example is the Grid-of-Tries [5],

W Figure 3. Data plane architecture of a DiffServ edge router over IXP1200.

30

IEEE Network ¢ July/August 2003

Source IP rules

140.113.88.170| 140.113.88.190

140.113.88.172

Src_ip of the packet

Bit vector for
this interval

Bvn [o[o] [[r]]s

512511...321

255.255.255.255

M Figure 4. Example and related tables for lookup in the source IP dimension.

resent the rules overlapped in this interval. The space com-
plexity is O(n2) because of the n classification rules and (21 —
1) intervals.

Figure 4 presents an example of the matching process in
the source IP dimension. When a packet arrives, the classifier
performs a binary search in the interval table of each dimen-
sion with the corresponding files of the packet. When an
interval is found for a dimension, the classifier retrieves the
corresponding BV in the BV table. The classifier then ANDs
the BVs from all intervals, and the index of the first nonzero
bit in the result vector becomes the index of the first matched
classification rule.

After the classifier returns the index of the matched classi-
fication rule, the policer and marker use the information con-
tained in the rule in further processing. Each rule is associated
with two additional fields, last_arrival_time and token, which
are used to maintain per-flow leaky bucket. A timer is imple-
mented by StrongARM to determine timing information. The
last_arrival_time is the arrival time of the previous packet, and
the token represents the number of quanta left after process-
ing the last packet. The token field is increased with the prod-
uct of a configured quanta rate, and the time interval between
last and current arrivals. The total tokens available to the
incoming packet can thus be determined, and a decision
regarding its admission can be made.

Scheduler — The quantum size of each class can be set arbi-
trarily. Here, we set the ratio of the quantum between two
adjacent classes in this system to two for simplicity. A packet
is represented by a queue descriptor in SRAM. Each queue
descriptor contains the count of MPs and the pointer to a link
list of buffer descriptors, which point to the MPs of the packet
stored in SDRAM. Once a packet is scheduled for

SRAM
Intervals: BV while conforming to the PHBs is
table examined to determine scalability.
) Two other implementations of Diff-
B E 512 bits Serv, a Linear Search classifier over
[] BV1 IXP1200 and a Range Matching
: classifier over a Pentium III 800
»_BVn CPU containing 128 Mbytes
N : SDRAM and running the Linux
; operating system, are also included
0 . for comparison with a Range
; Matching classifier over IXP1200.
0 As shown in Fig. 5, the benchmark
environment consists of three com-
ponents: IXP1200, a host PC, and
SmartBits; a host PC is used to
remotely control the initialization
and activities of IXP1200, while
SmartBits is used to generate test patterns.

The internal benchmark involves software simulations of
two DiffServ implementations on IXP1200 with classifiers
implemented based on Linear Search and Range Matching,
respectively. The aim is to observe the utilization of internal
resources, as well as the performance bottlenecks. The simula-
tions are conducted under WorkBench, which is a simulator
of IXP1200. In this section we simulate eight 10/100M ports
with three microengines, which have 12 threads allocated as
described earlier.

The Functionality Test

Figure 6 depicts the throughput of two DiffServ implementa-
tions for one input port. Although the time complexity of
Range Matching is O(n), the benchmark result in Fig. 6 shows
a k*(log n) decrease in the throughput as the number of clas-
sification rules increases. This is because when the number of
classification rules is small (as in our experiment), the coeffi-
cient k, which represents the effect from binary searches of
multiple dimensions, dominates the classification process. As
for Linear Search, we can see that the throughput is linearly
decreased as the number of classification rules increases.

Figure 7 depicts the throughput of four receivers that are
receiving one EF and three AF flows from four input ports.
The traffic of AF3 begins to be dropped at a load of 25 per-
cent because the output link is fully utilized so that the pack-
ets of low priority are more likely to be dropped. The other
three flows continue to consume the bandwidth until the out-
put queue of AF2 is full due to the higher consumption of the
link by the other two flows. Finally, all flows enter their steady
state when EF flow reaches its bandwidth limit specified in
the classification rule. The three AF flows obey the 2:1 traffic

transfer, the transmitter thread uses the addresses
of the buffer descriptors and the buffer handle in
the last buffer descriptor to locate all MPs. The
former are used to map the start addresses of the
MPs (buf_des_addr*64), and the latter is used to
determine the number of valid bytes at the end of

Download compiled
executables

Host PC

packet (EOP). Ethernet
|

External and Internal Benchmarks B

The performance of DiffServ has been evaluated in _ NIC (10/100 Mbytesgj

a number of studies [9-12]. However, most of SmartBits : [XP1200

these involve only simulations. Accordingly, this Benchmark software:

section considers two kinds of experiments: exter- 1. SmartWindow

nal and internal benchmarks. For the former, the 2. SmartFlow S (RYIED [l zpites)

functionality of DiffServ is validated, and the

aggregated throughput achievable by the system B Figure 5. The benchmark environment.

IEEE Network * July/August 2003 31

(Length = 64 bytes, loa

Throughput vs. number of rules
= 100% = 148,000 packets/s, worst case)

160

Throughput (1000 ppackets/s)

O RM_thrput
B LS_thrput

32 64

n: number of rules (at input port x1)

128

256

512

M Figure 6. Throughput of two DiffServ implementations with varying number of clas-

sification rules.

proportion as designed earlier; the EF flow does not because

its queue is not full.

In the latency test in Fig. 8 corresponding to Fig. 7, we
observe that the EF flow has a very low latency under all load

conditions. Before the load of 25 percent,
every flow has the same latency because the
queues are not full. We also observe that the
latency of AF flows still obeys the 2:1 propor-
tion, which means the delay in output queues
dominates the total system delay.

Scalability Test

Traffic load — The methodology for testing
fairness between flows within one input port is
described below. The maximum load, which is
58 Mbys, is first measured for a flow that yields
no packet loss. The fairness among flows can
then be examined with aggregated input load
below and above S8Mb/s.

Figure 9 presents the throughputs of 500
flows under two load conditions, with each
flow exactly matching the corresponding rule
within 500 classification rules. The flows strict-
ly follow their bandwidth settings when the
input load is 50 percent of the wire speed 64-
byte Fast Ethernet traffic, which is 74,400 ack-
ets/s, and become unstable when overloaded.
However, most of the flows are limited to their
bandwidth settings at 148.8 packets/s or
74,400/500 packets/s.

Number of Microengines — Figure 10 presents
the throughput of the receiver threads of differ-
ent configurations. Naturally, the throughput of
two threads in two microengines is around dou-
ble that of a single thread. However, the
throughput of four threads in a microengine is
not four times that of one thread due to a lack
of computing power. Furthermore, the through-
put of eight threads is not double that of four
threads, because of memory contention. Besides,
the aggregated system throughput ranges from
180 Mb/s to 290 Mb/s, according to the number
of classification rules, while the throughput of IP
forwarding, which does the work of unshaded
blocks in Fig. 3, is at wire speed.

Figure 10 yields some interesting observations

concerning the bottlenecks of DiffServ for
various input traffic allocations. A single
port receiver thread can obtain sufficient
computing power because the other three
threads do not process packets, just poll the
flag register; but the memory access takes so
long that the thread cannot finish the pro-
cessing of a packet in time to receive later
packets. In the test of four input ports,
whose corresponding threads are all in the
same microengine, the bottleneck becomes
the microengine because the four threads
share the computing power of the micro-
engine to perform complex computations in
the Range Matching classification. The bot-
tleneck remains the same in the test of eight
input ports for the same reason. However,
in the test of the whole system throughput,
the bottleneck is again the SRAM, since the
aggregated throughput is not the sum of the

throughputs of eight 100 Mb/s ports and one gigabit port,
although the computing power is doubled. The SRAM and
microengines are called double bottlenecks, because the system
can still suffer from one bottleneck after the other is solved.

70,000

60,000

50,000

40,000

30,000

20,000

Receive throughput (packets/s)

10,000

- EF

20

o o (=] o (=]
< N © ~ o

920

o
S
Load (percentage) at input port x4

W Figure 7. Priority and bandwidth control test (length = 64 bytes, EF = 62,500

packets/s).

4000

w
o
(=)
o

N
o
o
o

Latency (us)

1000

Length = 64 bytes, EF = 62,500 packets/s

Load (percentage) at input port x4

W Figure 8. 4 (EF, AF1-3) to 1 latency test.

32

IEEE Network ¢ July/August 2003

Active Active
(percentage) (percentage)
Microengine 0 (recv) 61.7 123.4 MIPS Microengine 0 (recv) 99.7 199.4 MIPS
Microengine 1 (recv) 72.2 144.5 MIPS Microengine 1 (recv) 99.8 199.6 MIPS
Microengine 2 (sche, xfer) 68.5 137.0 MIPS Microengine 2 (sche, xfer) 96 192 MIPS
SDRAM 9.3 594.8 Mb/s SDRAM 13 831.4 Mb/s
SRAM 55.1 1764.1 Mb/s SRAM 35.3 1130.2 Mb/s

B Table 1. Component statistics of the system with a Linear
Search classifier.

Not shown in Fig. 10 is the throughput, 20.5 Mb/s, of the
Linux-based Range Matching DiffServ when the number of
classification rules is 512. The throughput is almost the same
as that of one thread in IXP1200, implying that IXP1200 out-
performs the general PC with its multithreaded processing
power. The low performance of a higher-clock-rate general
PC is due to operating system overhead and memory architec-
ture. Without the need to interrupt the operating system from
a user space NIC driver when a packet arrives, IXP1200
directly moves the packet into either the SRAM

B Table 2. Component statistics of the system with a Range
Matching classifier.

be explained similarly as in the previous section. The lower
SRAM utilization than with Linear Search classifier, on
the other hand, illustrates the effects of the reduced fre-
quency of SRAM accesses as a benefit of a more complex
Range Matching data structure. However, the receiver
microengines are almost fully utilized. This is due to com-
plex computation in the Range Matching including the
binary search for intervals in each dimension, logic opera-
tions on the resulting BVs, first active bit indexing, and

transfer registers for computation or SDRAM for
temporary storage. The transfer is performed by
the receive state machine without the involve-
ment of microengines. The longer time required
to access SDRAM in a PC than SRAM in
IXP1200 also greatly impacts lookups of the clas-
sification rules and routing table.

Simulation: linear Search

Since the most time- and computing-power-con-
suming phase in the system is the classification
phase due to its rapid memory accesses and mass
computations, we are interested in the effects of
classifiers using different algorithms. In this sec- 20
tion we simulate the system in which the classifi- 0
er is implemented using Linear Search, and
obtain the utilization and throughput of some
hardware components such as MEs, SRAM, and

Throughput (packets/s)

w‘w I “w I w”’”ﬂ‘l{»" wwmu m‘ Il WL

1l w

—A- 100%
— 50%

50 100 150 200 250 300 350 400 450

Flow index

SDRAM.

As Table 1 shows, the simulation of the Linear
Search classifier yields two observations. The first
is the low utilization of SDRAM. This is because

W Figure 9. Flow fairness test (Len = 64 bytes, 500 flows, BW/flow =
74,400/500 = 148 packets/s, average case).

packet forwarding, the main consumer of
SDRAM, is not critical in DiffServ.

Second, both receiver microengines and SRAM
are not fully utilized, but 70 and 55 percent uti-
lized, respectively, while the actual throughput of
the system is low. This can be explained as fol-
lows. Although the utilization of SRAM is only 55
percent, it is a bottleneck because SRAM access
from receiver threads performing Linear Search is
bursty, meaning that the bandwidth of SRAM is
not used until bursty access from receiver threads.
Moreover, sometimes all the threads in a micro-
engine wait for SRAM access and thus cause the
microengine to be idle.

350
300
250
200
150

Throughput (Mb/s)

100

50
Simulation: Range Matching

In this section we simulate the system in which
the classifier is implemented using Range
Matching. The utilizations of SDRAM and

—- 1FE on 1ME
- 2FE on 2ME
—A— 4FE on 1ME

—»— 8FE on 2ME
=%~ 1 Giga on 2ME
-e— 8FE + 1Giga

1 4 32 128
Number of classification rules

512

SRAM, as Table 2 shows, are again low at 13
and 35.3 percent, respectively. The former can

W Figure 10. Aggregated throughput (length = 64 bytes, worst case).

IEEE Network ¢ July/August 2003

33

rule retrieving. Computing power can therefore be identi-
fied as a performance bottleneck in the Range Matching
DiffServ.

Summary

This study introduces the architecture and packet flow of Diff-
Serv implementation in IXP1200. Two key modules in Diff-
Serv, the classifier and scheduler, that adopt Multidimensional
Range Matching and Deficit Round-Robin, respectively, are
implemented in IXP1200 microcodes. Finally, external and
internal benchmarks were applied to determine the bottle-
necks in the implementation. Most of the result reported here
should be applicable to other NPs since they have similar
architectures and components.

The external benchmarks, which present the performance
figures under different combinations of number of rules or
flows, traffic load, and number of microengines, have illus-
trated that the implementation can well support PHBs in
DiffServ at an aggregated throughput of 282 Mb/s (550kpps),
as shown in Fig. 10. Both external and internal benchmarks
identify the double bottlenecks of both SRAM and micro-
engines in the Range Matching DiffServ— the Range Match-
ing DiffServ could still suffer from one bottleneck after the
other is solved. Although the SDRAM is the bottleneck in
IP forwarding, the bottleneck may shift from one functional
unit to another, depending on the specific service, algorithm,
and the way input traffic is allocated to threads. Moreover,
the SRAM bottleneck is found to occur not necessarily at
100 percent utilization, but even at 55 percent when the
access is bursty.

Four methods are presented to solve the bottleneck of
SRAM access that results in low utilization of receiver
microengines. First, the routing table may be stored in
SDRAM in the hope of offloading SRAM. Second, one
large SRAM may be divided into many smaller banks at dif-
ferent interfaces, reducing the queuing delay of requests in
the command queue, if the requested addresses are in dif-
ferent memory banks. Even some redundant memory mod-
ules may also be used, possibly with an access arbitrator, to
store many copies of the routing table and classification
rules to enhance accessibility. Third, a new memory archi-
tecture, such as quad data rate SRAM with a peak band-
width of up to 1.6 Gbytes/s/channel (two to three times that
supported by SRAM), may be adopted. However, a new
interface between the memory and other functional units
may be required. Finally, an additional cache (or content
addressable memory) can be used to reduce the number of
times memory is accessed, because traffic in the same time
period normally shows locality in lookups of classification
rules and routing tables.

Acknowledgment

The authors like to gratefully thank the anonymous reviewers
who provided detailed revision suggestions on an earlier draft
of this article.

Reference

[1] 1XP1200 Data Sheet, Intel doc. no. 278298-004, May 2000.

[2] T. Spalink et al., “Building a Robust Software-Based Router Using Network
Processors,” Proc. 18th ACM Symp. Op. Sys. Principles.

[3] S. Blake et al., “An Architecture for Differentiated Services,” IETF RFC 2475,
Dec. 1998.

[4] P. Gupta, and N. McKeown, “Packet Classification on Multiple Fields,” ACM
SIGCOMM 799.

[5] V. Srinivasan et al., “Fast and Scalable Layer Four Switching,” ACM SIG-
COMM ’98.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm,” ACM SIGCOMM “89.

[7]T. V. Laishmon, and D. Stiliadis, “High-Speed Policy-based Packet Forward-
ing Using Efficient Multidimensional Range Matching,” ACM SIGCOMM “98.

[8] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-
Robin,” IEEE/ACM Trans. Net., June 1996, vol. 4, no. 3, pp. 375-85.

[9] L. V. Nguyen, T. Eyers, and J. F. Chicharo, “Differentiated Service Perfor-
mance Analysis,” 5th IEEE Symp. Comp. and Commun., 2000, pp. 328-33.

[10] J. K. Muppala, T. Bancherdvanich, and A. Tyagi, “VoIP Performance on Differen-
tiated Services Enabled Network,” IEEE Int]. Conf. Net., 2000, pp. 419-23.

[11] J. Harju and P. Kivimaki, “Co-operation and Comparison of Diffserv and
Intserv: Performance Measurements,” 25th Annual IEEE Conf. Local Comp.
Nets., 2000, pp. 177-86.

[12] Z. Di and H. T. Mouftah, “Performance Evaluation of Per-Hop Forwarding
Behaviors in the DiffServ Internet,” 5th IEEE Symp. Comp. and Commun.,
2000, pp. 334-39.

Biographies

YING-DAR LIN [M] (ydlin@cis.nctu.edu.tw) received his Bachelor’s degree in com-
puter science and information engineering from National Taiwan University in
1988, and M.S. and Ph.D. degrees in computer science from the University of
California at Los Angeles in 1990 and 1993, respectively. He is currently a pro-
fessor of the Department of Computer and Information Science at National Chico
Tung University. His research interests include design, analysis, and implementa-
tion of network protocols and algorithms, wire speed switching and routing,
quality of services, network security, and content networking.

YI-NENG LIN [M] (ynlin@cis.nctu.edu.tw) received his Bachelor’s and Master’s
degrees in computer and information science from National Chico-Tung Univer-
sity in 1999 and 2001, respectively, and is pursuing a Ph.D. degree in the same
department. He was a member of a research and implementation project in
Computer and Communication Laboratories, ITRI, in 2000 and 2001. His
research interests include design and analysis of multithreaded multiprocessor
architectures, and hacking of Linux and NetBSD kernels.

SHUN-CHIN YANG [M] (sc_yang@itri.org.tw) received his Bachelor’s and Master’s
degrees in electrical engineering from National Chung-Cheng University in 1998
and 1999. His research interests include design and analysis of router and
switch architectures, programming of Linux driver and kernel, and embedded
system porting.

YU-SHENG LIN (yslin@itri.org.tw) received his Ph.D. in electrical engineering from
National Chico Tung University in 1998. Since 1998 he has worked as an R&D
engineer with Communications and Computer Research Laboratories of the
Indgustricl Technology Research Institute (CCL/ITRI), Taiwan. His research areas
include high-speed packet switching architectures and implementation, and net-
work security.

34

IEEE Network ¢ July/August 2003

