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Abstract

Various self-consistent semiconductor device simulation approaches require the solution of Poisson equation that describes
the potential distribution for a specified doping profile (or charge density). In this paper, we solve the multi-dimensional
semiconductor nonlinear Poisson equation numerically with the finite volume method and the monotone iterative method on
a Linux-cluster. Based on the nonlinear property of the Poisson equation, the proposed method converges monotonically for
arbitrary initial guesses. Compared with the Newton’s iterative method, it is easy implementing, relatively robust and fast with
much less computation time, and its algorithm is inherently parallel in large-scale computing. The presented method has been
successfully implemented; the developed parallel nonlinear Poisson solver tested on a variety of devices shows it has good
efficiency and robustness. Benchmarks are also included to demonstrate the excellent parallel performance of the method.
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1. Introduction

Mathematical modeling and numerical simulation for various semiconductor devices and physics have been
proven to be an indispensable alternative for the analysis and characterization of submicron or nanoscale
semiconductor devices [1,5-22]. Furthermore, it provides diverse approaches in the interpretation of experimental
results on material, structures, and device characteristics. The electrostatic properties for structures, binding
phenomena, complex molecules, and nanoscale devices have been of great interests and studies in recent years [1-
22]. Modeling and simulation for these interactions play an important role, especially in semiconductor devices and
physics [1,5-22]. Itis just like the molecule biophysics community requires solving a three-dimensional (3D) linear
or nonlinear Poisson—Boltzmann equation for the behavior of electrostatic potential [2—4]; a multi-dimensional
Poisson equation for the potential distribution should be solved numerically for semiconductor devices.
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A set of comprehensive equations to model the classical or quantum transport phenomena, such as drift diffusion
(DD), hydrodynamic (HD), Boltzmann transport, density gradient, and Schrddinger—Poisson models [1,5-22,
32-35], requires the solution of a multi-dimensional Poisson equation that describes the electrostatic potential
distribution. As a result of the above models, the carriers’ densities are strong nonlinear functions of the electrostatic
potential that leads to the nonlinear Poisson equation [6—22]. Under different situations or iterative schemes,
this nonlinear Poisson equation coupled with the above physical models can be solved separately [17-20,30,31].
Computational efficient methods for the solution of a 2D or 3D nonlinear Poisson equation are hence desired. To
obtain the numerical solution of the nonlinear Poisson equation, a discretization scheme, e.g., finite difference, finite
element or finite volume method [6,17,20,22—-24] is firstly applied to discretize the equation. Then the discretized
nonlinear Poisson equation leads to a system of nonlinear algebraic equations. The conventional methodology for
the solution of this nonlinear system is based on the Newton’s iterative (NI) method or its variations [6,17,20,21].
The NI method has a quadratic convergence only if the initial guess is in the neighborhood of the exact solution
[17,20,21].

In this paper we propose a computational efficient solution approach, the so-called monotone iterative (Ml)
method [7-9,25-27], for the numerical solution of the semiconductor nonlinear Poisson equation. Based on the
exponential property of the nonlinear Poisson equation, we have found the MI method converges monotonically
for an arbitrary initial guess. Compared with the NI method, the MI method requires no Jacobian matrix and does
not encounter any convergence problems and numerical difficulties. Furthermore, the Ml algorithm is practical,
easy in implementation, and inherently parallel for large-scale 3D simulation. The developed Poisson solver tested
on 2D and 3D devices, such as PN diode and N-MOSFET [16] shows the efficiency and robustness. Achieved
benchmarks are reported to show the parallel performance [28,29] of the method.

Subsequent sections of this paper are organized as follows. Section 2 states the semiconductor nonlinear Poisson
model for an N-MOSFET at thermal equilibrium. Section 3 shows the convergence property of the Ml method for
the solution of the nonlinear algebraic system derived from the finite volume discretization of the nonlinear Poisson
equation. Section 4 describes a parallelization scheme, the so-called domain decomposition algorithm, for the 3D
parallel Poisson simulation on a Linux-cluster with message-passing interface (MPI) library. Section 5 reports
the numerical results on different 2D and 3D devices; benchmark results including the achieved speedup, parallel
efficiency, and load balancing are demonstrated in this section. Section 6 is the conclusions.

2. Semiconductor nonlinear Poisson model

In this section, we briefly state the formulation of the nonlinear Poisson model for a 3D MOSFET. In
semiconductor devices and physics, Poisson equation is applied to describe the variation of electrostatic potential
within a specified regime [16]. Consider a 3D MOSFET as shown in Fig. 1, the pot¢otia, z) satisfies Poisson
equation in the semiconductor as follows [16—19]:

0% % % g -

whereq = 1.60218x 10~1°C is the elementary charge amg= 11.9¢ is silicon permittivity. Then and p are
densities of free electron and hole, respective,lg; andN are the ionized donor and acceptor impurities doping
concentrations, respectively (for a more general device simulation, the incomplete ionization should be considered
[1,16-19]); andeo = 8.85418x 10~1* F/cm is the permittivity in vacuum. We now consider the Boltzmann
statistics that describes the relationship between free electron densépd potentialg, for nondegenerate
semiconductors (that is theis much smaller than the effective density of stadgsin conduction band [16]).

At thermal equilibrium, this relation is given by

n=n;exp(q(¢ —¢a)/KT), (2)
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Fig. 1. A 3D schematic diagram for an N-MOSFET.

wheren; = 9.56 x 10° cm™3 is the intrinsic carrier concentratioh,= 1.38066x 10~23 J/K is the Boltzmann
constant,T is absolute temperature, and thg is the imrefs or quasi-Fermi levels for electrons [16—20]. The
relations for holes are similar to Eq. (2). We note that another important physics law (the so-called Fermi—-Dirac
statistics) has also been considered in the relationshipaoid¢ for degenerate semiconductor. Detail description
of this statistics can be found [1,16]; in the Fermi—Dirac statistic&s also a nonlinear function af which
involves more complicated exponential terms. From Egs. (1) and (2), we obtain the 3D nonlinear Poisson equation
as follows:

2 2 2 X N+ — N7
e s = (wexmy Vi) — vexp(—g/ Vi) - LEL—A) ©
where Vr = KT/q = 0.0259 V is so-called the thermal voltage At= 300 K. Theu and v are defined by
exp(—¢,/ Vr) and exgy,/ Vr), respectively. Furthermore, the nonlinear Poisson equation is supplemented by
physically appropriate boundary conditions [17—-20]. For device’s contact terminals, source, drain, gate, and
substrate, applying assumptions of the ohmic contact and charge neutrality condition [16], we have the Dirichlet
type boundary condition og,

Np =Ny Nj = N+ (N = Nj)2+ 42
INS — Ny | 2n; ’

¢ =Vapp. + Vr (4)
whereVapp. is the applied voltage. To make the device self-contained a vanishing outward electri field V¢,
onits boundary, the artificial boundaries on the device’s surrounding environment are assumed to be a homogeneous
Neumann type boundary condition

d¢

wherev is the component of the outward unit normal vector on the boundary. On the interface bgiween
semiconductor and oxide, by assuming the equal-flux and using the approximation that the oxide thigkness,
much smaller than the device channel length, we obtain the mixed type boundary condition as follows:
0 1 & &
2 0 - gy
S

ov foxEs ToxEs

whereQ is the potential dependent surface interface chaeggss 3.9¢g is SO» permittivity, andV is the gate
voltage. Egs. (3)—(6) form the 3D nonlinear Poisson model problem in the semiconductor and the unknown to be

Ve, (6)



362 Y. Li/ Computer Physics Communications 153 (2003) 359-372

solved is the potentiap(x, y, z). When device is at thermal equilibrium without any applied voltage at contacts,
theu andv are piecewise constants and equal one. The Poisson equatianwith= 1 has to be solved to obtain
the so-called equilibrium potential(x, v, z) [16—20].

The above 3D nonlinear Poisson model is discretized with the finite volume method over finite hexahedral
volumes firstly. The corresponding system of nonlinear algebraic equations is then solved directly (without any
linearization procedures) with the MI method [7-9]. This method is a kind of constructive methods for the solution
of partial differential equations (PDESs) [25-27]. Based on the exponential nonlinear property on the right-hand
side of the equation, we will show the Ml method converges to the unique solution of the system monotonically in
the next section.

3. Numerical solution with the monotone iterative method

To discretize the above PDE together with its boundary conditions in andz directions, we apply a finite
volume method (FVM) with nonuniform mesh technique [17,20,22—24]. For the simplicity, we treat the problem
with assumptions that = v = 1 and Q = 0 [16]. Using the divergence theorem on a finite hexahedral volume
and considering the tensor-product meshes for the hexahedral volume [24], the discretized Poisson equation can be
written as

Eiv1, jkPit1,jk +&i-1jkPi-1,jk +&i jr1hPi j+1k +Ei 1k Pi -1k

+ & j k1P k1 & jk—1Pi,j k-1 +Ei jkDijk

i i, 7, i, (N+ _ Nf)i, ;
= fi,j,k[% <9Xp(¢v—]rk> _ exp(_¢Vka>> R ASAS)) - AiLj k:|’ @)

where the arranged coefficierts; » andr; ; x for all i, j, andk are direct results from the integral approximations
with the quadrature rule. After employing the boundary conditions, the above set of equations for the
approximations; ; . at the nodeX; ; « = (x;, y;, zx) can be written together as the compact matrix form,

AP =—-F(P), (8)

where ® is the unknown vector formed by; ; « in the natural orderingf is the vector of nonlinear functions
corresponding to the finite volume discretization of Egs. (3)—(6). For any vdeter(¢,), the vector-valued
functionF is defined byF(®) = F(n, ¢,), 1 < n < N, where theN is the total dimension of matrix. The function
F(n, ¥) is bounded, i.e. there is some const@rsuch thatF(n, )| < C, |¥| <oo,n=1,2,..., N. As a result

of considering the tensor-product, the mathixs a seven-banded block-tridiagonal form. We note all coefficients
in Eq. (7) are nonnegative and the following relation

Eijk =&k +&i-1 ik t& j+1k & j—1k & jk+1+ & jk—1

holds for allX; ; . Based on these observations, it can be shasan irreduciblév -matrix [24]. The right-hand

side of Eq. (3) is continuously differentiable function with respeet tand the derivative of this nonlinear function

is nonnegative. The finite volume discretization of the 3D Poisson equation with tensor-product hexahedral volume
yields the matrixA and the following theorem can be proved.

Theorem 1. A is an irreducibleM -matrix, F(n, ) is continuously differentiabled, <n < N, andﬁF(n, ¥v) >0
for ¥ is bounded, then there exists at most one solution of the nonlinear algebraic $8%tem
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Proof. For any vector = (v,,), let A(v) be the diagonal matrix defined by
F1,vy) 0 0

0 F(2,v2) O

A= :
: 0 F(N—1vy.1) 0
0 0 F'(N,vn)
where
F'(n, ) d Fn,v)
n = — n, N
9 dw
and assume both of thB and® are the distinct solutions of (8).
Let
o=0- 9,
then

[A+AW)]®=0
for somev. Since the matriXA + A(v) is anM-matrix, A + A(v) is a nonsingular matrix and = 0. Thus there
exists at most one solution of the nonlinear algebraic system (8).

We now writeA =D — L — U and proceed to the description of the iterative method for solving the system (8)
arising from the finite volume discretization of semiconductor nonlinear Poisson equation. This method for solving
the multi-dimensional semiconductor nonlinear Poisson equation consists of only single iteration loop as follows:

D +H0" ) = (L +U)O"™ —F(@™) +110™, ©)

where the superscriptindexis the iteration indexD, L, andU are diagonal, lower triangular, and upper triangular
matrices ofA, respectively. The is an identity matrix and.l is a diagonal matrix determined by the function

F. The formula (9) can be regarded as a Jacobi type iterative scheme and is ready for parallel computing. The
following theorem states the main result for this iterative method in the numerical solution of semiconductor
nonlinear Poisson equation.

Theorem 2. Assume that there is a constant> 0 such that0 < F'(n, ¥) < A1, [¥| <oo,n=1,2,..., N. Let
0 = (6\?) be an arbitrary vector. Le®™, m > 1, be the solution ofd) with 11. Let®* = (¢*) be the solution
of (8). Then®@™ — &* asm — oo.
Proof. Let

wm — @(Wl) — $*
Then from Eg. (9), we have

(D + AW = (L + W™ 43, W™ — (FO@™) — F(8%)). (10)

For somey,, we have

F(n.607) — F(n.¢) = F (.0 (60" — 67).
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Let A(n) be the diagonal matrix defined by
F'(1,1n) 0 ... ... 0

0 F2,5, 0
A =
0 F(N—-1ny_p 0

0 0 F(N,ny)
Then

(D + 2 HW™ ™ = (L + U + a1l — A()W™.
It is possible to choose a propet, such that
(L+U+2r1l —A@p) =0.
So
D+ 2D W D < (L 4+ U+ 2al — Al) W™
On the other hand, we note
(L+U+xl —A@m) < (L +U+ 11,
and hence
(D + 2DIW" D < (L + U+ 21 W™,
Denote the raticP as follows:
P= D+ L+ U+,
we have
\WmtHD| < pontD [y ©))
Thus
P™ 0 asm— oo,
and the result is followed [24]. O
This result demonstrates the solution sequence generating from iterative formula (9) will converge to the solution
of Eq. (8) for all choices of the initial gue®© . Furthermore, the above iterative method can also apply to the
solution of the Poisson equation where the Fermi—Dirac statistics and incomplete ionization are included. We can

further verify that those nonlinear functions on the right-hand side of the Poisson equation are bounded functions
of ¢ due to the finite input applied voltage. Therefore, we have the following corollary.

Corollary. Assume that there is a constatt > 0 such that|F(n, ¥)| < M and a constank > 0 which satisfies
IF(n, 1) — F(n, y2)| < klyry — w2, |¥] < 00, 1] < 00, 2| < 00, andn =1,2,.... N. Let @@ = (6,”) be

a vector which satisfiea®© > —F(©©). Let®™, m > 1, be the solution of9). Let ®* = (¢*) be a solution
of (8). Then®@™ — &* asm — oo.

Proof. With a similar process in Theorem 1 above, this proof can be done by direct calculation and the definition
of the constant. O
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This corollary states that if the nonlinear function is bounded, then the solution sequ@f®esonverge
monotonically from above to a solutio®* of Eq. (8). We note if® is the maximal solution of Eq. (8) and
00 > @, thend = @. Similarly if ©© satisfiesA®© < —F(@©), then®™ — &*, asm — co. Moreover, if
@ is the minimal solution of Eq. (8) an®© < @, then® = @. To clarify the MI computational procedure, we
summarize the Ml algorithm as follows [7].

StepM1. Take an initial guess fap ™).

StepM2. Letm =1 and se(i, j, k)= (1,1, 1).

StepM3. Determine the MI parameted instantaneously.

StepM4. Compute thed™+D with Eq. (9).

StepM5. Perform convergence test. If it converges, then breakelsen + 1 and return to M3.

Together with a decoupling algorithm (the so-called Gummel’'s method in semiconductor device simulation
[17,18,20,30,31]), the MI method for the numerical solution of the nonlinear Poisson equation can be applied
to solve various semiconductor device models. For examples, the DD model consists of three coupled nonlinear
PDEs, the Poisson equation, the electron current continuity equation, and the hole current continuity equation.
Transport behavior of submicron MOSFET devices is governed with these coupled PDEs and is solved with the
Gummel’s decoupled method sequentially; that is in the DD model the Poisson equation is solgétitor
given the previous states?’ and p®). The electron current continuity equation is solved A6¥t? given ¢
and p®. The hole current continuity equation is solved fg¢ ™ given ¢® andn'®), whereg is the index
of outer iterations. A similar procedure can be applied to decouple PDEs of the HD model. Each decoupled
PDE is discretized with FVM and is solved with the MI method. Details of the numerical simulation and
comparison with the measured data for N-MOSFET and DTMOSFET devices have been studied in our recent
works [8,9]. For a 3D simulation, to obtain highly accurate solution, it is necessary to perform the calculation
with a fine mesh. However, the increase of grid points is numerically expensive and requires huge CPU time.
For this reason, we further introduce a parallelization algorithm to reduce the computational time in the next
section.

4. A domain decomposition parallelization algorithm

Based on the iterative formula (9), we present the corresponding multi-dimensional parallel domain decom-
position algorithm. Once the tree structure is established, according to the total number of nodes, the num-
ber of processors for computing will be assigned and allocated. Then a geometric graph partitioning method
in x-, y-, and/orz-directions, as shown Fig. 2, is applied to partition the number of nodes to each processor
dynamically. The arrangement of all nodes to each processor is based on a dynamic partition algorithm. Ide-
ally, all the partitioned sub-domains should contain approximately the same number of nodes to ensure a good
load balance among the processors. The computational procedure for parallel domain decomposition is out-
lined.

StepD1. Initialize the MPI environment and parameters.

StepD2. Based on the mesh configuration, we establish the corresponding tree structure.

StepD3. Count the number of grid points and applies dyeamic partition algorithnio determinate how many
processors are required in this simulation.

StepD4. All assigned jobs are solved with formula (9). Computed results are communicated with the MPI
protocol. For a given iteration since our iterative algorithm (9) is of the Jacobi type scheme, all points
through this formula are decoupled and solved independently in each sub-domain. We note that once
previous results are given, the boundaries for partitioned sub-domains are totally separated and we solve
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Fig. 2. A 3D partition for the parallel domain decomposition.

each nonlinear system independently. When newer MI solutions of nonlinear systems are computed, we
perform the boundary data exchange of the sub-domains so that each sub-domain knows about the nodes
value on neighbors for the next iteration loop.

StepD5. Perform convergence test for all cubic cells and run the mesh refinement for those cubic cells whose
diagonal difference of the solution is greater than a specified tolerance error.

StepD6. Repeat D3-D5 until the error of all cubic cells is less than the specified tolerance error.

StepD7. Host processor collects all computed results and stops the MPI environment.

The load balancingynamic partition algorithnapplied in D3 above consists of some sub-steps.

StepP1. Count the total number of nodes.

StepP2. Estimate the optimal number of processors.

StepP3. The number of nodes will be assigned to each processor is equal to the total nodes divided by the optimal
number of processors.

StepP4. Alongx-, y-, andz-direction in the 3D device domain, search (from left to right, bottom to top, and front
to back) and assign nodes to these processors sequentially.

StepP5. Repeat P4 until all nodes have been assigned.

We note that the searching direction may be changed in the neighborhged @inctions for maintaining
the best load balancing performance. The parallel algorithm can also be applied to a 2D problem. It has been
implemented on a Linux-cluster with the MPI library. The constructed Linux-cluster contains 16 PCs (CPU: AMD
1 GHz, Memory: 256 Mbytes, and operation system: LINUX RedHat 7.2), the files access and share are through
network file system and network information system. The user datagram protocol controlled by MPI is applied to
short distance fast communication.

Fig. 3 illustrates the parallel program organization; the pre-processor performs several tasks, and one of the tasks
is to manage the input data required for each parallel processor. In the Linux-cluster with the MPI configuration,
input data are prepared on the host machine and sent to each client through TCP/IP with high speed switch. Tested
on a 3D MOSFET, we have verified the parallel implementation has good efficiency and parallel speedup on the
constructed Linux-cluster.
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Fig. 3. An illustration of the parallel algorithm and organization.

5. Resultsand discussion

We now present 2D and 3D simulation results of the developed parallel 3D Poisson simulator to show the
robustness and efficiency of the method. Parallel results such as speedup, efficiency, and load balancing [28,29] are
also included in this section. In the numerical simulation, the Ml paramétercomputed with the newer iterative
results and updated for next solution iterations instantaneously [7].

The first example is a 2D PN diode [16] under applied bigs= 0.5 V. For the 2D PN diode, as shown in
the inserted figure of Fig. 4, the Poisson equation (3) is solved with the Dirichlet type boundary condition (4) on
then and p contacts. The rest parts of the boundary of the simulation domain are assumed to be the Neumann
type boundary condition (5). The doping profile inside #teregion is 187 cm=2 and is 18° cm~3 for the p~
region, respectively. The simulation domain of this PN diode is defined o6 & 3.5 un? and then* region is
a quarter ellipsoid with radius 0.5 um. Fig. 4 shows the computed potential at applied voltage equals 0.5 V. The
convergence criterion is the maximum potential difference between two successive iterations lesstHanfbe
all nodes. The mesh size is about 1000 nodes. As shown in Fig. 4, the simulated result indicates clearly that there is
a junction jump layer on the* and p~ regimes. To test the validity of the method, we simulate more complicated
2D and 3D MOSFET devices. The second example is a 0.35 pm N-MOSFET with oxide thickness 7 nm [16] on
a 2D domain. The doping profile in this simulation comes from realistic device structure. Fig. 5 shows the doping
profile and Fig. 6 illustrates the computed potential at thermal equilibrium condition. The convergence criterion is
of the maximum error less than 1® V7 and the mesh size equals 2200 nodes. The third example concerns 3D
0.25 um N-MOSFET simulation. The doping profile is a Gaussian distribution whcaa—2 in the ellipsoidn*
regions and 18’ cm~2 in the p~ region. The oxide thickness is 7 nm. The simulation domain is 1.1 pmeind
y directions where the direction is 40 pm. The convergence criterion is the same with Example 2 and the mesh
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Fig. 5. A surface plot of the input doping concentration for the 0.35 pm N-MOSFET.

size is about 64000 nodes. Fig. 7 presents the calculated result for this deVige-atVps = 2.0 V. We further

verify the global convergence property for the proposed method. The test device is the same with Example 3 but
atVgs = Vps = 0 V. There are four different initial guesses tested, 0.0 V, charge neutrality condittod,/ and

5.0 V. As shown in Fig. 8, the monotonic convergence behavior is confirmed. It takes only about 100 s CPU time
for these different calculations on the computing system. However, for the same device structure and same test
condition, the conventional NI method does not converge with the initial guess€&sV and 5.0 V, respectively.

For such bias the NI in general requires a more precise initial guess [32] to start the solution procedure. However,
in practical device simulation it is difficult to calculate a proper initial guess for different structures and models,
especially in nanoscale devices [11,33,34]. On the other hand, the Ml method in solving the Schrédinger—Poisson
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Fig. 7. The simulated potential of the 3D 0.25 um N-MOSFET. The upper color bar.is-joplane and the other is fgr—z plane.

and density gradient models was implemented successfully; its robust convergence property was confirmed and the

simulated results were compared with measured data in our recent works [35,36].

We report the achieved parallel performances for the 3D simulation. The speedup is the ratio of the code
execution time on a single processor to that on multiple processors and the efficiency is defined as the speedup

divided by the number of processors. As shown in Fig. 9 and Table 1, the parallel speedup efficiency, and load
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Fig. 9. The achieved speedup and efficiency of the 3D N-MOSFET simulation on the 16-CPUs Linux-cluster. The mesh consists of 512000
nodes.

balancing for a 3D N-MOSFET aVgss = Vps = 1.5 V are shown, where the test device is the same with
Example 3. The maximum difference is defined as the maximum difference of the code execution time divided
by the maximum execution time [28,29]. Table 1 shows the dynamic load balancing of domain decomposition for
the 3D N-MOSFET simulation on the 8-processors Linux-cluster. When the number of nodes increased, the load
balancing tends to a fixed value at 2%. A very good load balancing, 2.14%, for the 3D simulation with 256000 mesh
size has been obtained on the 8-processors Linux-cluster with MPI library. For the 16-processors Linux-cluster, we
have similar load balancing result. As shown in Fig. 9, the achieved speedup is 13.0 and the efficiency is about
80% on the 16-processors Linux-cluster.
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Table 1

The achieved load balancing for the 3D N-MOSFET simulation

Nodes Parallel time (s) Maximum
CPU No. difference

#0 #1 #2 #3 #4 #5 #6 #7 (%)
64000 18 18 18 18 18 18 18 18 0.00

100000 117 116 116 114 117 114 114 115 2.56

144000 734 730 720 734 734 719 719 734 2.04

256000 3362 3361 3362 3321 3298 3360 3290 3305 2.14

6. Conclusions

We have proposed a parallel simulation approach to the solution of multi-dimensional Poisson equation
with the MI method. The MI method applied to solve 3D semiconductor nonlinear Poisson equation has been
successfully implemented on a 16-processors Linux-cluster with MPI library. Mathematically we proved that this
solution technique has a global convergence property. Numerical results confirmed the MI method is superior to
conventional NI methods in the solution of semiconductor Poisson equation. Achieved speedup, efficiency and load
balancing have been presented to show the computational performance. We conclude that this solution algorithm
can be utilized to solve various semiconductor device and physics models. Furthermore, with a similar investigation
on the nonlinear property of the PDE, this method provides an efficient alternative in the solution of the Poisson
equation that derived from different biological, physical, chemical, and engineering problems.
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