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Abstract

Various self-consistent semiconductor device simulation approaches require the solution of Poisson equation that
the potential distribution for a specified doping profile (or charge density). In this paper, we solve the multi-dime
semiconductor nonlinear Poisson equation numerically with the finite volume method and the monotone iterative m
a Linux-cluster. Based on the nonlinear property of the Poisson equation, the proposed method converges monoto
arbitrary initial guesses. Compared with the Newton’s iterative method, it is easy implementing, relatively robust and f
much less computation time, and its algorithm is inherently parallel in large-scale computing. The presented method
successfully implemented; the developed parallel nonlinear Poisson solver tested on a variety of devices shows it
efficiency and robustness. Benchmarks are also included to demonstrate the excellent parallel performance of the me
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical modeling and numerical simulation for various semiconductor devices and physics ha
proven to be an indispensable alternative for the analysis and characterization of submicron or na
semiconductor devices [1,5–22]. Furthermore, it provides diverse approaches in the interpretation of expe
results on material, structures, and device characteristics. The electrostatic properties for structures
phenomena, complex molecules, and nanoscale devices have been of great interests and studies in recen
22]. Modeling and simulation for these interactions play an important role, especially in semiconductor devi
physics [1,5–22]. It is just like the molecule biophysics community requires solving a three-dimensional (3D
or nonlinear Poisson–Boltzmann equation for the behavior of electrostatic potential [2–4]; a multi-dime
Poisson equation for the potential distribution should be solved numerically for semiconductor devices.

E-mail address:ymli@faculty.nctu.edu.tw, ymli@mail.nctu.edu.tw (Y. Li).
0010-4655/03/$ – see front matter 2003 Elsevier B.V. All rights reserved.
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A set of comprehensive equations to model the classical or quantum transport phenomena, such as drift
(DD), hydrodynamic (HD), Boltzmann transport, density gradient, and Schrödinger–Poisson models [
32–35], requires the solution of a multi-dimensional Poisson equation that describes the electrostatic
distribution. As a result of the above models, the carriers’ densities are strong nonlinear functions of the elec
potential that leads to the nonlinear Poisson equation [6–22]. Under different situations or iterative sc
this nonlinear Poisson equation coupled with the above physical models can be solved separately [17–2
Computational efficient methods for the solution of a 2D or 3D nonlinear Poisson equation are hence des
obtain the numerical solution of the nonlinear Poisson equation, a discretization scheme, e.g., finite differen
element or finite volume method [6,17,20,22–24] is firstly applied to discretize the equation. Then the disc
nonlinear Poisson equation leads to a system of nonlinear algebraic equations. The conventional method
the solution of this nonlinear system is based on the Newton’s iterative (NI) method or its variations [6,17,
The NI method has a quadratic convergence only if the initial guess is in the neighborhood of the exact
[17,20,21].

In this paper we propose a computational efficient solution approach, the so-called monotone iterati
method [7–9,25–27], for the numerical solution of the semiconductor nonlinear Poisson equation. Base
exponential property of the nonlinear Poisson equation, we have found the MI method converges mono
for an arbitrary initial guess. Compared with the NI method, the MI method requires no Jacobian matrix a
not encounter any convergence problems and numerical difficulties. Furthermore, the MI algorithm is pr
easy in implementation, and inherently parallel for large-scale 3D simulation. The developed Poisson solv
on 2D and 3D devices, such as PN diode and N-MOSFET [16] shows the efficiency and robustness. A
benchmarks are reported to show the parallel performance [28,29] of the method.

Subsequent sections of this paper are organized as follows. Section 2 states the semiconductor nonline
model for an N-MOSFET at thermal equilibrium. Section 3 shows the convergence property of the MI met
the solution of the nonlinear algebraic system derived from the finite volume discretization of the nonlinear P
equation. Section 4 describes a parallelization scheme, the so-called domain decomposition algorithm, fo
parallel Poisson simulation on a Linux-cluster with message-passing interface (MPI) library. Section 5
the numerical results on different 2D and 3D devices; benchmark results including the achieved speedup
efficiency, and load balancing are demonstrated in this section. Section 6 is the conclusions.

2. Semiconductor nonlinear Poisson model

In this section, we briefly state the formulation of the nonlinear Poisson model for a 3D MOSFE
semiconductor devices and physics, Poisson equation is applied to describe the variation of electrostatic
within a specified regime [16]. Consider a 3D MOSFET as shown in Fig. 1, the potentialφ(x, y, z) satisfies Poisso
equation in the semiconductor as follows [16–19]:

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = − q

εs

(
p − n+ N+

D − N−
A

)
, (1)

whereq = 1.60218× 10−19C is the elementary charge andεs = 11.9ε0 is silicon permittivity. Then andp are
densities of free electron and hole, respectively;N+

D andN−
A are the ionized donor and acceptor impurities dop

concentrations, respectively (for a more general device simulation, the incomplete ionization should be co
[1,16–19]); andε0 = 8.85418× 10−14 F/cm is the permittivity in vacuum. We now consider the Boltzma
statistics that describes the relationship between free electron density,n, and potential,φ, for nondegenerat
semiconductors (that is then is much smaller than the effective density of statesNC in conduction band [16])
At thermal equilibrium, this relation is given by

n = ni exp
(
q(φ − ϕn)/KT

)
, (2)
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Fig. 1. A 3D schematic diagram for an N-MOSFET.

whereni = 9.56× 109 cm−3 is the intrinsic carrier concentration,k = 1.38066× 10−23 J/K is the Boltzmann
constant,T is absolute temperature, and theϕn is the imrefs or quasi-Fermi levels for electrons [16–20]. T
relations for holes are similar to Eq. (2). We note that another important physics law (the so-called Ferm
statistics) has also been considered in the relationship ofn andφ for degenerate semiconductor. Detail descript
of this statistics can be found [1,16]; in the Fermi–Dirac statistics,n is also a nonlinear function ofφ which
involves more complicated exponential terms. From Eqs. (1) and (2), we obtain the 3D nonlinear Poisson
as follows:

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = qni

εs

(
uexp(φ/VT ) − v exp(−φ/VT )

)− q(N+
D − N−

A )

εs
, (3)

whereVT ≡ KT/q = 0.0259 V is so-called the thermal voltage atT = 300 K. Theu and v are defined by
exp(−ϕn/VT ) and exp(ϕp/VT ), respectively. Furthermore, the nonlinear Poisson equation is supplemen
physically appropriate boundary conditions [17–20]. For device’s contact terminals, source, drain, ga
substrate, applying assumptions of the ohmic contact and charge neutrality condition [16], we have the D
type boundary condition onφ,

φ = VApp. + VT

N+
D − N−

A

|N+
D − N−

A | ln

(
N+

D − N−
A +

√
(N+

D − N−
A )2 + 4n2

i

2ni

)
, (4)

whereVApp. is the applied voltage. To make the device self-contained a vanishing outward electric field,E = −∇φ,
on its boundary, the artificial boundaries on the device’s surrounding environment are assumed to be a hom
Neumann type boundary condition

∂φ

∂v
= 0, (5)

wherev is the component of the outward unit normal vector on the boundary. On the interface betwep−
semiconductor and oxide, by assuming the equal-flux and using the approximation that the oxide thicknestox, is
much smaller than the device channel length, we obtain the mixed type boundary condition as follows:

∂φ

∂v
= 1

εs
Q(φ) − εox

toxεs
φ + εox

toxεs
VG, (6)

whereQ is the potential dependent surface interface charges,εox = 3.9ε0 is SiO2 permittivity, andVG is the gate
voltage. Eqs. (3)–(6) form the 3D nonlinear Poisson model problem in the semiconductor and the unknow
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solved is the potentialφ(x, y, z). When device is at thermal equilibrium without any applied voltage at cont
theu andv are piecewise constants and equal one. The Poisson equation withu ≡ v ≡ 1 has to be solved to obta
the so-called equilibrium potentialφ(x, y, z) [16–20].

The above 3D nonlinear Poisson model is discretized with the finite volume method over finite hex
volumes firstly. The corresponding system of nonlinear algebraic equations is then solved directly (with
linearization procedures) with the MI method [7–9]. This method is a kind of constructive methods for the s
of partial differential equations (PDEs) [25–27]. Based on the exponential nonlinear property on the righ
side of the equation, we will show the MI method converges to the unique solution of the system monoton
the next section.

3. Numerical solution with the monotone iterative method

To discretize the above PDE together with its boundary conditions inx, y, andz directions, we apply a finite
volume method (FVM) with nonuniform mesh technique [17,20,22–24]. For the simplicity, we treat the pr
with assumptions thatu ≡ v ≡ 1 andQ = 0 [16]. Using the divergence theorem on a finite hexahedral vol
and considering the tensor-product meshes for the hexahedral volume [24], the discretized Poisson equat
written as

ξi+1,j,kφi+1,j,k + ξi−1,j,kφi−1,j,k + ξi,j+1,kφi,j+1,k + ξi,j−1,kφi,j−1,k

+ ξi,j,k+1φi,j,k+1 + ξi,j,k−1φi,j,k−1 + ξi,j,kφi,j,k

= τi,j,k

[
qni

εs

(
exp

(
φi,j,k

VT

)
− exp

(
−φi,j,k

VT

))
− q(N+

D − N−
A )i,j,k

εs

]
, (7)

where the arranged coefficientsξi,j,k andτi,j,k for all i, j , andk are direct results from the integral approximatio
with the quadrature rule. After employing the boundary conditions, the above set of equations
approximationsφi,j,k at the nodesXi,j,k = (xi, yj , zk) can be written together as the compact matrix form,

A� = −F(�), (8)

where� is the unknown vector formed byφi,j,k in the natural ordering,F is the vector of nonlinear function
corresponding to the finite volume discretization of Eqs. (3)–(6). For any vector� = (φn), the vector-valued
functionF is defined byF(�) = F(n,φn), 1� n � N , where theN is the total dimension of matrix. The functio
F(n,ψ) is bounded, i.e. there is some constantC such that|F(n,ψ)| � C, |ψ| � ∞, n = 1,2, . . . ,N . As a result
of considering the tensor-product, the matrixA is a seven-banded block-tridiagonal form. We note all coeffici
in Eq. (7) are nonnegative and the following relation

ξi,j,k � ξi+1,j,k + ξi−1,j,k + ξi,j+1,k + ξi,j−1,k + ξi,j,k+1 + ξi,j,k−1

holds for allXi,j,k . Based on these observations, it can be shownA is an irreducibleM-matrix [24]. The right-hand
side of Eq. (3) is continuously differentiable function with respect toφ, and the derivative of this nonlinear functio
is nonnegative. The finite volume discretization of the 3D Poisson equation with tensor-product hexahedra
yields the matrixA and the following theorem can be proved.

Theorem 1. A is an irreducibleM-matrix,F(n,ψ) is continuously differentiable,1 � n � N , and d
dψ

F(n,ψ) � 0
for ψ is bounded, then there exists at most one solution of the nonlinear algebraic system(8).
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Proof. For any vectorv = (vn), let �(v) be the diagonal matrix defined by

� =



F′(1,v1) 0 . . . . . . 0

0 F′(2,v2) 0 . . .
...

... . . .
. . . . . .

...
... . . . 0 F′(N − 1,vN−1) 0

0 . . . . . . 0 F′(N,vN)


,

where

F′(n,ψ) ≡ d

dψ
F(n,ψ),

and assume both of thê� and�̃ are the distinct solutions of (8).
Let

� = �̂ − �̃,

then [
A + �(v)

]
� = 0

for somev. Since the matrixA + �(v) is anM-matrix, A + �(v) is a nonsingular matrix and� = 0. Thus there
exists at most one solution of the nonlinear algebraic system (8).✷

We now writeA = D − L − U and proceed to the description of the iterative method for solving the syste
arising from the finite volume discretization of semiconductor nonlinear Poisson equation. This method for
the multi-dimensional semiconductor nonlinear Poisson equation consists of only single iteration loop as f

(D + λI)�(m+1) = (L + U)�(m) − F(�(m)) + λI�(m), (9)

where the superscript indexm is the iteration index,D, L, andU are diagonal, lower triangular, and upper triangu
matrices ofA, respectively. TheI is an identity matrix andλI is a diagonal matrix determined by the functi
F. The formula (9) can be regarded as a Jacobi type iterative scheme and is ready for parallel comput
following theorem states the main result for this iterative method in the numerical solution of semicon
nonlinear Poisson equation.

Theorem 2. Assume that there is a constantλ1 > 0 such that0 � F′(n,ψ) � λ1, |ψ| < ∞, n = 1,2, . . . ,N . Let
�(0) = (θ

(0)
n ) be an arbitrary vector. Let�(m), m � 1, be the solution of(9) with λ1. Let�∗ = (φ∗

n) be the solution
of (8). Then�(m) → �∗, asm → ∞.

Proof. Let

W(m) = �(m) − �∗.

Then from Eq. (9), we have

(D + λ1I)W(m+1) = (L + U)W(m) + λ1W(m) − (
F(�(m)) − F(�∗)

)
. (10)

For someηn we have

F
(
n, θ(m)

n

)− F
(
n,φ∗

n

)= F′(n, ηn)
(
θ(m)
n − φ∗

n

)
.
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Let �(η) be the diagonal matrix defined by

�(η) =



F′(1,η1) 0 . . . . . . 0

0 F′(2,η2) 0 . . .
...

... . . .
. . . . . .

...
... . . . 0 F′(N − 1,ηN−1) 0

0 . . . . . . 0 F′(N,ηN)


.

Then

(D + λ1I)W(m+1) = (
L + U + λ1I − �(η)

)
W(m).

It is possible to choose a properλ1, such that(
L + U + λ1I − �(η)

)
� 0.

So

(D + λ1I)|W(m+1)| � (
L + U + λ1I − �(η)

)|W(m)|.
On the other hand, we note(

L + U + λ1I − �(η)
)
� (L + U + λ1I),

and hence

(D + λ1I)|W(m+1)| � (L + U + λ1I)|W(m)|.
Denote the ratioP as follows:

P = (D + λ1I)−1(L + U + λ1I),

we have

|W(m+1)| � P (m+1)|W(0)|.
Thus

P (m) → 0 asm → ∞,

and the result is followed [24]. ✷
This result demonstrates the solution sequence generating from iterative formula (9) will converge to the

of Eq. (8) for all choices of the initial guess�(0). Furthermore, the above iterative method can also apply to
solution of the Poisson equation where the Fermi–Dirac statistics and incomplete ionization are included.
further verify that those nonlinear functions on the right-hand side of the Poisson equation are bounded f
of φ due to the finite input applied voltage. Therefore, we have the following corollary.

Corollary. Assume that there is a constantM > 0 such that|F(n,ψ)| � M and a constantk > 0 which satisfies
|F(n,ψ1) − F(n,ψ2)| � k|ψ1 − ψ2|, |ψ| < ∞, |ψ1| < ∞, |ψ2| < ∞, andn = 1,2, . . . ,N . Let �(0) = (θ

(0)
n ) be

a vector which satisfiesA�(0) � −F(�(0)). Let�(m), m � 1, be the solution of(9). Let�∗ = (φ∗
n) be a solution

of (8). Then�(m) → �∗, asm → ∞.

Proof. With a similar process in Theorem 1 above, this proof can be done by direct calculation and the de
of the constantk. ✷
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This corollary states that if the nonlinear function is bounded, then the solution sequences�(m) converge
monotonically from above to a solution�∗ of Eq. (8). We note if�Φ is the maximal solution of Eq. (8) an
�(0) � �Φ, thenΦ = �Φ. Similarly if �(0) satisfiesA�(0) � −F(�(0)), then�(m) → �∗, asm → ∞. Moreover, if
Φ is the minimal solution of Eq. (8) and�(0) � Φ, thenΦ = Φ. To clarify the MI computational procedure, w
summarize the MI algorithm as follows [7].

StepM1. Take an initial guess forΦ(m).
StepM2. Letm = 1 and set(i, j, k) = (1,1,1).
StepM3. Determine the MI parameterλI instantaneously.
StepM4. Compute the0(m+1) with Eq. (9).
StepM5. Perform convergence test. If it converges, then break, elsem = m + 1 and return to M3.

Together with a decoupling algorithm (the so-called Gummel’s method in semiconductor device sim
[17,18,20,30,31]), the MI method for the numerical solution of the nonlinear Poisson equation can be
to solve various semiconductor device models. For examples, the DD model consists of three coupled n
PDEs, the Poisson equation, the electron current continuity equation, and the hole current continuity e
Transport behavior of submicron MOSFET devices is governed with these coupled PDEs and is solved
Gummel’s decoupled method sequentially; that is in the DD model the Poisson equation is solved forφ(g+1)

given the previous statesn(g) andp(g). The electron current continuity equation is solved forn(g+1) givenφ(g)

andp(g). The hole current continuity equation is solved forp(g+1) given φ(g) andn(g), whereg is the index
of outer iterations. A similar procedure can be applied to decouple PDEs of the HD model. Each dec
PDE is discretized with FVM and is solved with the MI method. Details of the numerical simulation
comparison with the measured data for N-MOSFET and DTMOSFET devices have been studied in ou
works [8,9]. For a 3D simulation, to obtain highly accurate solution, it is necessary to perform the calc
with a fine mesh. However, the increase of grid points is numerically expensive and requires huge CP
For this reason, we further introduce a parallelization algorithm to reduce the computational time in th
section.

4. A domain decomposition parallelization algorithm

Based on the iterative formula (9), we present the corresponding multi-dimensional parallel domain
position algorithm. Once the tree structure is established, according to the total number of nodes, th
ber of processors for computing will be assigned and allocated. Then a geometric graph partitioning
in x-, y-, and/orz-directions, as shown Fig. 2, is applied to partition the number of nodes to each pro
dynamically. The arrangement of all nodes to each processor is based on a dynamic partition algorith
ally, all the partitioned sub-domains should contain approximately the same number of nodes to ensure
load balance among the processors. The computational procedure for parallel domain decompositio
lined.

StepD1. Initialize the MPI environment and parameters.
StepD2. Based on the mesh configuration, we establish the corresponding tree structure.
StepD3. Count the number of grid points and applies thedynamic partition algorithmto determinate how man

processors are required in this simulation.
StepD4. All assigned jobs are solved with formula (9). Computed results are communicated with th

protocol. For a given iteration since our iterative algorithm (9) is of the Jacobi type scheme, all
through this formula are decoupled and solved independently in each sub-domain. We note th
previous results are given, the boundaries for partitioned sub-domains are totally separated and
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Fig. 2. A 3D partition for the parallel domain decomposition.

each nonlinear system independently. When newer MI solutions of nonlinear systems are compu
perform the boundary data exchange of the sub-domains so that each sub-domain knows about t
value on neighbors for the next iteration loop.

StepD5. Perform convergence test for all cubic cells and run the mesh refinement for those cubic cells
diagonal difference of the solution is greater than a specified tolerance error.

StepD6. Repeat D3–D5 until the error of all cubic cells is less than the specified tolerance error.
StepD7. Host processor collects all computed results and stops the MPI environment.

The load balancingdynamic partition algorithmapplied in D3 above consists of some sub-steps.

StepP1. Count the total number of nodes.
StepP2. Estimate the optimal number of processors.
StepP3. The number of nodes will be assigned to each processor is equal to the total nodes divided by the

number of processors.
StepP4. Alongx-, y-, andz-direction in the 3D device domain, search (from left to right, bottom to top, and

to back) and assign nodes to these processors sequentially.
StepP5. Repeat P4 until all nodes have been assigned.

We note that the searching direction may be changed in the neighborhood ofp-n junctions for maintaining
the best load balancing performance. The parallel algorithm can also be applied to a 2D problem. It h
implemented on a Linux-cluster with the MPI library. The constructed Linux-cluster contains 16 PCs (CPU
1 GHz, Memory: 256 Mbytes, and operation system: LINUX RedHat 7.2), the files access and share are
network file system and network information system. The user datagram protocol controlled by MPI is ap
short distance fast communication.

Fig. 3 illustrates the parallel program organization; the pre-processor performs several tasks, and one of
is to manage the input data required for each parallel processor. In the Linux-cluster with the MPI config
input data are prepared on the host machine and sent to each client through TCP/IP with high speed switc
on a 3D MOSFET, we have verified the parallel implementation has good efficiency and parallel speedu
constructed Linux-cluster.
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Fig. 3. An illustration of the parallel algorithm and organization.

5. Results and discussion

We now present 2D and 3D simulation results of the developed parallel 3D Poisson simulator to sh
robustness and efficiency of the method. Parallel results such as speedup, efficiency, and load balancing [2
also included in this section. In the numerical simulation, the MI parameterλI is computed with the newer iterativ
results and updated for next solution iterations instantaneously [7].

The first example is a 2D PN diode [16] under applied biasVA = 0.5 V. For the 2D PN diode, as shown
the inserted figure of Fig. 4, the Poisson equation (3) is solved with the Dirichlet type boundary condition
the n andp contacts. The rest parts of the boundary of the simulation domain are assumed to be the N
type boundary condition (5). The doping profile inside then+ region is 1017 cm−3 and is 1015 cm−3 for thep−
region, respectively. The simulation domain of this PN diode is defined on a 3.5 × 3.5 µm2 and then+ region is
a quarter ellipsoid with radius 0.5 µm. Fig. 4 shows the computed potential at applied voltage equals 0.5
convergence criterion is the maximum potential difference between two successive iterations less than 10−6 VT for
all nodes. The mesh size is about 1000 nodes. As shown in Fig. 4, the simulated result indicates clearly tha
a junction jump layer on then+ andp− regimes. To test the validity of the method, we simulate more complic
2D and 3D MOSFET devices. The second example is a 0.35 µm N-MOSFET with oxide thickness 7 nm
a 2D domain. The doping profile in this simulation comes from realistic device structure. Fig. 5 shows the
profile and Fig. 6 illustrates the computed potential at thermal equilibrium condition. The convergence crit
of the maximum error less than 10−8 VT and the mesh size equals 2200 nodes. The third example concer
0.25 µm N-MOSFET simulation. The doping profile is a Gaussian distribution with 1020 cm−3 in the ellipsoidn+
regions and 1017 cm−3 in thep− region. The oxide thickness is 7 nm. The simulation domain is 1.1 µm inx and
y directions where thez direction is 40 µm. The convergence criterion is the same with Example 2 and the
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Fig. 4. The simulated potential of the 2D PN diode.

Fig. 5. A surface plot of the input doping concentration for the 0.35 µm N-MOSFET.

size is about 64000 nodes. Fig. 7 presents the calculated result for this device atVGS = VDS = 2.0 V. We further
verify the global convergence property for the proposed method. The test device is the same with Examp
atVGS = VDS = 0 V. There are four different initial guesses tested, 0.0 V, charge neutrality condition,−5.0 V and
5.0 V. As shown in Fig. 8, the monotonic convergence behavior is confirmed. It takes only about 100 s CP
for these different calculations on the computing system. However, for the same device structure and s
condition, the conventional NI method does not converge with the initial guesses−5.0 V and 5.0 V, respectively
For such bias the NI in general requires a more precise initial guess [32] to start the solution procedure. H
in practical device simulation it is difficult to calculate a proper initial guess for different structures and m
especially in nanoscale devices [11,33,34]. On the other hand, the MI method in solving the Schrödinger–
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Fig. 6. The potential distribution of Example 2.

Fig. 7. The simulated potential of the 3D 0.25 µm N-MOSFET. The upper color bar is forx–y plane and the other is fory–z plane.

and density gradient models was implemented successfully; its robust convergence property was confirme
simulated results were compared with measured data in our recent works [35,36].

We report the achieved parallel performances for the 3D simulation. The speedup is the ratio of th
execution time on a single processor to that on multiple processors and the efficiency is defined as the
divided by the number of processors. As shown in Fig. 9 and Table 1, the parallel speedup efficiency, a
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Fig. 8. The global convergence of the MI method for the 3D N-MOSFET simulation atVGS = VDS = 0 V.

Fig. 9. The achieved speedup and efficiency of the 3D N-MOSFET simulation on the 16-CPUs Linux-cluster. The mesh consists o
nodes.

balancing for a 3D N-MOSFET atVGS = VDS = 1.5 V are shown, where the test device is the same
Example 3. The maximum difference is defined as the maximum difference of the code execution time
by the maximum execution time [28,29]. Table 1 shows the dynamic load balancing of domain decompos
the 3D N-MOSFET simulation on the 8-processors Linux-cluster. When the number of nodes increased,
balancing tends to a fixed value at 2%. A very good load balancing, 2.14%, for the 3D simulation with 25600
size has been obtained on the 8-processors Linux-cluster with MPI library. For the 16-processors Linux-clu
have similar load balancing result. As shown in Fig. 9, the achieved speedup is 13.0 and the efficiency
80% on the 16-processors Linux-cluster.
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Table 1
The achieved load balancing for the 3D N-MOSFET simulation

Nodes Parallel time (s) Maximum

CPU No. difference

#0 #1 #2 #3 #4 #5 #6 #7 (%)

64000 18 18 18 18 18 18 18 18 0.00
100000 117 116 116 114 117 114 114 115 2.56
144000 734 730 720 734 734 719 719 734 2.04
256000 3362 3361 3362 3321 3298 3360 3290 3305 2.1

6. Conclusions

We have proposed a parallel simulation approach to the solution of multi-dimensional Poisson e
with the MI method. The MI method applied to solve 3D semiconductor nonlinear Poisson equation ha
successfully implemented on a 16-processors Linux-cluster with MPI library. Mathematically we proved th
solution technique has a global convergence property. Numerical results confirmed the MI method is sup
conventional NI methods in the solution of semiconductor Poisson equation. Achieved speedup, efficiency
balancing have been presented to show the computational performance. We conclude that this solution a
can be utilized to solve various semiconductor device and physics models. Furthermore, with a similar inves
on the nonlinear property of the PDE, this method provides an efficient alternative in the solution of the P
equation that derived from different biological, physical, chemical, and engineering problems.
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