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A New Duration Modeling Approach
for Mandarin Speech

Sin-Horng ChenSenior Member, IEEBNen-Hsing Lai, and Yih-Ru Wang

Abstract—in this paper, a new duration modeling approach for modeling is important in both automatic speech recognition
Mandarin speech is proposed. It explicitly takes several major af- (ASR) [1]-[4] and text-to-speech (TTS) [5]-[10]. In ASR,
fecting factors as multiplicative companding factors (CFs) and esti- state duration models are usually constructed to assist in the

mates all model parameters by an EM algorithm. Besides, the three L .
basic Tone 3 patterns (i.e., full tone, half tone and sandhi tone) are HMM-based speech recognition. In TTS, synthesis of proper

also properly considered via using three different CFs to separate duration information is essential for generating a highly natural
their affections on syllable duration. Experimental results showed Synthetic speech. A precise duration model is surely helpful
that the variance of the syllable duration was greatly reduced from for improving the performance of ASR as well as for making
180.17 to 2.52 fram& (1 frame =5 ms) by the syllable duration synthesized speech more natural in TTS.

modeling to eliminate effects from those affecting factors. More- . L . .
over, the estimated CFs of those affecting factors agreed well to our In the past, durational characteristics of speech in various

prior linguistic knowledge. Two extensions of the duration mod- languages have been the subject of many recent researches.
eling method are also performed. One is the use of the same tech-Many factors have been shown to have major effects on
nique to model initial and final durations. The other is to replace influencing segmental duration [11], [12]. The general goal
the multiplicative model with an additive one. Lastly, a preliminary  of duration modeling is to find a computational relation
study of applying the proposed model to predict syllable duration between a set of affecting factors and the segment duration
for TTS is also performed. Experimental results showed that it out- . - . )
performed the conventional regressive prediction method. Related_llteratures concerned with the finding O_f perceptual
cues, with the development of duration-generating rules for
synthesizing intelligible and natural-sounding speech, and with
the automatic duration analysis for speech recognition, speech
|. INTRODUCTION understanding and word finding. They can be categorized into

PROSODY refers to aspects of the speech signal otht(\a’\fo approaches: rule-based and data-driven. The former is a

than the actual words spoken. such as timing and funqcag)_nventional one which uses linguistic expertise to manually
b ' . 9 : hnfer some phonologic rules of duration generation based on
mental frequency pattern, and plays an important role in t )

ogservatlons on a large set of utterances. A prevalent method

disambiguation of discourse structure. Speakers use prosg ¥ . A .
o . : he approach for TTS uses sequential rules to initially assign
to convey emphasis, intent, attitude, and to provide cues %10 durgﬁon of a segment Withqan intrinsic value ar{d thegn
aid listeners in the interpretation of their speech. Researchér‘%cessivel applies rules to modify it [5], [6] Tﬁree main
have noticed that fluent spoken speech is not produced R d y pr; h h be f ' d .F' I
a smooth, unvarying stream. Rather, speech has percept] i vantages of the approach can be found. First, manually
Lo ' e>(<jolor|ng the effect of mutual interactions among linguistic
breaks, relatively stronger and weaker, as well as longer Aeatures of different levels is highly complex. Second, the
sharter syllables. Without prospdy, speech would be flat arr‘?’a;-inference process usually involves a controlled e>,<peri-
Fonel_egs and would §o.und tedious, unpleasant, or even baf &nt, in which only a limited number of contextual factors is
intelligible. Although it is known that prosody can be affecte ¢ R
. examined. The resulting inferred rules may therefore not be
by many factors such as sentence type, syntactical structuie

semantics and emotional state of speaker, the relations geral enough for unlimited texts. Third, the rule-inference

between prosodic features and those affecting factors [gcess 1S cumbersome. Asaresult, Itis ge”er‘?"y very difficult
0 collect enough rules without long-term devotion to the task.

not totally understood. Indeed, the lack of a general con- ] ] )
.Lhe data-driven approach tries to construct a duration model

sensus in these areas is the main reason why prosody wa: h . T
still under-utilized in spoken language processing nowaday™m @ large speech corpus, usually with the aid of statistical
thods or artificial neural network (ANN) techniques. It first

Prosodic modeling is therefore important and urgent in spee®f" i ) . .
processing. designs a computational model to describe the relationship

In this paper, we concentrate our study on one importa'ﬁ?tweer,‘ the segment duration and some affecting fa_ct.ors, and
issue of prosodic modeling—duration modeling. Duratiowe” trains thg model on the speech. corpus. The training goal
is to automatically deduct phonologic rules from the speech
corpus and implicitly memorize them in the model’'s parameters
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classify the segmental durations into some clusters accordingSection VI. Conclusions and future works are given in
to their relationships with some linguistic features. The latt&ection VII.
uses an MLP to learn the mapping between the segmental
duration and some linguistic features. Combining these two
methods by cascading regression tree and neural network was
also proposed [14]. Criticisms raised against these two method$n duration modeling, the desired modeling units can be
are the insufficient accuracy of duration prediction in the case 8ifeech segments like HMM states, phones, initials, finals, sylla-
the decision tree-based method, and the difficulty in interpretifies or even words. Since Mandarin is a tonal and syllable-based
the hidden structure of the model learned in the MLP-basénguage, syllable is the basic pronunciation unit. We therefore
method. choose syllable duration as the modeling unit to start our study.
Another popular method of the data-driven approach us{@Q extengion to z_;tdditionally model initial and final du_rations is
regression analysis to model the relationship between tRgluded in Section Iil. The proposed syllable duration model
segmental duration and some linguistic features. Regressidfesigned based on the idea of taking each affecting factor as
methods in the linear or logarithmic domain [15], [16], or based multiplicative companding (pompressmg-expandmg) factor
on a sigmoid transformation function [17] can be used. THEF) to control the compression and stretch of the syllable
sums-of-products (SOP) method is based on multiple linedyration. A parallel _model|r_lg approach using gddmve C_F will
regression and is supervised on the basis of linguistic kno/@S0 be discussed in Section V. In the following, we discuss
edge [18]-[20]. A piecewise linear transformation in the Sotbe affecting factors used, the multiplicative syllable duration
method was proposed to expand the durations at two endsT§idel, and the method of estimating the model parameters in
duration range [21]. In [22], a computation-intensive algorithnfletail-
called “Multivariate Adaptive Regression Splines” (MARS),
was used to estimate general functions of high-dimensiorfal Affecting Factors

arguments given sparse data. In naturally spoken Mandarin Chinese, syllable duration
For the duration modeling in Mandarin speech, there avaries considerably depending on various linguistic and non-
still quite few studies. The lack of an appropriate prosodithguistic factors. In this study, five major affecting factors
model is the major problem encountered. In this paper, Wecluding tone, base-syllable, speaker-level speaking rate,
propose a statistical model for Mandarin syllable duratiomterance-level speaking rate, and prosodic state are considered.
via considering some major affecting factors. Our goal is 1@ the following, we discuss their effects on influencing syllable
deconfound the effects of these affecting factors so as to betigration.
understanding the mechanism of syllable duration generation irMandarin Chinese is a tonal and syllable-based language.
Mandarin speech. The affecting factors we considered incluggllable is the basic pronunciation unit. Each character is pro-
speaker-level speaking rate, utterance-level speaking rafeunced as a syllable. There exist only about 1300 phonetically
syllabic tone, base-syllable, and prosodic state. Here prosogistinguishable syllables comprising the set of all legal combi-
state is conceptually defined as the state in a prosodic phraggions of 411 base-syllables and five tones. Tonality of a syl-
and is introduced to account for all other affecting factors, thiible is characterized by its pitch contour shape, loudness and
are not covered by the former four factors, including word-leveluration. This means the tone of a syllable will affect its du-
and syntactic-level linguistic cues. ration. We therefore consider tone as an affecting factor. One
We will also consider the affecting factor of Tone 3 in morebvious phenomenon to show the affection of tone on syllable
detail. In natural Mandarin speech, Tone 3 can be pronounaddtation is that syllables with Tone 5 are always pronounced
in three basic patterns: falling-rising, low-falling, and middlemuch shorter. Besides, Tone 3 can be pronounced in three basic
rising. The first one is a full tone and usually appears at the epdtterns of falling-rising (full tone), low-falling (half tone), and
of a word or a prosodic phrase. It usually pronounced slightiyiddle-rising (sandhi tone) which are of different durations.
longer than the other three regular tones (i.e., Tone 1, Tone 2Syllable duration is also seriously affected by the phonetic
and Tone 4) [23]. The second one is a half tone and is alwagtsucture of base-syllables. Mandarin base-syllables have very
pronounced shorter [23]. The third one sounds like Tone 2 arebular phonetic structure. Each base-syllable is composed of
is resulted from the well-known sandhi rules of changing a Toraa optional consonant initial and a final. The final can be fur-
3to Tone 2 when it precedes another Tone 3. Due to the fact ttiar decomposed into an optional medial, a vowel nucleus, and
these three Tone 3 patterns are different in their durations, aeoptional nasal ending. So base-syllables comprise one to four
will consider them as three different tone affecting factors. phonemes. Generally speaking, syllable duration increases as
The paper is organized as follows. Section Il discusses tthee number of constituent phonemes increases. Syllables with
proposed multiplicative syllable duration model of Mandarisingle vowels are shortest. Syllables with stop initials or no ini-
speech in details. Section Ill describes the experimental resuitds, and without nasal endings are pronounced shorter. Sylla-
of the syllable duration modeling study on two databases. Awhes with fricative initials and with nasal endings are longer.
extension to include the modelings of initial and final durations Aside from syllable-based features, other high-level lin-
is also made. Detailed analyses of the influences of these fiyaistic features, such as word-level and syntactic-level features,
affecting factors are given in Section IV. In Section V, awan also affect the syllable duration seriously. In this study, we
additive duration model is introduced and compared with these prosodic state to account for the influences of high-level
multiplicative model. An application of using these two modelbnguistic features. Here, prosodic state is conceptually defined
in syllable duration prediction for Mandarin TTS is presenteds the state in a prosodic phrase. Syllable duration varies in

Il. PROPOSEDSYLLABLE DURATION MODEL
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different part of a prosodic phrase. The lengthening effect for To illustrate the EM algorithm, an auxiliary function is firstly
the last syllable of a prosodic phrase is a well-known examplgefined in the expectation step (E-step) as

The reasons of using prosodic state to replace high-level

linguistic features are three-folded. Firstly, durational infor- _ NoX _

mation is a kind of prosodic feature so that syllable duration QA A) = Z Z P(Yn|Zn; A)10g p(Znsya|A)  (2)
should match better to the prosodic phrase structure than to n=lyn=1

the syntactic phrase structure. Secondly, it is still difﬁcquhereN is the total number of training samplds,is the total

to automatically extract syntactic-level linguistic cues frorﬂumber of prosodic states(y,|Z., \) and p(Z 'y \) are
unlimited natural Chinese texts. Thirdly, by this approach we 1.0\ probabilities) — {; Un”;t-'% s %_W"S’} igthe set

can isolate the duration modeling study from the difficult tas parameters to be estimated 7ax71dn/d5</arje7 réspectively the

&w and old parameter sets. Based on the assumption that the

state is the lack of large speech corpora with prosodic talggfrmalized durationX,, is normally distributedp(Zn, yn|A)

being properly labeled. So we must treat the prosodic state O e derived from the assumed model given in (1) and
a syllable as hidden or unknown. Fortunately, we can SOI%?(pressed by
the problem by the expectation-maximization (EM) algorithm
which is a general methodology for maximum likelihood (ML), N =N (Z. , 2,2 .2 2 2
or maximum a posteriori (MAP) estimation from incomplet()g( nYnlA) (%0 10, Y5 %“’Mtﬂ”’ﬂjﬂlﬂs’é)
data. Substantial literatures have been devoted to the study of 3)
the EM algorithm and found that it is generally a first-order e .
: : whereN (Z; u, v) denotes a normal distribution gfwith mean
or linearly convergent algorithm [24]-[26]. A by-product "~ vafria{lﬁ:/e?;))Similarl (4|2 ) can be expressed b
of the approach is the automatic determination of prosodic : Y PWYn|Zn, P y

states for all syllables in the training set. This is an additional

advantage because prosodic labeling has become an interesting P(Yn|Zn, A) = M 4)
research topic recently [27]-[34] and such kind of prosodic S p(Z, 4l |N)

information provides cues for resolving syntactic ambiguity in Yl =1

automatic speech understanding [29]-[32] and for improvin_lgh ) o

the naturalness of TTS [33], [34]. en, sequential optimizations of these parameters can be per-

Syllable duration will also be affected by the speaking raté2rmed in the maximization step (M-step). _
Natural speech is not always spoken in a constant speed, A drawback of the above EM algorithm is that it may result
speaker usually speaks using his familiar speed. But he dAr@ Nonunique solution because of the use of multiplicative af-
change the speed from time to time. In order to account for tHcting factors. This is obvious because, if we scale up an af-
impact upon the statistical syllable duration model, we considcting factor and scale down another by the same value, the
two types of speaking rates, speaker-level and utterance-leg@ime objective value will be reached. To cure the drawback,

in this study. we modify each optimization procedure in the M-step to a con-
strained optimization one via introducing a global duration con-
B. Syllable Duration Model straint. The auxiliary function then changes to
The model is constructed based on the assumption that the N Y
effects of all affecting factors are combined multiplicatively [19)(X, \) = Z P(Yn|Zns M) 108 D(Zrsyn|N)
and is expressed by n=1y,=1
N
Zn = XVt Yyu Vin Mo Vo @) R (Z 1Vt Yy Vi Ve Vs — N uz> (5)
n=1

whereZ,, and X,, are, respectively, the observed and normal-

ized durations of theth syllable;y, is the CF of the affecting wherey is the average of,, andn is a Lagrange multiplier.
factorp; t,, yn, Jn, ln @ands,, represent respectively the lexicalThe constrained optimization is finally solved by the Newton-
tone, prosodic state, base-syllable, utterance, and speaker oRhphson method.

nth syllable; andX,, is modeled as a normal distribution with To execute the EM algorithm, initializations of the parameter
meany and variancey. Notice that prosodic state representset) are needed. This can be done by estimating each individual
the state in a prosodic phrase and is treated as hidden. In Mparameter independently. Specifically, the initial CF for a spe-
darin, there are 5 lexical tones and 411 base-syllables. If congific value of an affecting factor is assigned to be the ratio of the
ering the three Tone 3 patterns of falling-rising, middle-risinduration mean of syllables with the affecting factor equaling the

and low-falling, we increase the number of tones to 7. value to the duration mean of all syllables. Notice that, in the
initializations of CFs for prosodic state, each syllable is pre-as-
C. Training of the Model signed a prosodic state by quantizing its duration. After initial-

To estimate the parameters of the model, an EM algoritHﬁf"tiO”' all parameters are sequentially updated in each iterative
[35] based on the ML criterion is adopted. The EM algorithriteP- Iterations are continued until a convergence is reached. The
is derived based on incomplete training data with prosodic st&gsodic state can finally be assigned by

being treated as hidden or unknown. In the following, we discuss .
it in more detail. Yn = TilllaXP(yn|Zn7 A).- (6)



CHEN et al. NEW DURATION MODELING APPROACH FOR MANDARIN SPEECH

311

The procedure of the EM algorithm is summarized below. 2) Do for each iteration k:
a) Update Xy = Xy
1) Compute initial values of A by indepen- b) E-step: calculate
dently estimate each individual param- N v
eter from the training set. N R N
= n|Zny A1, 1 L Yn| A1,
2) Do for each iteration k: Az 22) ;yzzlp(y s A, A o8 pZngn P 22)
a) Update X\ = \. (10)
b) E-step: Use (3)-(5) to calculate c) M-step: Find optimal A2 by
QA N). _ .
c) M-step: Find optimal A by A2 _HQXQ()‘Q’)Q) (11)
A = maxQ(, A). ) d) Termination test: If Lk)—L(k—1) <e

d) Termination test: If
or k> K stop, where

Lk)-Lk-1)<e¢

N
L(k) =) logp(Zn|)) ®)
n=1

is the total log-likelihood for
iteration k and K is the maximum
number of iterations.

3) Assign prosodic states by using 6) .

D. Modeling of Tone 3

We now extend the model to additionally consider the affec-
tions of the three Tone 3 patterns of falling-rising, middle-rising
and low-falling. In this study, these three patterns are simply de-

or k> K stop, where
]\T

L(k) =) log p(Zn|A1, A2)

n=1

(12)

is the total log-likelihood for
iteration k and K is the maximum
number of iterations.

3) Assign prosodic state and Tone 3 pat-

tern by
Yn =maxp (Yn|Zn. A1, A2) (13)
ty =arg max p (tn|Zn, A1, ;\2) (24)
for t, € {37,3s,3n}.

noted as Ton8y, Tone3,, and Tone3;,, and three separate CFs

are used to account their affections on the syllable duration. TheAfter performing the above procedure, we can get the CFs
EM algorithm is then modified for parameter estimation. In inief each testing utterance and speaker, the prosodic state of each
tialization, we first assign all lexical Tone 3 to Tofig when syllable, the tone pattern of each syllable with Tone 3, and the
they precedes other lexical Tone 3, and then use VQ to dividermalized duration of each syllable.

all others lexical Tone 3 into two clusters of ToBig and Tone
3;. Besides, at the end of each iteration, syllables with lexical

Tone 3 are re-assigned to one of these three patterns by
tr = arg max P(tn|Zn, A) 9)

IIl. EXPERIMENTAL RESULTS
A. Databases
Effectiveness of the proposed syllable duration modeling

for t, € {3f,3s,3n}, Wherep(t,|Z,, ) is the conditional method was examined by simulations on two databases. The

probability of a Tone 3 pattern.

E. Testing of the Model

first one is a high-quality, reading style microphone-speech
database recorded in a sound-proof booth. Itis referred to as the
MIC database. It was generated by five native Chinese speakers

Although we have gotten CFs of all affecting factors from th#cluding two males and three females. Among these five

above training procedure, some information is still not knowspeakers, two of them were professional radio announcers. The
in the testing phase. It includes the CFs of both speakélatabase consisted of two data sets. One (MIC-sent) contained
and utterance-level speaking rates, the prosodic state of eaghtential utterances with texts belonging to a well-designed,

syllable, and the tone pattern of a syllable with Tone 3. Th#honetic-balanced corpus of 455 sentences. The lengths of
following testing procedure is therefore set to estimate thetfgese sentences ranged from 3 to 75 syllables with an average

unknown parameters:

1) Initialization:

a) Fix the CFs for tone, base-syl-
lable and prosodic state, and the
mean and variance of the normalized
syllable duration to the trained
values and form a parameter set
)\1 {ﬂ:ﬂﬂtﬂy::}’j}

b) Compute the initial values of the
parameter set, A2 = {v,7s}, needed to
be determined in Step 2.

of 13 syllables. The other (MIC-para) contained paragraphic
utterances with texts belonging to a corpus of 300 paragraphs
which covered a wide range of topics including news, primary
school textbooks, literature, essays, etc. The lengths of these
paragraphs ranged from 24 to 529 syllables with an average of
170 syllables. The MIC database was divided into two parts:
a training set and a test set. Table | shows some statistics of
the MIC database. The training set contained, in total, 98 620
syllables and the test set contained 20 717 syllables. The mean
(unitin frame) and variance (unit in frarijeof syllable duration

for the training and test sets are shown in Table ll(a). Here one
frame equals 5 ms.
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TABLE | 0g” 10
STATISTICS OF THEMIC SPEECHCORPUS '
Data Set | Speaker | Sentence |Paragraph | Syllable 085
Training | Male A 1-455 1-200 33404 Al
B
Training |Female B 1-455 1-50 12619 %
5 -1.05+
Training | Male C |  1-455 1-100 | 19502 £
Training |Female D| 1-455 1-200 33095 Ty
Testing |Female E| None 200-300 | 20717 4154
1.2 ‘ .
TABLE I 0 20 0 ner:?ion ® b "
STATISTICS OF (A) THE OBSERVED DURATIONS IN THE MIC DATABASE, AND
THE NORMALIZED DURATIONS OBTAINED IN (B) THE MULTIPLICATIVE AND Fig. 1. Plot of total log-likelihood versus iteration number.

(c) ADDITIVE MODELS WITH 16 FROSODIC STATES. (UNITS: MEAN AND
RMSEIN FRAME AND VARIANCE IN framée?; 1 FRAME =5 ms)

from calls through public telephone networks in Taiwan. All

Training set Testing set speech signals were digitally recorded with a form of 8-kHz,

. . 16-bit data. It contained phonetically balanced, short sentential

mean Variance mean variance . . . .

utterances in reading style. All speech signals were automati-
Syllable | 44.31 180.17 41.08 136.26 cally segmented using a set of 100-initial and 39-final HMM

Initial | 1721 | 6228 | 13.83 40.02 models.
Final 31.75 117.06 30.94 104.15 B. Experimental Results of Syllable Duration Modeling

@) We first examined the effect of syllable duration modeling

using the MIC database with the number of prosodic states

Training set Testing set being set to 16. Table li(b) shows the experimental results. It

can be seen from the third and sixth columns of Table II(b) that
the variances of the normalized syllable duration were 2.52
Syllable| 42.34 | 2.52 1.93 |44.77| 4.44 3.41 and 4.44 frame for the closed and open tests, respectively.
Compared with the corresponding values shown in Table lI(a),
Initial | 16.63| 0.74 0.97 118.36| 5.92 2.27 the variances of syllable duration shown in Table li(b) were
Final |31.50| 2.12 1.66 13390 3.40 325 greatly reduced after compensating the effects of these five
affecting factors on the observed one. We also find from the
(b) fourth and seventh columns of Table II(b) that the root mean
— - squared errors (RMSES) between the observed and normalized
Training set Testing set syllable durations were 1.93 and 3.41 frames for the closed
mean | variance | RMSE | mean | variance | RMSE  @nd open tests. Notice that the estimated syllable duration was
obtained based on assigning the best prosodic state to each
Syllable| 43.89 | 2.53 | 1.59 [43.77| 397 | 199  gyllable using (6). Fig. 1 shows the plot of total log-likelihood
Initial 117.20] 0.78 089 [17.05 1.73 1.32 L(k) versus iteration numbek. It can be found from Fig. 1
that the EM algorithm converges quickly in the first several
Final |31.44| 1.84 1.36 131.38| 2.85 1.69 iterations. The histograms of the observed and normalized
syllable durations for the training set are plotted in Fig. 2.
© Can be seen from these two figures that the assumptions of
Gaussian distribution for these two types of syllable duration
After recording, all speech signals of the MIC database weaee reasonable. From above discussions we can conclude that
converted into 16-bit data at 20-kHz sampling rate. They wetlee proposed syllable duration modeling method is a promising
then manually segmented into sub-syllables of initial and finaine.
The associated texts were transcribed automatically by a lin-We then examined the case when the number of prosodic
guistic processor with an 80 000-word lexicon. All transcriptiostates changes. The resulting variances of the normalized syl-
errors were manually corrected. lable duration are shown in Fig. 3. It can be found from the figure
The second database is a 500-speaker, telephone-speechtatahe variance of the normalized syllable duration decreased
set which is a subset of MAT-2000 provided by the Associas the number of prosodic state increased. This shows that the
tion of Computational Linguistics and Chinese Language Prsyllable duration modeling was more precise as the number of
cessing. It is referred to as the TEL database. It was collectasodic states increased. The improvement became saturated

mean | variance | RMSE | mean | variance | RMSE
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Fig. 4. Relations between the state number and the RMSE of the
multiplicative/additive syllable duration models for the training and test sets.

TABLE I
THE ESTIMATED CFS FOR5 LEXICAL TONES IN THEMULTIPLICATIVE MODEL

Qe 1 2 3 4 5

syllable | 1.00 1.02 0.99 1.03 0.84

interaction of two affecting factors and another was to analyze
large modeling errors. The former was to evaluate the gain of
relaxing the independence assumption by considering the com-
bination of two affecting factors while the latter was to check

whether large modeling errors were resulted from the indepen-
dence assumption. To consider the interaction of two affecting
factors, we used one CF for each pair of all possible combina-

Fig.2. Histograms of (a) the observed syllable duration and (b) the normalizgdns of the two affecting factors. This willimprove the accuracy
one obtained by the multiplicative model for the training set.
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of the model with the paid of increasing the number of model’s
parameters. Due to the facts that speaker and utterance speaking
rates are global normalization factors and prosodic states are
hidden and realized in a probabilistic form, we only considered
the combination of the base-syllable and tone for simplicity. The
syllable duration model was then modified to

Zn = XnVeju Vyn Vi Von (15)

where;; was the CF for the syllable with torteand base-syl-
lablej. Here, we only considered the case of 5 lexical tones and
8 prosodic states. The resulting variance and RMSE of the modi-
fied model were 4.67 frarfeand 2.42 frame, respectively. Com-
pared with the results of 4.73 frathand 2.47 frame obtained
by the original model, the improvements were negligible. So the
two affecting factors of base-syllable and tone could be indepen-
dently considered. To analyze large modeling errors, we first

Fig. 3. Relations between the state number and the variance of the normaliid@ntified the syllables with absolute modeling errors located
syllable duration of multiplicative/additive model for the training and test set$n axtreme 5 percentile of error distribution, and then checked

the associating affecting factors. Here we considered the case of

when the number of prosodic states equaled 16. Similar finétones and 16 prosodic states. Some observations were found
ings can be observed for the corresponding RMSEs shownfiam the error analysis. Firstly, most large errors were occurred

Fig. 4.

in States 15 and 14 and some were occurred in State 0. More

We then inspected the appropriateness of the independeprezisely, 55.08%, 41.86% and 2.37% of large modeling errors
assumption on the affecting factors of the proposed model. Thigre occurred in those three states, respectively. As shown in
was performed in two ways. One was to examine the effect of thable V (to be discussed later), States 15 and 14 have the largest
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X huo3s j# tuids* ¥+ zhongl* 2= ya3d:#4 xiaol & suanl M young 14% bai 14 Fzi 9 i lian 15% « # lei

B yan2 &) deb*#s tianl Av jial & liangd*®& shidx+ 11 % si 4 7t hua 15% ~ %8 ji 7 & bai 11 4 he 15%

shi2 A jinl A roud*# fangd*— yil 4 fenl — yil 4 long 13 M dan 15%~ £ tu 5 Fer 9 qi 114

B 1i2% yid:F xiad* - jie 1048 geng 13%fo he 14%3# suan 4 % xiang 1

% miand: & feid4*X shi4 ¢z chil* > § maidr— il & i teng 12%4 wei 4 #f cai 15% » s yi 14%4 wei 4
songd — i1%> 3% mol % tsai3ekp¥ tzengd # jiangdrk - #3na 6 4 si 1334 zhi 8 & hu 2 # de 14%% shi 10

it hual 4 jaul & baidr i chul* - ¥ gao 1343 hua 3 % qi 14%% hong 10 46 tuo 15% »

# rangd*#% hai2 F zi15%% youd* s cheng2 & zhang3n % hao 4 — yi 2 # tang 11%& chun 4 @ yu 14%%

# de5% & zid d you2* 7 bud — yi2 & ding4 & yaod¥ meng 3 3% meng 10 & de 15%2F jiao 9 4k wai 14%m

4 hao3w & fengl #F haod: & yudeX » 12 dand JF feil* tian 4 ® ye 9 & feng 13 % guang 15% -

— yi2 %k weid*4z kuang2 & fengl % baod & yudek ;

3% rend # qingl*5 fud & nuds 82 yudF zid% niuds Fig. 6. Example of prosodic state labeling. Herelenotes word boundary.
# de5*3E goud # 112%2 zhil 2 bid % yaod*> 3] bie2 we recognized that it was proper to use the independence as-
16 pad*4X daid i# goul* - sumption in the current syllable duration model.

Lastly, we examined the effectiveness of the duration mod-
eling on the TEL database. The database contained short sen-
tential utterances of 500 speakers. The total number of syllables

Fig. 5. Some examples of tone state labeling. Hedenotes word boundary.

TABLE IV in the database was 42 958. The same training procedure used
THE ESTIMATED CFs FOR7 TONES IN (A) THE MULTIPLICATIVE AND (B) for the MIC database was applied. The number of states was set
ADDITIVE DURATION MODELS to 16. Due to the fact that each speaker only spoke 86 syllables
in average, we neglected the affecting factor of utterance-level
\‘$e\ 1 2 3¢ 4 5 3, 3h speaking rate by setting itSF = 1. The mean of the observed

syllable duration was 25.13 frames (1 fram&0 ms) and the
variance was 66.78 frameAfter modeling, the mean and vari-
ance of the normalized syllable duration was 23.91 frames and

syllable| 1.01 | 1.02 | 1.03 | 1.03 | 0.85 | 0.95 | 0.92
initial | 1.00 | 1.03 | 1.09 | 1.00 | 0.83 | 1.01 | 0.87

final | 1.01 | 1.01 | 1.05)1.04 ] 0.87 | 0.94 | 0.85 1.02 framé and the resulting RMSE was 1.38 frames. These
(@) results were still quite promising even although the speaking

style variation due to the large population of speakers was very

;e 1 2 3¢ 4 5 3 3h high and the accuracy of the observed data due to the automatic

segmentation by the HMM models was not as high as that of
manual segmentation for the MIC database.

syllable| 0.40 | 0.93 1.51 1.49 | -5.50 | -2.11 | -3.68
initial | -0.03 | 0.29 1.70 | 0.09 | -2.77 | -0.90 | -2.49
final | 030 | 0.56 | 1.14 | 1.34 | -3.83 | -2.94 | -3.62 C. An Extension to Initial and Final Duration Modeling

(b) We now extend the above syllable duration modeling to the
duration modeling of two sub-syllable units: initial and final. As

CFs and State 0 has the smallest CF. Moreover, States 15 distussed previously, each Mandarin syllable is composed of an
14 have much larger variances in their syllable duration distoptional consonant initial and a final. The final comprises an op-
butions than all other states. Secondly, by more detailedly ati@mnal medial, a vowel nucleus and an optional nasal ending. The
lyzing large errors occurred in States 15 and 14, we found tlgadal of the current study is to exploit the relationship between
the first two most frequently occurred affecting factor combindhe syllable duration and its component initial and final dura-
tions of (state, tone, base-syllable) are (15, 5, 43) and (14, 4,t®)ns. In this study, both initial and final durations are modeled
But, as excluding the factor that they were mainly resulted from the same way as the above syllable duration modeling.
the two most frequently-used characters “(de)” ('s, of, -ly, an ad- An experiment using the MIC database was conducted to
jectival ending, a prepositional phrase, or a relative) and “(shigt/aluate the performance of the initial and final duration mod-
(is), we found that no preferences of base-syllables or tones weliegs. The experiment was done without considering the null
associated with those large errors. Based on these two obseiniial and the very short initials of {b, d, g} which are generally
tions, we can therefore conclude that most large modeling errdifficult to be segmented accurately. As shown in Table 1i(a),
were occurred in prosodic states with extreme syllable duratitive variances of the observed initial (final) duration were 62.28
and mainly resulted from the large variation in the original syl117.06) and 40.02 (104.15) framéor the training and test
lable duration instead of the independence assumption on thesafts, respectively. Here one frame equals 5 ms. As shown in
fecting factors of the proposed model. From above discussioiiaple lI(b), the variances of the normalized initial (final) dura-
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TABLE V
ESTIMATED CFS FOR16 PROSODICSTATES IN (A) THE MULTIPLICATIVE AND (B) ADDITIVE DURATION MODELS

ge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

syllable| 0.56 | 0.72 | 0.79 | 0.84 | 0.89 | 0.91 | 0.95 | 0.98 | 1.00 | 1.02 | 1.05 | 1.09 | 1.14 | 1.22 | 1.33 | 1.69
initial | 0.30 | 0.49 | 0.63 | 0.71 | 0.80 | 0.85 | 0.86 | 0.89 | 0.96 | 1.00 | 1.04 | 1.09 | 1.12 | 1.19 | 1.30 | 1.61
final | 0.50 | 0.68 | 0.75 | 0.80 | 0.84 | 0.87 | 0.91 | 0.95 | 0.98 | 1.00 | 1.02 | 1.08 | 1.14 | 1.24 | 1.40 | 1.86

@)

ate ol 1| 21 3| 4| s| 6| 7| 8| 9of 10| 11| 12| 13| 14| 15

syllable [-16.07|-12.36| -9.69 | -7.71 | -5.79 | -4.70 | -3.14 | -1.94 | 0 0.12 | 1.69 | 4.10 | 5.87 | 9.65 | 15.08 | 28.74
initial |{-11.20} -6.82 | -6.22 | -4.98 | -3.82 | -3.60 | -2.92 | -2.49 | -1.40 | -0.41 0 0.89 | 1.39 | 3.56 | 6.03 |12.69
final |-14.28|-10.24|-7.94 | -6.45 | -5.15 | -4.24 | -2.99|-1.73 | -0.86 | 0 0.73 | 3.12 | 5.10 | 8.50 | 13.42|25.49

(b)

tions reduced to 0.74 (2.12) and 5.92 (3.40) frammgthe mod- z
eling for the closed and open tests, respectively. The RMSEs 4| .
between the original and estimated initial (final) durations were ~ _
0.97 (1.66) and 2.27 (3.25) frames for the closed and open tests, £ '°
respectively. This shows that good results of reducing the vari- £, |
ance and RMSE were achieved in both modelings of initial and £ * ©
final durations. However, the relatively high variance of the nor- 3 12 :e
malized initial duration in the open test shows that the initial ~ £ .| %®©5
duration is more difficult to model. This may results from the é @®@® e
intrinsic property of high variability in the durations of different Eos} o® @
consonant types. ° 5t

For exploring the relation between syllable duration and b
initial/final duration, we conduct an experiment to set an 0.4 ‘ ‘ ‘ ‘ ‘ ‘ \
additional constraint in the initial/final duration modeling to let MO pending eororsyiabe

the prosodic state of initial/final of a syllable share the same
prosodic state of the syllable labeled by the syllable durati&"?- 7. Relations between the prosodic-state CFs of the initial and final

. . 7. . duration models and those of the syllable duration model.
modeling. We could then modify the training algorithm of the Y

initial/final model to an ML one with all prosodic states bein
predetermined by the training procedure of the syllable mod%;r.gbzlc)tisgsl3_?51%?52 gg&?;ﬂﬁ:lgssgr\?gg gregnets?;;sa’te q
The objective functionto b imized in the ML traini ) .
© objective function fo be maximizedn the raining Wammal (final) durations were 3.61 (3.57) and 4.85 (5.25) frame
N . N .\ for the closed and open tests, respectively. Compared with the
Li(Ai) = ZP(ZnP‘i) + i Z/‘Wtﬂyn'yjn’yln%n —Nu: | previous results shown in Table li(b), the results of shared

n=1 n=1

prosodic state were inferior. This shows that the optimal

(16) prosodic states of both initial and final duration models were
for the initial model and not matched with those of the syllable duration model. The
N mismatch may results from the inconsistency in the effect of
Li(\f) = Zp(zf|/\f) linguistic features on the initial duration and on the final dura-
ot " tion. A previous study [19] found that consonant-lengthening
N can occur at all initial positions especially at the beginning of a
+n¢ <Z M%fn v yjf%f S~ N/Lf) (17) word, while vowel-lengthening can occur only at phrasal final.
n=1

for the final model. HereZ! andZ/ were the observed initial IV. ANALYSES OF CFs

and final durations of syllable, A\; andA ¢, n; andn¢, p1; andp s, For fully understanding the syllable/initial/final duration
7;, and%{ were, respectively, the parameter sets, the Lagrang®dels, we analyzed the resulting CFs in detail. Table Il shows
multiplier, the mean, and the CF of the affecting fagtdor the the CFs of 5 lexical tones for the syllable duration modeling
initial and final duration models:? and ./ were the average using the MIC database. Can be seen from Table Ill that Tone
of Z! andZ} and The ML training algorithm was realized by & has relatively smaller CF. This indicates that the associated
sequential optimization procedure [36]. syllable duration is much shorter than those of the other four
After training, we obtained the variances of the normalizeggular tones. This agrees with our prior linguistic knowledge.
initial (final) duration with shared prosodic states to be 15.38s for the other four tones, their CFs are very close. Roughly
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1.07

speaking, Tone 4 has slightly larger CF and Tone 3 has smaller -
one. OV/G g0

To further exploring the effect of the three Tone 3 patterns 08,/ 03,/
on the syllable/initial/final durations, we examined the exper- ‘”B/ Ng® G g
imental results of duration modeling using 7 tones shown in ? o
Table IV(a). It can be found from the table that the CFs of Tones 038 0 092 121 Q1o

3¢, 35, and3;, are quite different. Ton8; is the longest while
Tone3,, is the shortest. Some examples are displayed in Fig. 5.
It can be found from Fig. 5 that Tor8y tends to appear at the
end of a prosodic phrase and ToBg tends to appear at the
beginning of a word. This observation matches with the prior
linguistic knowledge [23]. It is known that, in Taiwan, ToBg
appears only at sentence (or prosodic phrase) ending and at iso-
lated syllable, while Ton8;, may appear at all other places in
continuous speech.

Table V(a) shows the CFs of 16 prosodic states for the MIC
database. It can be found from Table V(a) that State 15 has the
largest CF while State 0 has the smallest one for all three du-
ration models. Fig. 6 shows an example of prosodic state la-
beling for a part of a Mandarin paragraphic utterance by the EM
training algorithm. From Fig. 6, we find that State 15 usually
associates with the ending syllables of sentences or phrases and
State 0 always associates with intermediate syllables of poly-
syllabic words. Besides, prosodic states with larger CFs tend to
appear at word boundaries while those with smaller CFs tend to
appear at intermediate parts of words or prosodic phrases. The
finding also complies with the prior knowledge of the length-
ening effect for the last syllable of a prosodic phrase or sentence.

We then examined the relationship between the
prosodic-states CFs of the syllable duration model and
those of the initial and final duration models. Fig. 7 dis-
plays the prosodic-state CFs of the initial and final duration
models versus those of the syllable duration model for the
shared-prosodic-state case. Can be seen from Fig. 7 that the
CFs matched well in the three models for all states except the
extreme cases of States 0 and 1 which have the smallest CFs
and of States 13, 14 and 15 which have the largest CFs. At
these extreme cases, final (initial) duration was compressed or
stretched more (less) serious than syllable duration.

We then analyzed the CFs of 411 base-syllables for the three
duration models using a top-down decision tree method. The
method used the following criterion to determine whether anode

(cluster) was to be split into two son nodes (subclusters) bagddd 8- Decision tree analyses of the base-syllable CFs for (a) syliable, (b)
o . initial, and (c) final duration models. The number associated with a node is
on a specific question.

the mean of the CFs of the base-syllables belonging to the cluster. Solid line
Split based on the question with maximym — ps|, indicates positive answer to the question and dashed line indicates negative

if (|41 — po| > Threshold4) and (v > ThresholdB) """
and(n; > ThresholdC') and(n, > Threshold”). Here

(1, v,n), (u1,v1,m1) and (ug,v2,no) are, respectively, The three trees we constructed are displayed in Fig. 8. It can
triples of means, variances and sample counts of the nodée found from the syllable-duration tree, shown in Fig. 8(a),
and the two son nodes split based on a question. that the syllables with initial belonging to {b, d, g} (based on

There were in total 15 questions used in the construction QR) are shorter (averagél’ = 0.86) and syllables with initial
the decision trees for the three models. The question set vi@donging to {f, s, sh, shi, h, ts, ch, chi} (based on Q3 and Q5)
designed to consider: (1) the way of articulation, such as ase generally longer (averagd® = 1.22 and 1.21). Besides,
piration, voiced/unvoiced, stop, and fricative; (2) the phonetiyllables with final being single vowel (based on Q8) are much
structure of Mandarin base-syllables, such as single vowel, coshorter (averag€F = 0.79 and 0.96). In Fig. 8(b), the initial-
pound vowel, with nasal ending, and with medial; and (3) thgturation tree shows that an initial is shorter when it belongs
category of vowel nucleus, such as open vowel. They are listied{b, d, g} (based on Q2) and is longer when it belongs to
in Appendix. {f, s, sh, shi, h, ts, ch, chi} (based on Q3 and Q5). Moreover,
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TABLE VI
CORRELATION COEFFICIENTSBETWEEN THE PRODUCT OF BASE-SYLLABLE
CFs OF UTTERANCE AND SPEAKER AND THE AVERAGE SYLLABLE
DURATION (ASD) FOR THE MIC DATABASE AND ITS TWO SUBSETS

5 A: ASD; B: ASD WiTH TONE COMPENSATED C: ASD WITH TONE
§ 118r AND BASE-SYLLABLE COMPENSATEQ D: ASD WITH TONE,
2 44L BASE-SYLLABLE , AND PROSODIC STATE COMPENSATED
H .
Q 105} * 1 . .
§ * Database Correlation Coefficient
3 1 - * J
*
§°495' e Lt T L A B ¢ D
=)
0.9 . * o MIC 0.48 0.49 0.58 0.981
0.85F * 1 MIC-para | 0.92 0.92 0.93 0.998
0.8 - . v . v
4 50 60 70 80 90 MIC-sent 0.35 0.38 0.5 0.977
Text Length
Fig. 9. Relation between the utterance length (in syllable) and utterance CF. 2.2

an initial becomes longer when it is followed by a final with
single vowel (based on Q8). Lastly, as shown in Fig. 8(c), a
final is shorter when it is a single vowel (based on Q8) or is
preceded by an initial belonging to {ts, ch, chi} (based on Q5).
A final is much longer when the preceding initial is a null one
(based on Q1) and is longer when it contains a medial (based on
Q11). All above observations match with the knowledge of the
phonetic characteristics of Mandarin base-syllables. These trees
can be used to help us making predictions of syllable/initial/final
durations according to the base-syllable type.

We then examined the relationship between the utterance- ®ogf . . . . S —
level speaking speed and utterance length. Fig. 9 displays the °o® 15‘)Spezaolf)ers sch:by:gged w0 A0 e 8
scattering plot of utterance CF versus utterance length (in syl-
lable). It can be found from the figure that the speaking speedéz&f- 10. Relation between the average syllable duration uttered by different
utterances with length shorter than 15 syllables spread widéﬁg/?akers and their speaker CFs.

\évrkg:]eoﬂtr:i;%nfaess{ev: |Eir_1£r%gt<h Ilc;r.19er than 15 syllables tend to ggted. A corr_elation coefficient of 0.977 for the MIC-sent data
We then compared a speaking rate estimate by the propogg was obtained for Scheme D. .
model with a conventional one based on average syllable du- € the_n analyzed the speaker CFs of the syllable duration
ration. The former is the product of utterance CF and speal@?deI tram_ed using the T.EL databage to see whether they were
CF while the latter (referred to as Scheme A) is the average Cmatched with the conventional speaking rate estimate of average

ration of all syllables in the utterance. Correlation coe1‘ficienl%y""’lbIe duration. Fig. 10 shows the speaker CF of the model

of these two estimates for the MIC database and its two sUErSYS speaker-level average syllable duration. Notice that each
eaker spoke about 87 syllables and the speaker-level average

sets, MIC-para and MIC-sent, were calculated and displays%ﬂ . . : .

the second column of Table VI. It can be found from the tab llable dura‘uqns haye been sorted N an increasing order for
that relatively high correlation coefficient of 0.92 was obtaine@®sY observatlor_m Itis clearly shown in F'_g' 10 that the two
for the MIC-para data set while a low value of 0.35 was obtain&?'rves match quite well to each other, even in the extreme cases
for the MIC-sent data set. This shows that the average syllal eVery slow and very fast speeds. We can therefore conclude
duration can be a good estimate of speaking rate only when L tthe_ speaker CFs of th? syIIab]e—duratlon model were effec-
ve estimates of speakers’ speaking rates.

length of the utterance is long. This mainly results from the con- b di . find that th d svi
tent-richness of long utterances to smooth out the influences o rom above discussions, we fin at the proposed Syl-

various affecting factors. To confirm this viewpoint, three othﬁ\qble/mltlallﬂnal models agree well with our general linguistic

----- Awerage Syllable Length
———  Speaker Companding Factor

Speaker Companding Factors & Average Syllable Length

schemes of speaking rate estimation by averaging syllable owledge of Mandarin spgech In many aspects._We can there-
ration with some affecting factor being compensated were alsg® con_clude that the_ dur_at|on modeling method |s_effect|ve.on
tested. They included (1) Scheme B—compensated by the parating confounding influences of several major affecting
for tone; (2) Scheme C—compensated by the CFs for tone aﬁators.
base-syllable; and (3) Scheme D—compensated by the CFs for
tone, base-syllable and prosodic state. The experimental results
are displayed in the 3rd, 4th, and 5th columns of Table VI. We In [19], a number of analyses for segment durations of Man-
find from the table that the value of correlation coefficient indarin speech were performed and used to built additive and mul-
creased significantly when more affecting factors were compdiplicative duration models via computing the estimated intrinsic

V. ADDITIVE DURATION MODEL
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durations of segments and the coefficients of contextual factors. TABLE VI

It reported that the multiplicative model performed, in general, P'STRIBUTION OF PROS?EI'DCASFDADTI';SV EASELDEELEY THE MULTIPLICATIVE
better than the additive model. For performance comparison,

we then extend our study to construct additive model for symul

lable/initial/final duration. By considering the same affecting:b\
factors, we express the model by

2 3 4 5 6 7

(=}
—

0 2879 (3093 122 |1 0 0 0 0
Zn = Xn+ %+ Wt Yt F 0 (A8 fgey |sysa [2506 131 5 [0 [0 o
The model can be trained by the same EM algorithm with (1, 345 (2329 (5093 [2299 |102 |1 0 0
being replaced by (18). The auxiliary function is accordingl
changed to 3 70  |665 (2621 |6432 |2171 |65 0 0
_ N X _ 4 5 157 |514 |2725 {9459 |1984 |31 0
AA) = | Zn, A) 1 Ty Yn| A
QA A) ;yz;lp(i‘/ | %> A)log p(Zn, yn|A) 5 o |7 |36 [220 2080 |11742(3025 |1
al 6 [0 o |0 |2 |15 [695 |16388[2777
+n(Q_ (b + Yo + Yy + Vi + 0, +7s,) = N (19)
n=1 0 0 0 0 0 0 188 9594

With the number of prosodic states being set to 16, the experi-
mental results using the MIC database are shown in Table lI(c).
It can be found from Table li(a) and (c) that the variances of lfeXt
the training (test) data set were greatly reduced from 180.17

(136.26) to 2.53 (3.97) for syllable duration, from 62.28 (40.02) Text Analysis
to 0.78 (1.73) for iniFiaI duration, and from_ 117.06 (104.15) to linguistic features
1.84 (2.85), respectively. The corresponding mean squared er- v
rors between the observed and estimated syllable durations were Regression
1.59 (1.99), 0.89 (1.32), and 1.36 (1.69) for syllable, initial, and
final duration modelings, respectively. Compared with the ex- prosodic state CF
perimental results of multiplicative models shown in Table 11(b), \ 4 normalized duration
the performances of these additive models were slightly better. Duration Model | €

We then examined the results when the number of prosodic and CFs of tone,
states increased. As shown in Figs. 3 and 4, both the variance of lestimated duration base-svllable. utterance
the normalized syllable duration and the RMSE between the ob- v ’
served and estimated syllable durations decreased as the number and speaker

of prosodic states increased. They became saturated when the ) o ) )
prosodic state number equals 16. Fig. 11. Hybrid statistical/regression approach for syllable duration

diction.
The CFs fortone and prosodic states are listed in Tables IVFl:;()e eon
and V(b). By comparing them with those of the multiplicati . . .
(b)- By paring w HpY IVE r TTS is proposed. Fig. 11 shows a block diagram of

models, we found that they are very consistent. A negative (p thod. Instead of directl dicti lable durati
itive) CF in additive model corresponded to a CF with value le € method. Instead of directly predicting syliable duration
fom the input linguistic features by the conventional linear

(greater) than 1 in multiplicative model. Moreover, the distan _ thod. th d thod first estimates th
of a CFin additive modeltozerowasapproximatelyequaltotlﬁsgress_Ion method, the proposed method first estimates the
({830d|c—state CF from the linguistic features by the linear

product of the mean of the observed duration and the distari . . S .
of the corresponding CF in multiplicative model to one, i.e., regression technique. Input linguistic features used include:
1) current word length{1, 2,3, > 3}; 2) current syllable po-
CF,aditive = (CFultiplicative — 1) [z - (20) sition in word: {1st, intermediate, last}; 3) sentence length:
1,[2,5],[6,10],[11, 15],[16, 20], >20}; 4) current syllable po-
ition in sentence: {1st, 2nd 3rd, [4th, 5th], [6th, 7th], [8th,
th],last, 2nd last, 3rd last, [5th last, 4th last], [7th last, 6th
t], [11th last, 8th last], others}; Smaller count number from

Re beginning or ending wins and count from the ending breaks

N X tie; 5) punctuation mark after the current syllable (12 types
be found from the table that the distribution concentrates in the )P y (12 typ

. . : 1); 6 t of h (53t t ized by the S h
vicinity of main diagonal. This shows that the prosodic state Ii’aguog N)CPI% ?ra?vl?/zﬁc M(e an\mﬁz) fﬁ eeg?:r;z?)f bgs eiyllﬁﬁg
belings by these two models were highly consistent. ' ' :

and tone are directly assigned based on the results of text
analysis. The CFs of speaker and utterance are assigned to the
values found by the EM training algorithm to disregard the

A hybrid method incorporating the above duration modeffect of speaking rate. They can also be directly assigned to
into a linear regression method to predict syllable duratianeet the required speaking speed control of TTS in practical

To further examining the consistency of the two modeling a
proaches, we calculate the distribution of the pair of syllab
prosodic states labeled, respectively, by the multiplicative a
additive syllable duration models. Table VII shows the resul[
of the MIC database for the case of 8 prosodic states. It ¢

VI. APPLICATION TO DURATION PREDICTION FORTTS
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TABLE VIII APPENDIX
RMSES OF THEHYBRID METHOD USING MULTIPLICATIVE AND ADDITIVE
MODELS WITH 8 PROSODICSTATES AND THE LINEAR REGRESSIONMETHOD The question set used to construct the decision trees for the
base-syllable CFs of the syllable/initial/final duration models:

RMSEs Closed Test Open Test OL. Null initial?
Hybrid/mul 9.32 11.18 Q2. Initial in {b, d, g}?

. 12.04 Q3. Initial in {f, s, sh, shi, h}?
Hybrid/add 8.80 ' Q4. Initial in {m, n, I, 1}?
Regression 9.37 15.47 Q5. Initial in {ts, ch, chi}?

Q6. Initial in {p, t, k}?
Q7. Initial in {tz, j, ji}?
applications. The normalized syllable duration can be obtained Q8. Single vowel?
by a linear regressive estimation like the prosodic-state CF. But Q9. Compound vowel?
due to the fact that the variances of the normalized syllable Q10. Nasal ending?
duration in both the multiplicative and additive models are  Q11. With medial?
very small, we simply set its value to be its mean. Lastly, all Q12. Open vowel?
these parameters are combined and used in the syllable dura- Q13. Vowel begins with {i}?
tion model to generate the syllable duration estimate. Notice Q14. Vowel begins with {u}?
that the linguistic features used here are extracted from the Qi5. Vowel begins with {iu}?
input text by an automatic word tokenization algorithm with
an 80000-word lexicon.
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