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Abstract—In this paper, a new duration modeling approach for
Mandarin speech is proposed. It explicitly takes several major af-
fecting factors as multiplicative companding factors (CFs) and esti-
mates all model parameters by an EM algorithm. Besides, the three
basic Tone 3 patterns (i.e., full tone, half tone and sandhi tone) are
also properly considered via using three different CFs to separate
their affections on syllable duration. Experimental results showed
that the variance of the syllable duration was greatly reduced from
180.17 to 2.52 frame2 (1 frame =5 ms) by the syllable duration
modeling to eliminate effects from those affecting factors. More-
over, the estimated CFs of those affecting factors agreed well to our
prior linguistic knowledge. Two extensions of the duration mod-
eling method are also performed. One is the use of the same tech-
nique to model initial and final durations. The other is to replace
the multiplicative model with an additive one. Lastly, a preliminary
study of applying the proposed model to predict syllable duration
for TTS is also performed. Experimental results showed that it out-
performed the conventional regressive prediction method.

Index Terms—Duration modeling, Mandarin, text-to-speech.

I. INTRODUCTION

PROSODY refers to aspects of the speech signal other
than the actual words spoken, such as timing and funda-

mental frequency pattern, and plays an important role in the
disambiguation of discourse structure. Speakers use prosody
to convey emphasis, intent, attitude, and to provide cues to
aid listeners in the interpretation of their speech. Researchers
have noticed that fluent spoken speech is not produced in
a smooth, unvarying stream. Rather, speech has perceptible
breaks, relatively stronger and weaker, as well as longer and
shorter syllables. Without prosody, speech would be flat and
toneless and would sound tedious, unpleasant, or even barely
intelligible. Although it is known that prosody can be affected
by many factors such as sentence type, syntactical structure,
semantics and emotional state of speaker, the relationships
between prosodic features and those affecting factors are
not totally understood. Indeed, the lack of a general con-
sensus in these areas is the main reason why prosody was
still under-utilized in spoken language processing nowadays.
Prosodic modeling is therefore important and urgent in speech
processing.

In this paper, we concentrate our study on one important
issue of prosodic modeling—duration modeling. Duration
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modeling is important in both automatic speech recognition
(ASR) [1]–[4] and text-to-speech (TTS) [5]–[10]. In ASR,
state duration models are usually constructed to assist in the
HMM-based speech recognition. In TTS, synthesis of proper
duration information is essential for generating a highly natural
synthetic speech. A precise duration model is surely helpful
for improving the performance of ASR as well as for making
synthesized speech more natural in TTS.

In the past, durational characteristics of speech in various
languages have been the subject of many recent researches.
Many factors have been shown to have major effects on
influencing segmental duration [11], [12]. The general goal
of duration modeling is to find a computational relation
between a set of affecting factors and the segment duration.
Related literatures concerned with the finding of perceptual
cues, with the development of duration-generating rules for
synthesizing intelligible and natural-sounding speech, and with
the automatic duration analysis for speech recognition, speech
understanding and word finding. They can be categorized into
two approaches: rule-based and data-driven. The former is a
conventional one which uses linguistic expertise to manually
infer some phonologic rules of duration generation based on
observations on a large set of utterances. A prevalent method
of the approach for TTS uses sequential rules to initially assign
the duration of a segment with an intrinsic value, and then
successively applies rules to modify it [5], [6]. Three main
disadvantages of the approach can be found. First, manually
exploring the effect of mutual interactions among linguistic
features of different levels is highly complex. Second, the
rule-inference process usually involves a controlled experi-
ment, in which only a limited number of contextual factors is
examined. The resulting inferred rules may therefore not be
general enough for unlimited texts. Third, the rule-inference
process is cumbersome. As a result, it is generally very difficult
to collect enough rules without long-term devotion to the task.

The data-driven approach tries to construct a duration model
from a large speech corpus, usually with the aid of statistical
methods or artificial neural network (ANN) techniques. It first
designs a computational model to describe the relationship
between the segment duration and some affecting factors, and
then trains the model on the speech corpus. The training goal
is to automatically deduct phonologic rules from the speech
corpus and implicitly memorize them in the model’s parameters
or ANNs weights. The primary advantage of this approach
is that the rules can be automatically established from the
training data set during the training process without the help
of linguistic experts. Two popular methods of the approach
are the decision tree-based [13] and multilayer perceptrons
(MLP)-based methods [10]. The former uses a decision tree to
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classify the segmental durations into some clusters according
to their relationships with some linguistic features. The latter
uses an MLP to learn the mapping between the segmental
duration and some linguistic features. Combining these two
methods by cascading regression tree and neural network was
also proposed [14]. Criticisms raised against these two methods
are the insufficient accuracy of duration prediction in the case of
the decision tree-based method, and the difficulty in interpreting
the hidden structure of the model learned in the MLP-based
method.

Another popular method of the data-driven approach uses
regression analysis to model the relationship between the
segmental duration and some linguistic features. Regression
methods in the linear or logarithmic domain [15], [16], or based
on a sigmoid transformation function [17] can be used. The
sums-of-products (SOP) method is based on multiple linear
regression and is supervised on the basis of linguistic knowl-
edge [18]–[20]. A piecewise linear transformation in the SOP
method was proposed to expand the durations at two ends of
duration range [21]. In [22], a computation-intensive algorithm,
called “Multivariate Adaptive Regression Splines” (MARS),
was used to estimate general functions of high-dimensional
arguments given sparse data.

For the duration modeling in Mandarin speech, there are
still quite few studies. The lack of an appropriate prosodic
model is the major problem encountered. In this paper, we
propose a statistical model for Mandarin syllable duration
via considering some major affecting factors. Our goal is to
deconfound the effects of these affecting factors so as to better
understanding the mechanism of syllable duration generation in
Mandarin speech. The affecting factors we considered include
speaker-level speaking rate, utterance-level speaking rate,
syllabic tone, base-syllable, and prosodic state. Here prosodic
state is conceptually defined as the state in a prosodic phrase
and is introduced to account for all other affecting factors, that
are not covered by the former four factors, including word-level
and syntactic-level linguistic cues.

We will also consider the affecting factor of Tone 3 in more
detail. In natural Mandarin speech, Tone 3 can be pronounced
in three basic patterns: falling-rising, low-falling, and middle-
rising. The first one is a full tone and usually appears at the end
of a word or a prosodic phrase. It usually pronounced slightly
longer than the other three regular tones (i.e., Tone 1, Tone 2,
and Tone 4) [23]. The second one is a half tone and is always
pronounced shorter [23]. The third one sounds like Tone 2 and
is resulted from the well-known sandhi rules of changing a Tone
3 to Tone 2 when it precedes another Tone 3. Due to the fact that
these three Tone 3 patterns are different in their durations, we
will consider them as three different tone affecting factors.

The paper is organized as follows. Section II discusses the
proposed multiplicative syllable duration model of Mandarin
speech in details. Section III describes the experimental results
of the syllable duration modeling study on two databases. An
extension to include the modelings of initial and final durations
is also made. Detailed analyses of the influences of these five
affecting factors are given in Section IV. In Section V, an
additive duration model is introduced and compared with the
multiplicative model. An application of using these two models
in syllable duration prediction for Mandarin TTS is presented

in Section VI. Conclusions and future works are given in
Section VII.

II. PROPOSEDSYLLABLE DURATION MODEL

In duration modeling, the desired modeling units can be
speech segments like HMM states, phones, initials, finals, sylla-
bles or even words. Since Mandarin is a tonal and syllable-based
language, syllable is the basic pronunciation unit. We therefore
choose syllable duration as the modeling unit to start our study.
An extension to additionally model initial and final durations is
included in Section III. The proposed syllable duration model
is designed based on the idea of taking each affecting factor as
a multiplicative companding (compressing-expanding) factor
(CF) to control the compression and stretch of the syllable
duration. A parallel modeling approach using additive CF will
also be discussed in Section V. In the following, we discuss
the affecting factors used, the multiplicative syllable duration
model, and the method of estimating the model parameters in
detail.

A. Affecting Factors

In naturally spoken Mandarin Chinese, syllable duration
varies considerably depending on various linguistic and non-
linguistic factors. In this study, five major affecting factors
including tone, base-syllable, speaker-level speaking rate,
utterance-level speaking rate, and prosodic state are considered.
In the following, we discuss their effects on influencing syllable
duration.

Mandarin Chinese is a tonal and syllable-based language.
Syllable is the basic pronunciation unit. Each character is pro-
nounced as a syllable. There exist only about 1300 phonetically
distinguishable syllables comprising the set of all legal combi-
nations of 411 base-syllables and five tones. Tonality of a syl-
lable is characterized by its pitch contour shape, loudness and
duration. This means the tone of a syllable will affect its du-
ration. We therefore consider tone as an affecting factor. One
obvious phenomenon to show the affection of tone on syllable
duration is that syllables with Tone 5 are always pronounced
much shorter. Besides, Tone 3 can be pronounced in three basic
patterns of falling-rising (full tone), low-falling (half tone), and
middle-rising (sandhi tone) which are of different durations.

Syllable duration is also seriously affected by the phonetic
structure of base-syllables. Mandarin base-syllables have very
regular phonetic structure. Each base-syllable is composed of
an optional consonant initial and a final. The final can be fur-
ther decomposed into an optional medial, a vowel nucleus, and
an optional nasal ending. So base-syllables comprise one to four
phonemes. Generally speaking, syllable duration increases as
the number of constituent phonemes increases. Syllables with
single vowels are shortest. Syllables with stop initials or no ini-
tials, and without nasal endings are pronounced shorter. Sylla-
bles with fricative initials and with nasal endings are longer.

Aside from syllable-based features, other high-level lin-
guistic features, such as word-level and syntactic-level features,
can also affect the syllable duration seriously. In this study, we
use prosodic state to account for the influences of high-level
linguistic features. Here, prosodic state is conceptually defined
as the state in a prosodic phrase. Syllable duration varies in
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different part of a prosodic phrase. The lengthening effect for
the last syllable of a prosodic phrase is a well-known example.
The reasons of using prosodic state to replace high-level
linguistic features are three-folded. Firstly, durational infor-
mation is a kind of prosodic feature so that syllable duration
should match better to the prosodic phrase structure than to
the syntactic phrase structure. Secondly, it is still difficult
to automatically extract syntactic-level linguistic cues from
unlimited natural Chinese texts. Thirdly, by this approach we
can isolate the duration modeling study from the difficult task
of syntactic analysis. The main disadvantage of using prosodic
state is the lack of large speech corpora with prosodic tags
being properly labeled. So we must treat the prosodic state of
a syllable as hidden or unknown. Fortunately, we can solve
the problem by the expectation-maximization (EM) algorithm
which is a general methodology for maximum likelihood (ML)
or maximum a posteriori (MAP) estimation from incomplete
data. Substantial literatures have been devoted to the study of
the EM algorithm and found that it is generally a first-order
or linearly convergent algorithm [24]–[26]. A by-product
of the approach is the automatic determination of prosodic
states for all syllables in the training set. This is an additional
advantage because prosodic labeling has become an interesting
research topic recently [27]–[34] and such kind of prosodic
information provides cues for resolving syntactic ambiguity in
automatic speech understanding [29]–[32] and for improving
the naturalness of TTS [33], [34].

Syllable duration will also be affected by the speaking rate.
Natural speech is not always spoken in a constant speed. A
speaker usually speaks using his familiar speed. But he can
change the speed from time to time. In order to account for this
impact upon the statistical syllable duration model, we consider
two types of speaking rates, speaker-level and utterance-level,
in this study.

B. Syllable Duration Model

The model is constructed based on the assumption that the
effects of all affecting factors are combined multiplicatively [19]
and is expressed by

(1)

where and are, respectively, the observed and normal-
ized durations of the th syllable; is the CF of the affecting
factor ; , , , and represent respectively the lexical
tone, prosodic state, base-syllable, utterance, and speaker of the

th syllable; and is modeled as a normal distribution with
mean and variance . Notice that prosodic state represents
the state in a prosodic phrase and is treated as hidden. In Man-
darin, there are 5 lexical tones and 411 base-syllables. If consid-
ering the three Tone 3 patterns of falling-rising, middle-rising
and low-falling, we increase the number of tones to 7.

C. Training of the Model

To estimate the parameters of the model, an EM algorithm
[35] based on the ML criterion is adopted. The EM algorithm
is derived based on incomplete training data with prosodic state
being treated as hidden or unknown. In the following, we discuss
it in more detail.

To illustrate the EM algorithm, an auxiliary function is firstly
defined in the expectation step (E-step) as

(2)

where is the total number of training samples,is the total
number of prosodic states, and are
conditional probabilities, is the set
of parameters to be estimated, andand are, respectively, the
new and old parameter sets. Based on the assumption that the
normalized duration is normally distributed,
can be derived from the assumed model given in (1) and
expressed by

(3)

where denotes a normal distribution ofwith mean
and variance . Similarly, can be expressed by

(4)

Then, sequential optimizations of these parameters can be per-
formed in the maximization step (M-step).

A drawback of the above EM algorithm is that it may result
in a nonunique solution because of the use of multiplicative af-
fecting factors. This is obvious because, if we scale up an af-
fecting factor and scale down another by the same value, the
same objective value will be reached. To cure the drawback,
we modify each optimization procedure in the M-step to a con-
strained optimization one via introducing a global duration con-
straint. The auxiliary function then changes to

(5)

where is the average of and is a Lagrange multiplier.
The constrained optimization is finally solved by the Newton-
Raphson method.

To execute the EM algorithm, initializations of the parameter
set are needed. This can be done by estimating each individual
parameter independently. Specifically, the initial CF for a spe-
cific value of an affecting factor is assigned to be the ratio of the
duration mean of syllables with the affecting factor equaling the
value to the duration mean of all syllables. Notice that, in the
initializations of CFs for prosodic state, each syllable is pre-as-
signed a prosodic state by quantizing its duration. After initial-
ization, all parameters are sequentially updated in each iterative
step. Iterations are continued until a convergence is reached. The
prosodic state can finally be assigned by

(6)
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The procedure of the EM algorithm is summarized below.

1) Compute initial values of by indepen-
dently estimate each individual param-
eter from the training set.

2) Do for each iteration :

a) Update .
b) E-step: Use (3)–(5) to calculate

.
c) M-step: Find optimal by

(7)

d) Termination test: If
or stop, where

(8)

is the total log-likelihood for
iteration and is the maximum
number of iterations.

3) Assign prosodic states by using (6) .

D. Modeling of Tone 3

We now extend the model to additionally consider the affec-
tions of the three Tone 3 patterns of falling-rising, middle-rising
and low-falling. In this study, these three patterns are simply de-
noted as Tone , Tone , and Tone , and three separate CFs
are used to account their affections on the syllable duration. The
EM algorithm is then modified for parameter estimation. In ini-
tialization, we first assign all lexical Tone 3 to Tone when
they precedes other lexical Tone 3, and then use VQ to divide
all others lexical Tone 3 into two clusters of Toneand Tone

. Besides, at the end of each iteration, syllables with lexical
Tone 3 are re-assigned to one of these three patterns by

(9)

for , where is the conditional
probability of a Tone 3 pattern.

E. Testing of the Model

Although we have gotten CFs of all affecting factors from the
above training procedure, some information is still not known
in the testing phase. It includes the CFs of both speaker-
and utterance-level speaking rates, the prosodic state of each
syllable, and the tone pattern of a syllable with Tone 3. The
following testing procedure is therefore set to estimate these
unknown parameters:

1) Initialization:

a) Fix the CFs for tone, base-syl-
lable and prosodic state, and the
mean and variance of the normalized
syllable duration to the trained
values and form a parameter set

b) Compute the initial values of the
parameter set, , needed to
be determined in Step 2.

2) Do for each iteration :

a) Update
b) E-step: calculate

(10)
c) M-step: Find optimal by

(11)

d) Termination test: If
or stop, where

(12)

is the total log-likelihood for
iteration and is the maximum
number of iterations.

3) Assign prosodic state and Tone 3 pat-
tern by

(13)

(14)

for .

After performing the above procedure, we can get the CFs
of each testing utterance and speaker, the prosodic state of each
syllable, the tone pattern of each syllable with Tone 3, and the
normalized duration of each syllable.

III. EXPERIMENTAL RESULTS

A. Databases

Effectiveness of the proposed syllable duration modeling
method was examined by simulations on two databases. The
first one is a high-quality, reading style microphone-speech
database recorded in a sound-proof booth. It is referred to as the
MIC database. It was generated by five native Chinese speakers
including two males and three females. Among these five
speakers, two of them were professional radio announcers. The
database consisted of two data sets. One (MIC-sent) contained
sentential utterances with texts belonging to a well-designed,
phonetic-balanced corpus of 455 sentences. The lengths of
these sentences ranged from 3 to 75 syllables with an average
of 13 syllables. The other (MIC-para) contained paragraphic
utterances with texts belonging to a corpus of 300 paragraphs
which covered a wide range of topics including news, primary
school textbooks, literature, essays, etc. The lengths of these
paragraphs ranged from 24 to 529 syllables with an average of
170 syllables. The MIC database was divided into two parts:
a training set and a test set. Table I shows some statistics of
the MIC database. The training set contained, in total, 98 620
syllables and the test set contained 20 717 syllables. The mean
(unit in frame) and variance (unit in frame) of syllable duration
for the training and test sets are shown in Table II(a). Here one
frame equals 5 ms.
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TABLE I
STATISTICS OF THEMIC SPEECHCORPUS

TABLE II
STATISTICS OF(A) THE OBSERVEDDURATIONS IN THE MIC DATABASE, AND

THE NORMALIZED DURATIONS OBTAINED IN (B) THE MULTIPLICATIVE AND

(C) ADDITIVE MODELS WITH 16 PROSODICSTATES. (UNITS: MEAN AND

RMSEIN FRAME AND VARIANCE IN frame ; 1 FRAME =5 ms)

(a)

(b)

(c)

After recording, all speech signals of the MIC database were
converted into 16-bit data at 20-kHz sampling rate. They were
then manually segmented into sub-syllables of initial and final.
The associated texts were transcribed automatically by a lin-
guistic processor with an 80 000-word lexicon. All transcription
errors were manually corrected.

The second database is a 500-speaker, telephone-speech data
set which is a subset of MAT-2000 provided by the Associa-
tion of Computational Linguistics and Chinese Language Pro-
cessing. It is referred to as the TEL database. It was collected

Fig. 1. Plot of total log-likelihood versus iteration number.

from calls through public telephone networks in Taiwan. All
speech signals were digitally recorded with a form of 8-kHz,
16-bit data. It contained phonetically balanced, short sentential
utterances in reading style. All speech signals were automati-
cally segmented using a set of 100-initial and 39-final HMM
models.

B. Experimental Results of Syllable Duration Modeling

We first examined the effect of syllable duration modeling
using the MIC database with the number of prosodic states
being set to 16. Table II(b) shows the experimental results. It
can be seen from the third and sixth columns of Table II(b) that
the variances of the normalized syllable duration were 2.52
and 4.44 frame for the closed and open tests, respectively.
Compared with the corresponding values shown in Table II(a),
the variances of syllable duration shown in Table II(b) were
greatly reduced after compensating the effects of these five
affecting factors on the observed one. We also find from the
fourth and seventh columns of Table II(b) that the root mean
squared errors (RMSEs) between the observed and normalized
syllable durations were 1.93 and 3.41 frames for the closed
and open tests. Notice that the estimated syllable duration was
obtained based on assigning the best prosodic state to each
syllable using (6). Fig. 1 shows the plot of total log-likelihood

versus iteration number. It can be found from Fig. 1
that the EM algorithm converges quickly in the first several
iterations. The histograms of the observed and normalized
syllable durations for the training set are plotted in Fig. 2.
Can be seen from these two figures that the assumptions of
Gaussian distribution for these two types of syllable duration
are reasonable. From above discussions we can conclude that
the proposed syllable duration modeling method is a promising
one.

We then examined the case when the number of prosodic
states changes. The resulting variances of the normalized syl-
lable duration are shown in Fig. 3. It can be found from the figure
that the variance of the normalized syllable duration decreased
as the number of prosodic state increased. This shows that the
syllable duration modeling was more precise as the number of
prosodic states increased. The improvement became saturated
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(a)

(b)

Fig. 2. Histograms of (a) the observed syllable duration and (b) the normalized
one obtained by the multiplicative model for the training set.

Fig. 3. Relations between the state number and the variance of the normalized
syllable duration of multiplicative/additive model for the training and test sets.

when the number of prosodic states equaled 16. Similar find-
ings can be observed for the corresponding RMSEs shown in
Fig. 4.

We then inspected the appropriateness of the independence
assumption on the affecting factors of the proposed model. This
was performed in two ways. One was to examine the effect of the

Fig. 4. Relations between the state number and the RMSE of the
multiplicative/additive syllable duration models for the training and test sets.

TABLE III
THE ESTIMATED CFS FOR5 LEXICAL TONES IN THEMULTIPLICATIVE MODEL

interaction of two affecting factors and another was to analyze
large modeling errors. The former was to evaluate the gain of
relaxing the independence assumption by considering the com-
bination of two affecting factors while the latter was to check
whether large modeling errors were resulted from the indepen-
dence assumption. To consider the interaction of two affecting
factors, we used one CF for each pair of all possible combina-
tions of the two affecting factors. This will improve the accuracy
of the model with the paid of increasing the number of model’s
parameters. Due to the facts that speaker and utterance speaking
rates are global normalization factors and prosodic states are
hidden and realized in a probabilistic form, we only considered
the combination of the base-syllable and tone for simplicity. The
syllable duration model was then modified to

(15)

where was the CF for the syllable with toneand base-syl-
lable . Here, we only considered the case of 5 lexical tones and
8 prosodic states. The resulting variance and RMSE of the modi-
fied model were 4.67 frameand 2.42 frame, respectively. Com-
pared with the results of 4.73 frameand 2.47 frame obtained
by the original model, the improvements were negligible. So the
two affecting factors of base-syllable and tone could be indepen-
dently considered. To analyze large modeling errors, we first
identified the syllables with absolute modeling errors located
in extreme 5 percentile of error distribution, and then checked
the associating affecting factors. Here we considered the case of
7 tones and 16 prosodic states. Some observations were found
from the error analysis. Firstly, most large errors were occurred
in States 15 and 14 and some were occurred in State 0. More
precisely, 55.08%, 41.86% and 2.37% of large modeling errors
were occurred in those three states, respectively. As shown in
Table V (to be discussed later), States 15 and 14 have the largest
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Fig. 5. Some examples of tone state labeling. Here� denotes word boundary.

TABLE IV
THE ESTIMATED CFS FOR7 TONES IN (A) THE MULTIPLICATIVE AND (B)

ADDITIVE DURATION MODELS

(a)

(b)

CFs and State 0 has the smallest CF. Moreover, States 15 and
14 have much larger variances in their syllable duration distri-
butions than all other states. Secondly, by more detailedly ana-
lyzing large errors occurred in States 15 and 14, we found that
the first two most frequently occurred affecting factor combina-
tions of (state, tone, base-syllable) are (15, 5, 43) and (14, 4, 3).
But, as excluding the factor that they were mainly resulted from
the two most frequently-used characters “(de)” (’s, of, -ly, an ad-
jectival ending, a prepositional phrase, or a relative) and “(shi)”
(is), we found that no preferences of base-syllables or tones were
associated with those large errors. Based on these two observa-
tions, we can therefore conclude that most large modeling errors
were occurred in prosodic states with extreme syllable duration
and mainly resulted from the large variation in the original syl-
lable duration instead of the independence assumption on the af-
fecting factors of the proposed model. From above discussions,

Fig. 6. Example of prosodic state labeling. Here,� denotes word boundary.

we recognized that it was proper to use the independence as-
sumption in the current syllable duration model.

Lastly, we examined the effectiveness of the duration mod-
eling on the TEL database. The database contained short sen-
tential utterances of 500 speakers. The total number of syllables
in the database was 42 958. The same training procedure used
for the MIC database was applied. The number of states was set
to 16. Due to the fact that each speaker only spoke 86 syllables
in average, we neglected the affecting factor of utterance-level
speaking rate by setting its . The mean of the observed
syllable duration was 25.13 frames (1 frame10 ms) and the
variance was 66.78 frame. After modeling, the mean and vari-
ance of the normalized syllable duration was 23.91 frames and
1.02 frame and the resulting RMSE was 1.38 frames. These
results were still quite promising even although the speaking
style variation due to the large population of speakers was very
high and the accuracy of the observed data due to the automatic
segmentation by the HMM models was not as high as that of
manual segmentation for the MIC database.

C. An Extension to Initial and Final Duration Modeling

We now extend the above syllable duration modeling to the
duration modeling of two sub-syllable units: initial and final. As
discussed previously, each Mandarin syllable is composed of an
optional consonant initial and a final. The final comprises an op-
tional medial, a vowel nucleus and an optional nasal ending. The
goal of the current study is to exploit the relationship between
the syllable duration and its component initial and final dura-
tions. In this study, both initial and final durations are modeled
in the same way as the above syllable duration modeling.

An experiment using the MIC database was conducted to
evaluate the performance of the initial and final duration mod-
elings. The experiment was done without considering the null
initial and the very short initials of {b, d, g} which are generally
difficult to be segmented accurately. As shown in Table II(a),
the variances of the observed initial (final) duration were 62.28
(117.06) and 40.02 (104.15) framefor the training and test
sets, respectively. Here one frame equals 5 ms. As shown in
Table II(b), the variances of the normalized initial (final) dura-
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TABLE V
ESTIMATED CFS FOR16 PROSODICSTATES IN (A) THE MULTIPLICATIVE AND (B) ADDITIVE DURATION MODELS

(a)

(b)

tions reduced to 0.74 (2.12) and 5.92 (3.40) frameby the mod-
eling for the closed and open tests, respectively. The RMSEs
between the original and estimated initial (final) durations were
0.97 (1.66) and 2.27 (3.25) frames for the closed and open tests,
respectively. This shows that good results of reducing the vari-
ance and RMSE were achieved in both modelings of initial and
final durations. However, the relatively high variance of the nor-
malized initial duration in the open test shows that the initial
duration is more difficult to model. This may results from the
intrinsic property of high variability in the durations of different
consonant types.

For exploring the relation between syllable duration and
initial/final duration, we conduct an experiment to set an
additional constraint in the initial/final duration modeling to let
the prosodic state of initial/final of a syllable share the same
prosodic state of the syllable labeled by the syllable duration
modeling. We could then modify the training algorithm of the
initial/final model to an ML one with all prosodic states being
predetermined by the training procedure of the syllable model.
The objective function to be maximized in the ML training was

(16)

for the initial model and

(17)

for the final model. Here and were the observed initial
and final durations of syllable, and , and , and ,

, and were, respectively, the parameter sets, the Lagrange
multiplier, the mean, and the CF of the affecting factorfor the
initial and final duration models. and were the average
of and and The ML training algorithm was realized by a
sequential optimization procedure [36].

After training, we obtained the variances of the normalized
initial (final) duration with shared prosodic states to be 15.39

Fig. 7. Relations between the prosodic-state CFs of the initial and final
duration models and those of the syllable duration model.

(14.01) and 38.76 (29.82) framefor the closed and open tests,
respectively. The RMSEs between the observed and estimated
initial (final) durations were 3.61 (3.57) and 4.85 (5.25) frame
for the closed and open tests, respectively. Compared with the
previous results shown in Table II(b), the results of shared
prosodic state were inferior. This shows that the optimal
prosodic states of both initial and final duration models were
not matched with those of the syllable duration model. The
mismatch may results from the inconsistency in the effect of
linguistic features on the initial duration and on the final dura-
tion. A previous study [19] found that consonant-lengthening
can occur at all initial positions especially at the beginning of a
word, while vowel-lengthening can occur only at phrasal final.

IV. A NALYSES OFCFS

For fully understanding the syllable/initial/final duration
models, we analyzed the resulting CFs in detail. Table III shows
the CFs of 5 lexical tones for the syllable duration modeling
using the MIC database. Can be seen from Table III that Tone
5 has relatively smaller CF. This indicates that the associated
syllable duration is much shorter than those of the other four
regular tones. This agrees with our prior linguistic knowledge.
As for the other four tones, their CFs are very close. Roughly
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speaking, Tone 4 has slightly larger CF and Tone 3 has smaller
one.

To further exploring the effect of the three Tone 3 patterns
on the syllable/initial/final durations, we examined the exper-
imental results of duration modeling using 7 tones shown in
Table IV(a). It can be found from the table that the CFs of Tones

, , and are quite different. Tone is the longest while
Tone is the shortest. Some examples are displayed in Fig. 5.
It can be found from Fig. 5 that Tone tends to appear at the
end of a prosodic phrase and Tone tends to appear at the
beginning of a word. This observation matches with the prior
linguistic knowledge [23]. It is known that, in Taiwan, Tone
appears only at sentence (or prosodic phrase) ending and at iso-
lated syllable, while Tone may appear at all other places in
continuous speech.

Table V(a) shows the CFs of 16 prosodic states for the MIC
database. It can be found from Table V(a) that State 15 has the
largest CF while State 0 has the smallest one for all three du-
ration models. Fig. 6 shows an example of prosodic state la-
beling for a part of a Mandarin paragraphic utterance by the EM
training algorithm. From Fig. 6, we find that State 15 usually
associates with the ending syllables of sentences or phrases and
State 0 always associates with intermediate syllables of poly-
syllabic words. Besides, prosodic states with larger CFs tend to
appear at word boundaries while those with smaller CFs tend to
appear at intermediate parts of words or prosodic phrases. The
finding also complies with the prior knowledge of the length-
ening effect for the last syllable of a prosodic phrase or sentence.

We then examined the relationship between the
prosodic-states CFs of the syllable duration model and
those of the initial and final duration models. Fig. 7 dis-
plays the prosodic-state CFs of the initial and final duration
models versus those of the syllable duration model for the
shared-prosodic-state case. Can be seen from Fig. 7 that the
CFs matched well in the three models for all states except the
extreme cases of States 0 and 1 which have the smallest CFs
and of States 13, 14 and 15 which have the largest CFs. At
these extreme cases, final (initial) duration was compressed or
stretched more (less) serious than syllable duration.

We then analyzed the CFs of 411 base-syllables for the three
duration models using a top-down decision tree method. The
method used the following criterion to determine whether a node
(cluster) was to be split into two son nodes (subclusters) based
on a specific question.

Split based on the question with maximum ,
if Threshold and Threshold
and Threshold and Threshold . Here

, and are, respectively,
triples of means, variances and sample counts of the node
and the two son nodes split based on a question.
There were in total 15 questions used in the construction of

the decision trees for the three models. The question set was
designed to consider: (1) the way of articulation, such as as-
piration, voiced/unvoiced, stop, and fricative; (2) the phonetic
structure of Mandarin base-syllables, such as single vowel, com-
pound vowel, with nasal ending, and with medial; and (3) the
category of vowel nucleus, such as open vowel. They are listed
in Appendix.

(a)

(b)

(c)

Fig. 8. Decision tree analyses of the base-syllable CFs for (a) syllable, (b)
initial, and (c) final duration models. The number associated with a node is
the mean of the CFs of the base-syllables belonging to the cluster. Solid line
indicates positive answer to the question and dashed line indicates negative
answer.

The three trees we constructed are displayed in Fig. 8. It can
be found from the syllable-duration tree, shown in Fig. 8(a),
that the syllables with initial belonging to {b, d, g} (based on
Q2) are shorter (average ) and syllables with initial
belonging to {f, s, sh, shi, h, ts, ch, chi} (based on Q3 and Q5)
are generally longer (average and 1.21). Besides,
syllables with final being single vowel (based on Q8) are much
shorter (average and 0.96). In Fig. 8(b), the initial-
duration tree shows that an initial is shorter when it belongs
to {b, d, g} (based on Q2) and is longer when it belongs to
{f, s, sh, shi, h, ts, ch, chi} (based on Q3 and Q5). Moreover,
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Fig. 9. Relation between the utterance length (in syllable) and utterance CF.

an initial becomes longer when it is followed by a final with
single vowel (based on Q8). Lastly, as shown in Fig. 8(c), a
final is shorter when it is a single vowel (based on Q8) or is
preceded by an initial belonging to {ts, ch, chi} (based on Q5).
A final is much longer when the preceding initial is a null one
(based on Q1) and is longer when it contains a medial (based on
Q11). All above observations match with the knowledge of the
phonetic characteristics of Mandarin base-syllables. These trees
can be used to help us making predictions of syllable/initial/final
durations according to the base-syllable type.

We then examined the relationship between the utterance-
level speaking speed and utterance length. Fig. 9 displays the
scattering plot of utterance CF versus utterance length (in syl-
lable). It can be found from the figure that the speaking speeds of
utterances with length shorter than 15 syllables spread widely,
while utterances with length longer than 15 syllables tend to be
pronounced faster (i.e., ).

We then compared a speaking rate estimate by the proposed
model with a conventional one based on average syllable du-
ration. The former is the product of utterance CF and speaker
CF while the latter (referred to as Scheme A) is the average du-
ration of all syllables in the utterance. Correlation coefficients
of these two estimates for the MIC database and its two sub-
sets, MIC-para and MIC-sent, were calculated and displays in
the second column of Table VI. It can be found from the table
that relatively high correlation coefficient of 0.92 was obtained
for the MIC-para data set while a low value of 0.35 was obtained
for the MIC-sent data set. This shows that the average syllable
duration can be a good estimate of speaking rate only when the
length of the utterance is long. This mainly results from the con-
tent-richness of long utterances to smooth out the influences of
various affecting factors. To confirm this viewpoint, three other
schemes of speaking rate estimation by averaging syllable du-
ration with some affecting factor being compensated were also
tested. They included (1) Scheme B—compensated by the CFs
for tone; (2) Scheme C—compensated by the CFs for tone and
base-syllable; and (3) Scheme D—compensated by the CFs for
tone, base-syllable and prosodic state. The experimental results
are displayed in the 3rd, 4th, and 5th columns of Table VI. We
find from the table that the value of correlation coefficient in-
creased significantly when more affecting factors were compen-

TABLE VI
CORRELATION COEFFICIENTSBETWEEN THEPRODUCT OFBASE-SYLLABLE

CFS OF UTTERANCE AND SPEAKER AND THE AVERAGE SYLLABLE

DURATION (ASD) FOR THE MIC DATABASE AND ITS TWO SUBSETS.
A: ASD; B: ASD WITH TONE COMPENSATED; C: ASD WITH TONE

AND BASE-SYLLABLE COMPENSATED; D: ASD WITH TONE,
BASE-SYLLABLE , AND PROSODICSTATE COMPENSATED

Fig. 10. Relation between the average syllable duration uttered by different
speakers and their speaker CFs.

sated. A correlation coefficient of 0.977 for the MIC-sent data
set was obtained for Scheme D.

We then analyzed the speaker CFs of the syllable duration
model trained using the TEL database to see whether they were
matched with the conventional speaking rate estimate of average
syllable duration. Fig. 10 shows the speaker CF of the model
versus speaker-level average syllable duration. Notice that each
speaker spoke about 87 syllables and the speaker-level average
syllable durations have been sorted in an increasing order for
easy observation. It is clearly shown in Fig. 10 that the two
curves match quite well to each other, even in the extreme cases
of very slow and very fast speeds. We can therefore conclude
that the speaker CFs of the syllable-duration model were effec-
tive estimates of speakers’ speaking rates.

From above discussions, we find that the proposed syl-
lable/initial/final models agree well with our general linguistic
knowledge of Mandarin speech in many aspects. We can there-
fore conclude that the duration modeling method is effective on
separating confounding influences of several major affecting
factors.

V. ADDITIVE DURATION MODEL

In [19], a number of analyses for segment durations of Man-
darin speech were performed and used to built additive and mul-
tiplicative duration models via computing the estimated intrinsic
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durations of segments and the coefficients of contextual factors.
It reported that the multiplicative model performed, in general,
better than the additive model. For performance comparison,
we then extend our study to construct additive model for syl-
lable/initial/final duration. By considering the same affecting
factors, we express the model by

(18)

The model can be trained by the same EM algorithm with (1)
being replaced by (18). The auxiliary function is accordingly
changed to

(19)

With the number of prosodic states being set to 16, the experi-
mental results using the MIC database are shown in Table II(c).
It can be found from Table II(a) and (c) that the variances of
the training (test) data set were greatly reduced from 180.17
(136.26) to 2.53 (3.97) for syllable duration, from 62.28 (40.02)
to 0.78 (1.73) for initial duration, and from 117.06 (104.15) to
1.84 (2.85), respectively. The corresponding mean squared er-
rors between the observed and estimated syllable durations were
1.59 (1.99), 0.89 (1.32), and 1.36 (1.69) for syllable, initial, and
final duration modelings, respectively. Compared with the ex-
perimental results of multiplicative models shown in Table II(b),
the performances of these additive models were slightly better.

We then examined the results when the number of prosodic
states increased. As shown in Figs. 3 and 4, both the variance of
the normalized syllable duration and the RMSE between the ob-
served and estimated syllable durations decreased as the number
of prosodic states increased. They became saturated when the
prosodic state number equals 16.

The CFs for tone and prosodic states are listed in Tables IV(b)
and V(b). By comparing them with those of the multiplicative
models, we found that they are very consistent. A negative (pos-
itive) CF in additive model corresponded to a CF with value less
(greater) than 1 in multiplicative model. Moreover, the distance
of a CF in additive model to zero was approximately equal to the
product of the mean of the observed duration and the distance
of the corresponding CF in multiplicative model to one, i.e.,

(20)

To further examining the consistency of the two modeling ap-
proaches, we calculate the distribution of the pair of syllable
prosodic states labeled, respectively, by the multiplicative and
additive syllable duration models. Table VII shows the results
of the MIC database for the case of 8 prosodic states. It can
be found from the table that the distribution concentrates in the
vicinity of main diagonal. This shows that the prosodic state la-
belings by these two models were highly consistent.

VI. A PPLICATION TODURATION PREDICTION FORTTS

A hybrid method incorporating the above duration model
into a linear regression method to predict syllable duration

TABLE VII
DISTRIBUTION OF PROSODICSTATES LABELED BY THE MULTIPLICATIVE

AND ADDITIVE MODELS

Fig. 11. Hybrid statistical/regression approach for syllable duration
prediction.

for TTS is proposed. Fig. 11 shows a block diagram of
the method. Instead of directly predicting syllable duration
from the input linguistic features by the conventional linear
regression method, the proposed method first estimates the
prosodic-state CF from the linguistic features by the linear
regression technique. Input linguistic features used include:
1) current word length: ; 2) current syllable po-
sition in word: {1st, intermediate, last}; 3) sentence length:

20 ; 4) current syllable po-
sition in sentence: {1st, 2nd 3rd, [4th, 5th], [6th, 7th], [8th,
11th],last, 2nd last, 3rd last, [5th last, 4th last], [7th last, 6th
last], [11th last, 8th last], others}; Smaller count number from
the beginning or ending wins and count from the ending breaks
the tie; 5) punctuation mark after the current syllable (12 types

null); 6) part of speech (53 types) categorized by the Speech
Lab of NCTU, Taiwan. Meanwhile, the CFs of base-syllable
and tone are directly assigned based on the results of text
analysis. The CFs of speaker and utterance are assigned to the
values found by the EM training algorithm to disregard the
effect of speaking rate. They can also be directly assigned to
meet the required speaking speed control of TTS in practical
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TABLE VIII
RMSES OF THEHYBRID METHOD USING MULTIPLICATIVE AND ADDITIVE

MODELSWITH 8 PROSODICSTATES AND THE LINEAR REGRESSIONMETHOD

applications. The normalized syllable duration can be obtained
by a linear regressive estimation like the prosodic-state CF. But
due to the fact that the variances of the normalized syllable
duration in both the multiplicative and additive models are
very small, we simply set its value to be its mean. Lastly, all
these parameters are combined and used in the syllable dura-
tion model to generate the syllable duration estimate. Notice
that the linguistic features used here are extracted from the
input text by an automatic word tokenization algorithm with
an 80 000-word lexicon.

For performance comparison, the conventional linear regres-
sion method was also implemented. It used a linear combina-
tion of weighted input linguistic features to generate the syllable
duration estimate. For fair comparison, input linguistic features
used in the method comprised all above features and some other
syllable-level features, including lexical tones (5 types) of the
preceding, current and succeeding syllables, initials (21 types

null) of the current and succeeding syllables, medial 3 types
null) of the current syllable, and finals (14 types) of the pre-

ceding and current syllables.
Two schemes of the hybrid method using respectively the

multiplicative and additive duration models were tested. Exper-
imental results using the MIC database are shown in Table VIII.
It can be found from the table that both schemes of the hybrid
method outperformed the linear regression method. RMSEs of
9.32 (8.8) and 11.18 (12.04) frame were obtained for the hybrid
method with multiplicative (additive) duration model in closed
and open tests, respectively.

VII. CONCLUSIONS ANDFUTURE WORKS

A new statistical-based duration modeling approach for Man-
darin speech has been proposed in the paper. Experimental
results have confirmed that it was very effective on separating
several main factors that seriously affects the syllable duration
of Mandarin speech. Aside from greatly reducing the variance
of the modeled syllable duration, the estimated CFs conformed
well to the prior linguistic knowledge of Mandarin speech.
Besides, the prosodic-state labels produced by the EM training
algorithm were linguistically meaningful. So it is a promising
syllable duration modeling approach for Mandarin speech.

Some future works are worthwhile doing. Firstly, the syllable
duration model can be further improved via considering more
affecting factors. This needs the help of a sophisticated text an-
alyzer. Secondly, the applications of the model to both ASR and
TTS are worth further studying. Lastly, the approach may be ex-
tended to the modeling of other prosodic features such as pitch,
energy, and inter-syllable pause duration.

APPENDIX

The question set used to construct the decision trees for the
base-syllable CFs of the syllable/initial/final duration models:

Q1. Null initial?
Q2. Initial in {b, d, g}?
Q3. Initial in {f, s, sh, shi, h}?
Q4. Initial in {m, n, l, r}?
Q5. Initial in {ts, ch, chi}?
Q6. Initial in {p, t, k}?
Q7. Initial in {tz, j, ji}?
Q8. Single vowel?
Q9. Compound vowel?
Q10. Nasal ending?
Q11. With medial?
Q12. Open vowel?
Q13. Vowel begins with {i}?
Q14. Vowel begins with {u}?
Q15. Vowel begins with {iu}?
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