
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 19, 681-695 (2003)

681

Short Paper_________________________________________________

An Inverted File Cache for Fast Information Retrieval*

WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG

Department of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: {wyshieh; jjshann; cpchung}@csie.nctu.edu.tw

The inverted file is the most popular indexing mechanism used for document search
in an information retrieval system (IRS). However, the disk I/O for accessing the in-
verted file becomes a bottleneck in an IRS. To avoid using the disk I/O, we propose a
caching mechanism for accessing the inverted file, called the inverted file cache (IF
cache). In this cache, a proposed hashing scheme using a linked list structure to handle
collisions in the hash table speeds up entry indexing. Furthermore, the replacement and
storage mechanisms of this cache are designed specifically for the inverted file structure.
We experimentally verify our design, based on documents collected from the TREC
(Text REtrieval Conference) and search requests generated by the Zipf-like distribution.
Simulation results show that the IF cache can improve the performance of a test IRS by
about 60% in terms of the average searching response time.

Keywords: information retrieval system, inverted file, cache, hashing, memory manage-
ment

1. INTRODUCTION

To help users find useful information from large-scale information cyberspace, an
information retrieval system (IRS) requires a specialized indexing mechanism [1]. Rillof
and Hollaar [2] pointed out that most IRSs use inverted files as indexing mechanisms.
Zobel et al. [3] further showed that in terms of the querying time, used space, and func-
tionality, inverted files perform better than other mechanisms. However, inverted files
themselves require much storage space. This causes a disk I/O problem in an IRS. We
believe that this I/O requirement can be alleviated to some extent, and this paper presents
our study on this topic.

1.1 Motivation

In an inverted file-based IRS, a user sends a query containing some terms to the sys-
tem. The system searches these query terms in the inverted file to see which document

Received November 13, 2001; revised July 4, 2002; accepted October 28, 2002.
Communicated by Arbee L. P. Chen.
* This work was supported by National Science Council of R.O.C., NSC-89-2213-E-009-062.



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG682

satisfy the request and returns these documents’ identifiers to the user. For each distinct
term t, there is a corresponding list (called the posting list) of the form

><
tft DDDDft ,...,,,;; 321

in the inverted file, where the identifier Di (also called posting) indicates a document that
contains t, and the frequency ft indicates the total number of documents in which t ap-
pears.

When the number of documents in an IRS increases, the number of terms and the
lengths of the posting lists in the inverted file increase accordingly. The increase in the
term number slows down the searching speed, while the increase in the posting list length
increases the retrieval latency. Moreover, such a large inverted file cannot fit into the
memory and usually has to be stored in disks [4]. Thus, the disk I/O for accessing the
inverted file becomes a performance bottleneck in a modern IRS. The most common
practice for reducing the disk I/O is to apply a caching mechanism before disk accesses
are performed.

Most conventional caching mechanisms index the cached entries by means of sim-
ple hashing scheme and allocate a fixed-length block to store each cached context. The
hashing scheme involves using a hashing function to calculate entry addresses and ap-
plying collision resolution to avoid conflict between two or more records at the same
address. The collision resolution approach proposed in many textbooks includes the open
addressing scheme and the chain hashing scheme [5-8]. The open addressing scheme
searches the record in sequence from the conflicting address, while the chain hashing
scheme searches the record through the lined-list structure. Both of these searching proc-
esses, also called probing processes, have been described and discussed in [6, 7].

However, the schemes described above are not exactly suitable for caching the in-
verted file for the following reasons:

First, the open addressing scheme may consume an intolerable amount of probing
time if the number of cached records increases [5, 6, 8]. Such a situation may happen
because in a modern IRS like a search engine, we have to cache as many records as pos-
sible to capture the locality behind user queries. In fact, the open addressing scheme per-
forms well only when the hashing records are sparse.

Second, although the chain hashing scheme links the collision records with pointers
to shorten the probing length, the uncompleted linked-list structure may cause some
cached records to be lost during the insertion of a new record [6]. This problem not only
affects the efficiency of the cache, but also causes space to be wasted. Many studies have
examined various ways to improve the chain hashing scheme (e.g., two-pass loading [6]
and chaining with an overflow area [6]). Those approaches, however, required dynamic
memory allocation, which increases the complexity of collision handling and the cache
response time [8].

1.2 Research Goal

In this paper, we propose a caching mechanism for the inverted file, called the in-
verted file cache (IF cache), to reduce the number of disk I/O operations in an IRS. In
this cache, we use the linked-list structure to shorten the probing length for the hashing



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 683

scheme. To remedy the drawbacks of the linked-list structure in the chain hashing
scheme, we add three indicators, head, collision_count, and link, to each cached entry.
Head indicates that the entry is at the beginning of a list, collision_count indicates the
length of the list starting from the entry, and link indicates the pointer to the next linked
entry. When a new record is inserted into the cache, with the help of these indicators, the
irrelevant linked lists will neither be broken nor extended to increase the probing length.
The probing process needs to be performed only on the entries belonging to the correct
linked list. This greatly reduces the probing time needed for searching a record. In addi-
tion, along with variable-size posting lists, we suggest two space management schemes,
the compact scheme and the chunk-based scheme, for efficiently using the cache memory.
Compared with the traditional IRS without a customized inverted file cache, simulation
results show that the performance of a test IRS with the IF cache offers improvement of
about 60% in terms of the average response time.

This paper is organized as follows. In section 2, we present the detailed design of
the IF cache with the link-based hashing scheme and the variable-length space manage-
ment scheme. In section 3, we present simulation results and evaluation. Finally, section
4 is our conclusion.

2. INVERTED FILE CACHE (IF CACHE)

The IF cache consists of four components as shown in Fig. 1: the cache manager,
stop word filter, index block, and posting block.

1. The cache manager is a finite-state controller that handles the search status of the
cache. If a query term is found in the cache, the manager returns the cached posting list
to the user. Otherwise, it issues a disk access command to retrieve results in the disk
and then writes the results to the cache.

2. The stop word filter filters out unnecessary terms, such as “the,” “a,” “of” etc. to pre-
vent those words from being issued in the search. This is because these terms typically
carry no meaning.

3. The index block contains a hash function and a hash table for cached terms. The hash
function maps each query term to a unique entry in the hash table. Each entry in the
hash table includes a term field, the three indicators described in section 1.2, and a
posting list pointer (PLP). The term field stores the term that has been queried, and the
three indicators maintain the link structure among the entries. The PLP simply stores
the pointer to the location of the corresponding posting list in the posting block.

4. The posting block stores the posting lists of various lengths.

When a query term is issued to the IF cache, the cache manager searches it in the
hash table using the hashing scheme. If this term hits an entry in the table, its posting list
in the posting block is returned. Otherwise, its posting list is retrieved from the disk and
replaces some elements in the cache. We discuss each component in the following.



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG684

Fig. 1. Essential components of the IF cache.

2.1 Hashing Scheme

To avoid intolerable probing time and complex cache management, we select a
linked-list structure as the basis of the hashing scheme. In this scheme, a hash table is
implemented as a linear array of entries as in the open addressing scheme, but those en-
tries whose terms have collided at the same hashing address are linked together as in the
chained hashing scheme, as shown in Fig. 2. When a collision occurs, we select an empty
entry or a nonempty entry in the hash table and insert into it or replace it with, respec-
tively, a new term, and then link this new entry to the related list. The probing process
needs to be performed only on those entries belonging to the same linked list, not all en-
tries in the hash table.

The linked list of a set of collision terms in the hash table is maintained by means of
the three indicators in each entry: head, collision_count, and link. The head of an entry is
set to 1 if this entry is identified as the direct consequence of hashing. The colli-
sion_count of an entry records the number of other terms colliding at this entry with the
head. And the link of an entry is the pointer to the next linked entry. Fig. 2 shows an ex-
ample in which entries 2, 6, 12, and 16 form a linked list. In this case, terms t2, t6, t12, and
t16 share the same hashing address and collide at the same entry. Hence, the head and
collision_count of entry 2 are set to 1 and 3, respectively.

If we apply this hashing scheme to the IF cache, the search process stops at one of
three states: hit, false hit, or miss. The three search states are explained below.

Disk retrieval command issued upon cache missQuery terms

Hash
function

Hash table

Posting list

Stop word filter

Cache manager

Index block Posting block

Query response Query response from disk

Term PLPIndicators

Query response from cache



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 685

Fig. 2. Structure of the proposed link-based hash table.

Case 1: The hit state
The hit state indicates that the hashing address of a query term maps to an entry

whose head is 1, and this term can be found in the associated list by probing the linked
entries.

Case 2: The false hit state
The false hit state occurs when the hashing address of a query term maps to an entry

whose head is 1, but this term cannot be found after all entries in the associated list have
been exhaustively probed. Fig. 3(a) shows a false hit example, in which the term “engi-
neer” cannot be found after probing the linked entries. The steps that must be performed
after a false hit occurs are:

1. issue a retrieval command to the disk and
2. find a free entry (perhaps through replacement) in both the hash table and the posting

block for storing the term and the returned posting list.

This new entry is linked just after the starting entry of the list for the next access,
and the collision_count of the starting entry is incremented as shown in Fig. 3(b). In this
figure, we store the term “engineer” into entry 4 and link this entry after entry 2. The link
indicators of entries 2 and 4 are updated, and the collision_count of entry 2 is incre-
mented.

Case 3: The miss state
The miss state may be either a compulsory miss or a conflict miss. A compulsory

miss occurs when the hashing address of a query term maps to an empty entry in the hash
table. This term is inserted into the entry, and a disk retrieval command is then issued
with respect to the term’s posting list. The returned posting list is cached, and the indica-
tors head, and collision_count of this entry are set to 1, and 0, respectively.

Hash table

HF

2

12

16

6

H CO LTerm

6

12

EOL

1 3 t2

t6

t12

t16

16

Linked list

Legend:

H: head

CO: collision_count

L: link

HF: hash function

EOL: end of list

0 0

0 0

0 0



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG686

Fig. 3. A false hit example. (a) “engineer” does not exist in the list, (b) the hash table after
“engineer” is inserted.

A conflict miss, on the other hand, occurs when the hashing address of a query term
maps to a nonempty entry (say E0) whose head = 0. That is, E0 is linked by the other en-
try, and there is no collision at E0. One can immediately see that the term cannot be found
in the list. This saves much probing time compared with other hashing schemes. In this
case, a disk retrieval command is required. We find a free entry (say E1) into which to
insert the term (perhaps through replacement) and a free space in the posting block in
which to store the returned posting list. Both the head and collision_count of E0 are set to
1, and E1 is linked just after E0. With this design, two or more hashing addresses whose
heads are both 1 may share the same linked list. Although the length of a linked list may
increase accordingly, the probing length for each hashing address will not increase. For
example, assume that entries Ei and Ej share the same linked list, and that both of their
heads are 1. If the collision_count of Ei is Ci and that of Ej is Cj, then the longest probing
length of the term colliding at Ei is exactly Ci; that is, we can “bypass” Cj entries after
probing Ej (and vice versa).

Fig. 4 shows a conflict miss example. In Fig. 4(a), no entries need to be further
probed. Fig. 4(b) shows a hash table into which the term “technology” has been inserted,
and in which entries 2, 6, 20, and 16 form a linked list. Note that entries 2 and 6 share the
same linked list, and that both of their heads are 1. If we search for terms colliding at
entry 2 in the linked list, we can “bypass” entry 20 after probing entry 6 and continue
probing from entry 16. On the other hand, if we search for terms colliding at entry 6 in
the linked list, only entry 20 needs to be further probed.

HF

Hash table

2

12

16

6

H CO LTerm

6

12

EOL

1 3 computer

message

science

general

16

Probing

sequence

Legend:

H: head

CO: collision_count

L: link

HF: hash function

EOL: end of list

engineer

0 0

0 0

0 0

(a) (b)

2

12

6

H CO LTerm

4

12

EOL

1 4 computer

science

general

16

0 0

0 0

0 0

6engineer0 04

Hash table

16



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 687

Fig. 4. A conflict miss example. (a) the hashing address of “technology” maps to entry 6, whose
head is 0, (b) the hash table after “technology” is inserted.

2.2 Replacement Mechanism

A false hit, compulsory miss, or conflict miss will trigger replacement if the hash
table is full or the posting block does not contain enough free space to store new posting
lists. When the hash table is full, we use LRU, LFU, or a hybrid policy to select a victim
entry. This entry and its posting list in the posting block will be freed up for replacement.
However, the free space in the posting block may not be large enough to accommodate
the new term’s posting list. If this is the case, we will free up more than one entry and
one posting list to accumulate enough free space.

Note that if we select an entry whose head is 0 to be the victim, then this entry can
be disconnected from its associated linked-list and attached to the new linked-list in the
hash table. Disconnecting an entry from its associated linked list in the hash table does
not require double-link structure. This is because we can re-hash the term of this entry to
get the linking information from its hashing address.

However, if we select an entry whose head is 1 to be the victim, then the entry and
its associated linked list need to be completely attached to the new linked list after the
replacement operation. This is because disconnecting this entry from the list will cause
its following linked entries to be lost. (this is the major drawback of the chain hashing
scheme [6].) With this design, again, two entries whose heads are both 1 may share the
same linked list. However, the probing length for each hashing address will not be af-
fected because the probing length is actually determined by the collision_count.

2.3 Posting Block

The posting block is a large memory pool that stores cached posting lists. A good
space management scheme for the posting block greatly influences the response time and

HF

Hash table

2

16

6

H CO LTerm

6

16

EOL

1 2 computer

message

general

Legend:

H: head

CO: collision_count

L: link

HF: hash function

EOL: end of list

technology
0 0

No entries

need to be

probed.

0 0

Hash table

2

16

6

H CO LTerm

6

20

EOL

1 2 computer

message

general

1 1

0 0

20 16technology0 0

(a) (b)



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG688

utilization of the cache. In the following, we discuss two possible space-management
schemes that take variation in the posting list length into account.

One basic variable-length scheme is the compact scheme. In this scheme, all the
elements in a posting list must be stored in a contiguous free space for sequential re-
trieval. When a posting list is inserted into the posting block, we have to find a suffi-
ciently large space for it. The advantage of this scheme is that the posting list can be read
sequentially without incurring any transferring overhead. However, this approach has
some drawbacks. Consider that a posting list of N postings is to be stored in the posting
block. Assume that the size of each free contiguous block is Bi, for i = 1, 2, …, and that
the total size of the free space in the posting block is T. If T > N and Max(B1, B2,…) < N,
then we have to compact some blocks so that they will fit into a free space of size N. This
compaction operation is quite time-consuming. In addition, although sequential retrieval
can benefit from contiguous storage in this scheme, a trend in Web applications is to ac-
cess the posting list in a random manner as in, for example, the fast searching process in
the ranked query model [9]. The memory arrangement for sequential retrieval may not be
completely suitable for random access operations.

Another variable-length space management approach is the chunk-based. In this
scheme, the posting block is implemented as a set of fixed-size chunks. Each chunk
stores n postings and a pointer as shown in Fig. 5. When a posting list containing N post-
ings is inserted into the posting block, N/n chunks are allocated to store this list instead
of a contiguous free space. Each allocated chunk is linked to the list by the pointer of the
previous chunk. This scheme obviously has the advantages of simplicity and flexibility,
compared with the compact scheme. Moreover, the chunk-based scheme can support
random access operations. For example, if the system wants to access the (2n + 3)th
posting, it can bypass the first two chunks and retrieve the third posting in the third
chunk directly. The drawbacks of this scheme are that it needs non-data overheads to link
the chunks, and that the size of a chunk cannot be determined easily. In section 3, we will
present the use of simulation to find a suitable size for the IF Cache.

Fig. 5. Data structure of a chunk.

2.4 Stop Word Filter

The purpose of the stop word filter is to prevent insignificant words from being is-
sued during the search. In the proposed architecture, we implement a stop-word board in
the filter to record the stop words. This stop-word board is like a lookup table that uses
the hash function to index the entries. The contents of the stop-word board are based on
the 135 stop word mentioned in [4]. When a term is searched in the cache, it is first
matched with the entries in the board. If the term exists in the board, the cache access is
rejected by the filter.

Posting Posting Posting Point to the next chunk.

n



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 689

3. PERFORMANCE EVALUATION

In this section, we investigate two important issues, functionality and efficiency, re-
lated to the IF cache through simulation benchmarks. With respect to functionality, we
evaluate the advantage of the IF cache in reducing the disk I/O. With respect to efficiency,
we estimate the proper cache size.

3.1 Simulation Model

To compare the performance of various algorithms, simulations were performed on
a benchmark collection obtained from the fifth disk of TREC (Text REtrieval Conference)
[10]. This collection is a very large document collection distributed worldwide for use in
comparative information retrieval experiments [4]. The collection contains two suites of
full texts of various newspaper and newswire articles plus government proceedings, and
each suite has about 130,000 documents. The data in the first suite includes material from
the Foreign Broadcast Information Service (FBIS), and the data in the second suite in-
cludes material from the Los Angeles Times (LATimes). We built the inverted files for
these two suites and then applied the proposed cache architecture to them, respectively.
Short descriptions of these inverted files are given in Table 1.

Table 1. Statistics of two inverted files used in our experiments.

Description FBIS inverted file LATimes inverted file
Document count 130,471 131,896
Distinct terms 209,782 167,805
Size (Mbytes) 263 297

Average posting count in
a posting list

136 192

To simulate user query behavior, we implemented a query-term generator which
picks query terms from the inverted files. The occurrence of these terms follows the
Zipf-like distribution, a distribution widely used in recent IRS studies [15]. In this distri-
bution, the relative probability of a request for the ith most popular term is proportional
to 1/iα, where α ≤ 1. We let α = 0.8 in the experiments because α appears to center
around 0.8 for most traces in homogeneous environments [15]. In each experiment, we
generated 100, 000 user queries, and the lengths of the queries were distributed evenly
from one to five terms. Furthermore, we adopted the Boolean query model, in which the
AND, OR, and NOT Boolean operators are uniformly inserted into the generated queries.
Therefore, a user query looks like “information <AND> retrieval <AND> cache,” where
information, retrieval, and cache are query terms.

We define the hit rate of the IF cache as the fraction of the total cache accesses that
are in the hit state. If we assume that the IF cache can store an unlimited number of query
terms, we can get a hit rate of about 65% for the terms in the 100,000 queries. We call
this rate the ideal hit rate and use it to denote the maximal locality that can be gained
from enhancements.



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG690

In Fig. 6, we show our cache simulator and how we measure the average response
time. The response time for a cache hit is measured from the time a user query is sent
into the cache to the time the related posting lists are returned from the posting block. For
a false-hit or miss state, the response time is composed mainly of the probing time in the
hash table and the retrieval time in the disk.

Fig. 6. Platform of the cache simulator.

3.2 Simulation Results

The experiments conducted in our evaluation focused on two aspects of perform-
ance. First, we compared the hashing performance of the proposed link-based scheme
with that of both the open addressing scheme and the chained hashing scheme. Second,
we compared the storage efficiency of the chunk-based scheme with that of the compact
scheme. Because the IF cache is implemented in order to speed up user query processing,
we used the average response time as the major performance metric in the experiments.
All the experiments were performed on a PC with a 700MHz CPU, 128 MB SDRAM
with 10 ns average access time, and a 2.1 GB hard disk with 9 ms average seek latency.

3.2.1 Effect of the inverted file cache

Fig. 7 shows that using the IF cache in an IRS reduces the average response time
significantly. Assume that the hash table contains 4K entries with the open addressing
scheme applied for the purpose of collision resolution, and that the size of the posting
block is 8MB with the compact scheme applied for the purpose of space management.
Each posting stored in the posting block is a 32-bit long integer (in uncompressed form).
The simulation results show that the average response time decreases by about 33% for
FBIS and 29% for LATimes. We suppose that these decreases in the average response
time result from reduction in the disk I/O. Such reduction can increase the service capa-
bility in an IRS.

User

query

generator

User query

interpreter

Return the
posting list

Inverted

file

Return the
posting list

Inverted
file

cache

Hit

False hit
or

miss

Response time for the hit state

Response time for the false hit or miss state

disk



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 691

Fig. 7. Effect of the inverted file cache. Assume that the hash table contains 4K entries with the
open addressing scheme used for collision resolution, and that the size of the posting block
is 8MB with the compact scheme applied for the purpose of space management.

3.2.2 Effect of the hashing scheme

The performance of a hashing scheme heavily depends on the load factor of a given
hash table. The load factor as defined in [7] is the ratio of the number of keys initially
stored in the hash table to the number of entries in the table. The load factor provides a
measure of the amount of space in the hash table that is used, and we use it to see how
collision resolution in different hashing schemes affects the average response time. Fig.
8(a) shows the simulation results for the FBIS inverted file, and Fig. 8(b) shows the re-
sults for the LATimes inverted file. As shown in both figures, when the load factor in-
creased from 0.5 to 0.9, the open addressing scheme produces the longest average re-
sponse time as expected. On the other hand, the chain hashing scheme and the proposed

�

��

���

���

���

���

���

���	 
��
���

�
�
��
��
��
��
�	


�
��
��

�
��
��

��

�������������	
������
���������

����������	
������
���������

�

��

��

��

��

���

���

���

���

��� ��� ��� ��� ���

�	
��

��	�

�
�
��
��
��
��
�	


�
��
��

�
��
��

��

����������		
�����	�
��


��
������	�
��

�����	�����	�
��

�

��

��

��

��

���

���

���

���

���

��� ��� ��� ��� ���

�	
��

��	�

�
�
��
��
��
��
�	


�
��
��

�
��
��

��

����������		
�����	�
��


��
������	�
��

�����	�����	�
���

(a) (b)

Fig. 8. Comparison of three hashing schemes under different load factors. Assume that the hash
table contains 4K entries, and that the size of the posting block is 8MB.



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG692

hashing scheme produce lower average response times even though the hash table is 90
percent full. This shows that it is preferable to use the linked-list-based structure for col-
lision resolution when the hash table involves larger load.

Fig. 9 shows the average response time versus the number of entries in the hash ta-
ble. Assume that the size of the posting block for storing all the cached posting lists is
8MB, and that the compact scheme is applied for the purpose of space management. We
varied the number of entries in the hash table from 4K to 20K and compared the average
response times of the three hashing schemes. We found that although increasing the
number of entries could lengthen the search paths in the hash table, it could also capture
more user query locality and reduce the number of disk I/O operations. However, when
the number of entries increased from 12K to 20K, the average response time decreased
only slightly. We conclude that under the posting block size limitation (8MB), 12K
hash-table entries are sufficient to capture most of the locality. Note that as the number of
entries increases, FBIS achieves better performance compared to LATimes. Recall that
the average posting-list length in the FBIS inverted file is shorter than that in the
LATimes inverted file. Under the same posting block size, increasing the number of en-
tries in the hash table may allow more short-posting-lists to be cached.

(a) (b)

Fig. 9. Effects of the three hashing schemes: (a) the FBIS inverted file and (b) the LATimes in-
verted files. It was assumed that the size of the posting block was 8MB, and that the com-
pact scheme was applied to store all the cached posting lists.

Fig. 9(a) shows a performance comparison of the three hashing schemes applied to
the FBIS inverted file. The open addressing scheme produced the longest average re-
sponse time due to its probing rule. The chained hashing scheme performed better than
the open addressing scheme because the average probing length was reduced by the
linked-list structure. The proposed linked-based hashing scheme reduced the average
response time more than the other two schemes did because the drawbacks of the open
addressing scheme and the chain-hashing scheme are avoided by using a completely
linked-list structure. In addition, maintaining such a structure does not require complex

�

��

��

��

��

���

���

���

�� �� ��� ��� ���

�	
��
�������
���������������������

�
�
�
��
�
��
��
�	


�
��
��

�

��
��

��

����������		
�����	�
��


��
������	�
��

�����	�����	�
��

�

��

��

��

��

���

���

���

���

�� �� ��� ��� ���
��������������
�	�
��������	�������

�
�
��
��
��
��
�	


�
��
��

�
��
��
��

����������		
�����	�
��


��
������	�
��

�����	�����	�
��



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 693

entry allocation or management. The simulation results show that the proposed
link-based hashing scheme performed 20% better than the open addressing scheme and
14% better than the chained hashing scheme when the number of entries in the hash table
reached 20k.

Fig. 9(b) shows the results obtained by running the same experiment on the
LATimes inverted file. The average response time for the LATimes inverted file was
longer than that for the FBIS inverted file. This was probably due to the large size of the
LATimes inverted file. Again, the proposed link-based hashing scheme performed better
than the other two schemes. This is consistent with the results shown in Fig. 9(a).

3.2.3 Effect of the space management scheme applied in the posting block

To examine the space management in the posting block, we compared the perform-
ance of the chunk-based scheme with that of the compact scheme. We assumed that the
hash table contained 12K entries, and that the proposed hashing scheme was applied for
the purpose of collision resolution. We varied the total amount of space in the posting
block from 4 MB to 20 MB. For the compact scheme, we use the first-fit approach to
find the appropriate amount of space. For the chunk-based scheme, we set the size of a
chunk as 90 postings, with each posting being a 32-bit long integer.

Fig. 10 shows that on average, the chunk-based scheme resulted in lower response
time than the compact scheme did. With the chunk-based scheme, caching a posting list
only requires finding a sufficient number of free-chunks to be linked. With the compact
scheme, however, caching a posting list not only requires finding a sufficiently large
contiguous space, but also involves complex movements of old data. These compact op-
erations block normal cache usage and increase the average response time.

Fig. 10. Comparison of the different space management schemes: (a) the FBIS inverted file and (b)
the LATimes inverted file. It was assumed that the hash table contained 12K entries, and
that the proposed hashing scheme was applied for the purpose of collision resolution. We
varied the size of the posting block used to store all the cached posting lists from 4MB to
20MB.

(a) (b)

�

��

��

��

��

���

���

�� �� ��� ��� ���

�	
��
����	���
���������
�

�
�
��
��
��
��
�	


�
��
��

�
��
��

��

�	������
�����

���
����
���
�����

�

��

��

��

��

���

���

���

�� �� ��� ��� ���

�	
��
����	���
���������
�

�
�
��
��
��
��
�	


�
��
��

�
��
��
��

�	������
�����

���
����
���
�����



WANN-YUN SHIEH, JEAN JYH-JIUN SHANN AND CHUNG-PING CHUNG694

Fig. 10 also shows that increasing the total amount of space in the posting block can
reduce the average response time. This is because increasing the space in the posting
block can improve utilization of the hash table. However, when the amount of space in-
creases to 12 MB or more, the average response time of the chunk-based scheme de-
creases slightly. The reason is that the chunk-based scheme imposes an extra
link-traversal cost for retrieving a cached posting list in a large space. On the other hand,
the compact scheme performs even better than the chunk-based scheme when the amount
of space increases to 20 MB. We conclude that in such a large space, the compact scheme
requires few compact operations, and that the contiguous storage of postings saves much
retrieval time.

4. CONCLUSIONS

This paper has proposed an inverted file cache architecture for information retrieval
systems. In this cache, we use a link-based hashing scheme to speed up entry indexing
and a chunk-based scheme to store cached posting lists. We have evaluated these pro-
posed schemes by examining four factors affecting cache performance: the load factor,
the hash table size, the posting block size and the chunk size. The simulation results
show that the average response time of the test system with an inverted file cache could
be reduced by 60% compared with that of the system without an inverted file cache. We
believe that an information retrieval system will benefit from the proposed architecture in
the following ways:

1. reduction of the average response time,
2. reduction of the number of disk I/O operations, and
3. an increase in the system service capacity.

REFERENCES

1. C. Faloutsos and D. W. Oard, “A survey of information retrieval and filtering meth-
ods,” Technical Report CS-TR-3514, Department of Computer Science, University
of Maryland, 1995.

2. E. Rillof and L. Hollaar, “Text database and information retrieval,” ACM Computer
Surveys, Vol. 28, 1996, pp. 133-135.

3. J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted files versus signature files
for text indexing,” ACM Transactions on Database Systems, Vol. 23, 1998, pp.
453-490.

4. I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes - Compressing and
Indexing Documents and Images, 2nd ed., Morgan Kaufmann Publishers, Inc., 1999.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The
MIT Press, 1990.

6. M. J. Folk, B. Zoellick, and G. Riccardi, File Structures, Addison-Wesley, 1998.
7. D. E. Knuth, The Art of Computer Programming, Vol. 3, Searching and Sorting,

Addison-Wesley, 1973.
8. U. Manber, Introduction to Algorithms A Creative Approach, Addision-Wesley,

1989.



INVERTED FILE CACHE FOR FAST INFORMATION RETRIEVAL 695

9. A. Moffat and J. Zobel, “Self-indexing inverted files for fast text retrieval,” ACM
Transactions on Information Systems, Vol. 14, 1996, pp. 249-279.

10. TREC, Http://trec.nist.gov, 2001.
11. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like

distributions: evidence and implications,” IEEE INFOCOM, 1999, pp. 126-134.

Wann-Yun Shieh (���) received the B.S. degree in Computer Science and In-
formation Engineering from National Chiao Tung University, Hsinchu, Taiwan, Repub-
lic of China in 1996. Currently, he is pursuing the Ph.D. degree in computer science and
information engineering at National Chiao-Tung University, Hsinchu, Taiwan, Republic
of China. His research interests include computer architecture, parallel and distributed
systems, and information retrieval.

Jean Jyh-Jiun Shann (���) received the B.S. degree in Electronic Engineering
from Feng-Chia University, Taichung, Taiwan, Republic of China in 1981. She attended
the University of Texas at Austin from 1982 to 1985, where she received the M.S.E. de-
gree in Electrical and Computer Engineering in 1984. She was a lecturer in the Depart-
ment of Computer Science and Information Engineering, National Chiao-Tung Univer-
sity, Hsinchu, Taiwan, R.O.C., while working towards the Ph.D. degree. She received the
degree in 1994 and is currently an Associate Professor in the department. Her current
research interests include computer architecture, parallel processing, and information
retrieval.

Chung-Ping Chung (��	) received the B.E. degree from National Cheng-Kung
University, Tainan, Taiwan, Republic of China in 1976, and the M.E. and Ph.D. degrees
from Texas A&M University in 1981 and 1986, respectively, all in Electrical Engineer-
ing. He was a lecturer in electrical engineering at Texas A&M University while working
towards the Ph.D. degree. Since 1986, he has been with the Department of Computer
Science and Information Engineering at National Chiao-Tung University, Hsinchu, Tai-
wan, R.O.C., where he is a professor. His research interests include computer architec-
ture, parallel processing, and parallelizing compiler.


