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Extrinsic atoms were doped into multiwalled carbon nanotutd®/CNTs) using microwave
plasma-enhanced chemical vapor deposition. Doped nitrogen atoms alter the original parallel
graphenes into highly curved ones including some fullerene-like structures. Doped nitrogen atoms
could replace carbon atoms in MWCNTs and therefore increase the electronic density that enhances
the electron field emission properties. On the other hand, the incorporation of boron into the carbon
network apparently increases the concentration of electron holes that become electron traps and
eventually impedes the electron field emission properties. Fowler—Nordheim plots show two
different slopes in the curve, indicating that the mechanism of field emission is changed from low
to high bias voltages3 values could be increased by an amount of 42% under low bias voltages and
60% under high bias voltages in the N-doped MWCNTSs, but decreased by an amount of 8% under
low bias region and 68% under high bias voltage in the B-doped MWCNTs20@3 American
Institute of Physics.[DOI: 10.1063/1.1579136

Carbon nanotube&CNTs) have drawn great attention in and hydrogen atmosphere. In order to dope nitrogen atoms,
the whole scientific world for their superior electronic prop- MWCNTs were further exposed to nitrogen plasma of 3.1
erties as an electron source for field emission dispfafhe kW microwave input for 30 min. The B-doped CNTs were
characteristic aspect ratio contributes to the excellent fielggroduced by a mixture of CNTs and HB@owder under the
emission behaviors such as much smaller turn-on voltaghydrogen plasma in the MPECVD system. The carbon-based
and larger emission current density than any other field emisaanostructures were characterized by transmission electron
sion devices. In the Fowler—Nordhelmoordinates, field en- microscopy(TEM), and the chemical analysis was carried
hancement factoB could provide an indicatively physical out by x-ray photoelectron spectroscof¥PS). The atomic
factor to investigate and compare the results. Similar to otheratio of the relevant elements was obtained by integrating the
semiconductor materials, extrinsic doping of CNTs could al-core-level peak area, calibrated by the atomic sensitivity
ter and adjust the electronic properties and binding configufactor?® The electron field emission properties were measured
rations of the CNTs. It is known that the boron-doped nanoby a conventional diode method at a pressure of 5
tubes are intrinsically metallic by the theoretical x 10 Torr. The Keithley 237 instrument was employed to
calculation§ and conductivity measuremeritsn this work,  measure the current density and electric field characteristics.
both nitrogen and boron atoms are separately doped intmdium tin oxide glass was made as the anode to receive the
multiwalled CNTs (MWCNTs) by a microwave plasma- emitted electrons with a spacer of 1%0n coverglass to
enhanced chemical vapor depositiMPECVD) apparattd  separate from the cathode. The emitted area was fixed at
and the influence of doped atoms on the field emission pher cn?. The voltage was increased by a step of 10 V/s from 0
nomena is discussed and compared. to 1100 V. Before the measurement, a voltage of 0—300 V

MWCNTSs were synthesized by the assistance of electropas applied several times to remove contamination adsorbed
plated Pd catalybton the tungsten substrate in a MPECVD g, tips.
apparatus with a mixture of methane and hydrogen as | the total energy calculations using semiempirical
precursor§. The microwave was generated at the frequencyyartree—Fock-based AM1 meth®¥ the incorporation of
of 2.45 GHz by magnetron and 2.1 kW was used to synthegiyogen into graphite-like structures would introduce penta-
size MWCNTSs. An external dc bias voltage 6f350 V- was o1 defects in the hexagon network. The formation of pen-
simultaneously applied to the substrate and the synthesigyon would distort and bend the graphite layers, leading to
temperature of the substrate was 600-700°C. The vaCuugyanhenes with high curvatures and cross-linked structures.
system was maintained at 14 Torr under the mixed methang, addition, basal planes of the graphite layers appear buck-
led, bent and frequently interlinked. It was also proposed that
aAuthor to whom correspondence should be addressed; electronic maif'€ fullerene-like structures are able to form in the carbon

hcshih@mse.nthu.edu.tw nitride matrix*? In the study of TEM analysis, the basal
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FIG. 2. -V curves of CNTs for field emission measurements and the in-
sertion for the Fowler—Nordheim plot. The detail field emission properties
are listed in Table I.

as the adventitious carbon and surface free carbon, while C
(290.3 eV is identified as the signal resulting from CO type
bonds. Thesp?/sp® ratio could be estimated by the method
of dividing the integrated peak area 0§ 285.6 eV} by the
peak area of ¢(287.6 e\.!® The results are listed in Table

l.

Figure 2 is the field emission results of the three types of
CNTs and the relevant Fowler—Nordheim plot is shown in
the inserted diagram. Because the work functidn of
MWCNTs is difficult to measure, it is assumed to be 4.7 eV

. . : according to the work function of pure graphite layéss
FIG. 1. High-resolution TEM images dia) MWCNT, and (b) N-doped .
MWCNT by MPECVD. It is shown that the graphene layers of nitrogen eV), and the field enhancement factrcan be calculated
doped MWCNTSs appear seriously twisted such as turbostratic graphite layfrom the slope of the straight line in the Fowler—Nordheim
ers and otherwise contain some fullerene-like structures inside. (F—N) plot. It is found that there are two straight lines on the

F—N plot andB can be divided into two regiong@, and By

planes of the graphenes are straight and parallel in the cyliiander low and high bias voltages, respectively. At low bias
drical MWCNTSs, as shown in Fig.(4). When nitrogen at- Voltages, the field emission mechanism obeys the properties
oms were doped into CNTs, original ordered parallel layerf the traditional Fowler—Nordheim equation, while the field
of the walls are disturbed and highly curved. Consequentlgmission behavior under high bias voltages deviates from the
some fullerene-like structures also form, as seen in Rig. 1 Fowler—Nordheim equation but still appears a linear rela-
It shows that all the graphene layers of CNTs are affectedionship on the F—N coordinate. The origin of the deviation
and appear seriously distorted, similar to the fingerprints ofrom the F—N plot under high bias voltages has long been
human being. discussed, and it is commonly explained by the space-charge

The N (1s) and B (1s) core binding energies are de- effect, the presence of localized states at the tip of the emit-
tected in the XPS studies. The binding energy around 398+er, interaction between nanotubes and gas desorption/
401 eV is corresponding to the nitrogen binding adsorption on tips®!° The corresponding field emission
configurations>1# On the basis of the XPS results, the cal- properties of the different types of CNTs are all compared in
culated N/C ratio is 22 at. % and B/C ratio is 24 at(Vable  Table I. The field emission properties of N-doped CNTs with
). In order to evaluate thep?/sp® ratio of the carbon atoms, low onset voltagé2.5 V/um) and high emission current den-
we chose to adopt the method of Martea fit the curve of  sity (0.4 mA/cnt at 5 V/um) are superior to other types of
C (1s) core level binding energy. 0284.4 eV is assigned CNTSs.

TABLE I. Relevant atomic ratiossp?/sp° ratios, field enhancement factq8,( and3,), onset voltage, and applied voltage at 1 mAfdor CNTs doped with
nitrogen and boron.

Field enhancement factor

Various types of N/C or B/C atomic sp?/sp® ratio Onset voltage Applied voltage at 1
carbon nanotubes ratio (at. % of carbon BL B (VI wm) mA/cn? (V/um)
MWCNTs 0 2.49 936 3385 3.2 7.26

N-doped MWCNTSs 22 2.86 1331 5404 2.5 6.25
B-doped MWCNTs 24 1.30 264 1100 46 N
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When nitrogen atoms incorporated into graphite-like ma-emission properties by the assistance of the delocalized elec-
terials, it is easy for them to substitute carbon atoms in theron in the 7w orbital with higher mobility than the localized
hexagon graphite network due to the small difference oflectrons in ther bonds.
atomic radii for these two atoms. One excess electron is sup- In conclusion, nitrogen-doped CNTs prepared by
plied when one nitrogen atom replaces one carbon atom, aldPECVD can improves by increasing electron density, lo-
the electron concentration in the conduction band can beally distorted positions with higher curvatures, amd con-
increased by nitrogen doping into CNTs. The field emissiortents. The field emission properties of B-doped CNTSs, on the
current density is a function of both the tunneling probability other hand, are inferior in performance due to the generation
of electron depending on the shape of the barrier, and eleof electron holes and recombination effect of traping elec-
tron supply function depending on the electron concentratiortrons.
in the conduction band. For CNTSs, increasing electron con- )
centration is an effective way to enhance the emission prop- 1 he authors would like to acknowledge the support of
erties. N-doped CNTs have even superior emission propertid8is Work by the National Science Council of the Republic of
than CNTs. In B-doped CNTs, boron can also replace carbofrNina under the Contract No. NSC91-2120-E-007-006.
in the graphite network but produces electron holes in the
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