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Abstract

In this paper, we consider the fault hamiltonicity and the fault hamiltonian connectivity of the pancake graphPn. Assume
thatF ⊆ V (Pn)∪E(Pn). Forn� 4, we prove thatPn−F is hamiltonian if|F | � (n−3) andPn−F is hamiltonian connecte
if |F | � (n− 4). Moreover, all the bounds are optimal.
 2003 Elsevier Science B.V. All rights reserved.
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Network topology is a crucial factor for the in
terconnection networks since it determines the p
formance of the networks. Many interconnection n
work topologies have been proposed in the lite
ture for the purpose of connecting hundreds or th
sands of processing elements. Network topology is
ways represented by a graph where nodes repre
processors and edges represent links between pr
sors.

For the graph definition and notation we follo
[2]. G = (V ,E) is a graph if V is a finite set and
E is a subset of{(u, v) | (u, v) is an unordered pai
of V }. We say thatV is thevertex set andE is the
edge set. For any vertexx of V , degG(x) denotes its
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(u, v) ∈ E. A path is represented by〈v0, v1, v2, . . . ,

vk〉. The length of a pathQ is the number of edge
in Q. We also write the path〈v0, v1, v2, . . . , vk〉 as
〈v0,Q1, vi, vi+1, . . . , vj ,Q2, vt , . . . , vk〉, whereQ1 is
the path〈v0, v1, . . . , vi〉 andQ2 is the path〈vj , vj+1,

. . . , vt 〉. Hence, it is possible to write a path
〈v0, v1,Q,v1, v2, . . . , vk〉 if the length of Q is 0.
Sometimes, a path is also represented by〈v0, v1, . . . ,

vi , e, vi+1, . . . , vn〉 to emphasize thate is the edge
(vi , vi+1). We used(u, v) to denote the distance b
tweenu andv, i.e., the length of the shortest path joi
ing u andv. A path is ahamiltonian path if its vertices
spanV . A cycle is a path with at least three vertic
such that the first vertex is the same as the last ver

Throughout this paper, we assume thatn is a posi-
tive integer. We use〈n〉 to denote the set{1,2, . . . , n}.
Then-dimensional pancake graph, denoted byPn, is
a graph with the vertex set
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is hamiltonian and undefined if otherwise. Clearly,
Hf (G)� δ(G)− 2 if Hf (G) is defined. In this paper,
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Fig. 1. The pancake graphsP2, P3, andP4.

V (Pn) = {
u1u2 . . .un | ui ∈ 〈n〉 andui 
= uj

for i 
= j}.
The adjacency is defined as follows:u1u2 . . .ui . . .un
is adjacency tov1v2 . . . vi . . . vn through an edge o
dimensioni with 2� i � n if vj = ui−j+1 if 1 � j � i
andvj = uj if i < j � n. The pancake graphsP2, P3,
andP4 are illustrated in Fig. 1. By definition,Pn is an
(n− 1)-regular graph withn! vertices. Moreover, it is
vertex transitive.

The pancake graphs are an important family of
terconnection networks proposed by Akers and Kri
nameurthy [1]. Some interesting properties of panc
graphs are studied [3,10,4–7]. In particular, Gates
Papadimitriou [6] studied the diameter of the panc
graphs. Until now, we do not know the exact val
of the diameter of the pancake graphs [7]. Kanev
and Feng [10] proved that all cycles of lengthl where
6 � l � n! − 2 andl = n! can be embedded in the pa
cake graphPn with n� 4.

In this paper, we consider two important propert
of the pancake graphs, fault hamiltoniancity and fa
hamiltonian connectivity. These two parameters
interconnection networks are proposed by Huang e
[8,9].

A hamiltonian cycle of G is a cycle that traverse
every vertex ofG exactly once. A graph ishamiltonian
if it has a hamiltonian cycle. A hamiltonian graphG
is k-fault hamiltonian if G − F remains hamiltonian
for everyF ⊂ V (G) ∪ E(G) with |F | � k. The fault
hamiltonicity, Hf (G), is defined to be the maximum
integer k such thatG is k-fault hamiltonian ifG
we prove thatHf (Pn)= n−3 if n� 4. Sinceδ(Pn)=
n− 1, the fault hamiltonicity of the pancake graphPn
is optimal if n� 4. In particular, the fact thatPn − F
is hamiltonian whenF consists of only a single verte
implies the existence of a cycle of lengthn! − 1. As a
simple consequence, we improve the result in [10]

To discuss the fault hamiltonicity of the panca
graphs, we need the concept of fault hamilton
connectivity. A graphG is hamiltonian connected if
there exists a hamiltonian path joining any two vertic
ofG. All hamiltonian connected graphs exceptK1 and
K2 are hamiltonian. A graphG is k-fault hamiltonian
connected if G − F remains hamiltonian connecte
for every F ⊂ V (G) ∪ E(G) with |F | � k. The
fault hamiltonian connectivity, Hκf (G), is defined to
be the maximum integerk such thatG is k-fault
hamiltonian connected ifG is hamiltonian connecte
and undefined if otherwise. It can be checked t
Hκf (G)� δ(G)−3 if Hκf (G) is defined and|V (G)| �
4. In this paper, we prove thatHκf (Pn) = n − 4 if
n� 4. Again, the fault hamiltonian connectivity of th
pancake graphPn is optimal ifn� 4.

2. Some properties of the pancake graph Pn

Let u = u1u2 . . .un be any vertex of the pancak
graphPn. We say thatui is the ith coordinate ofu,
denoted by(u)i , for 1 � i � n. By the definition of
Pn, there is exactly one neighborv of u such thatu
andv are adjacent through ani-dimensional edge with
2 � i � n. For this reason, we usei(u) to denote the
uniquei-neighbor ofu. Obviously,i(i(u)) = u. For
1 � i � n, letPn(i) denote the subgraph ofPn induced
by those verticesu with (u)n = i. Obviously,Pn can
be decomposed inton subgraphPn(i), 1 � i � n,
such that eachPn(i) is isomorphic toPn−1. Thus,
the pancake graph can be constructed recursively
I ⊆ 〈n〉. We usePn(I) to denote the subgraph ofPn
induced by

⋃
i∈I V (Pn(i)). For 1� i 
= j � n, we

useEi,j to denote the set of edges betweenPn(i) and
Pn(j). Obviously, we have the following lemmas.

Lemma 1. |Ei,j | = (n− 2)! for any 1� i 
= j � n.
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Lemma 2. Let u and v be two distinct vertices of
Pn with (u)n = (v)n such that d(u,v) � 2. Then

st

h

path of Pn(I) − F joining u and v. The lemma is
proved. ✷

o

ve
es

in
(n(u))n 
= (n(v))n.

LetF ⊂ V (Pn)∪E(Pn) be any faulty set ofPn. An
edge(u,v) is F -fault if (u,v) ∈ F , u ∈ F , or v ∈ F ;
and(u,v) is F -fault free if (u,v) is notF -fault. Let
H = (V ′,E′) be a subgraph ofPn. We useF(H) to
denote the set(V ′ ∪E′)∩ F .

Lemma 3. Assume that n� 5 and I = {i1, i2, . . . , im}
is a subset of 〈n〉 such that |I | = m � 2. Let F ⊂
V (Pn) ∪E(Pn) be any faulty set such that Pn(i)− F
is hamiltonian connected for any i ∈ I and there are
at least three F -fault free edges in Eij ,ij+1 for any
1 � j < m. Then there exists a hamiltonian path of
Pn(I) − F joining any two vertices u and v with
u ∈ V (Pn(i1))− F and v ∈ V (Pn(im))−F .

Proof. Let u1 = u andvm = v. Since there are at lea
threeF -fault free edges inEij ,ij+1 for any 1� j <m,
we can easily choose two different verticesuij and
vij+1 in Pn(ij ) such that(vij ,uij+1) is F -fault free.
Obviously,uij 
= vij . SincePn(ij )−F is hamiltonian
connected for allij ∈ I , there is a hamiltonian pat
Qj of Pn(ij ) joining uij andvij . Thus,〈ui1,Q1,v

i1,

ui2,Q2, . . . ,v
im−1,uim,Qm,v

im〉 forms a hamiltonian

Table 1
3. Fault hamiltonicity and fault hamiltonian
connectivity of the pancake graphs

Lemma 4. P4 is 1-fault hamiltonian and hamiltonian
connected.

Proof. To proveP4 is 1-fault hamiltonian we need t
proveP4 − F is hamiltonian for anyF = {f } with
f ∈ V (P4) ∪ E(P4). Without loss of generality, we
may assume thatf = 1234 if f is a vertex, orf ∈
{(1234,2134), (1234,3214), (1234,4321)} if f is an
edge. The corresponding hamiltonian cycles ofP4−F
are listed in Table 1.

To proveP4 is hamiltonian connected, we ha
to find the hamiltonian path joining any two vertic
u and v. By the symmetric property ofP4, we may
assume thatu = 1234 andv is any vertex inV (P4)−
{u}. The corresponding hamiltonian paths are listed
Table 2. Thus, the lemma is proved.✷
Lemma 5. Suppose that n� 5. If Pn−1 is (n−4)-fault
hamiltonian and (n− 5)-fault hamiltonian connected,
then Pn is (n− 3)-fault hamiltonian.
Table 2
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Proof. Assume thatF is any faulty set ofPn with
|F | � n − 3. Sincen � 5, |Ei,j − F | � (n − 2)! −
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Lemma 6. Suppose that n� 5. If Pn−1 is (n−4)-fault
hamiltonian and (n− 5)-fault hamiltonian connected,
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(n − 3) � 4 for any 1� i, j � n. Thus, there are a
least fourF -fault free edges betweenPn(i) andPn(j)
for any 1� i 
= j � n. We may assume that
∣
∣F

(
Pn(i1)

)∣∣ �
∣
∣F

(
Pn(i2)

)∣∣ � · · · � ∣
∣F

(
Pn(in)

)∣∣.

Case 1: |F(Pn(i1))| = n − 3. Thus,F ⊂ Pn(i1).
Choose any elementf in F(Pn(i1)). By the assump
tion of this lemma, there exists a hamiltonian c
cle Q of Pn(i1) − F + {f }. We may writeQ as
〈u,Q1,v, f

′,u〉 wheref ′ = f if f is incident with
Q or f ′ is any edge ofQ if otherwise. Obviously,
d(u,v) � 2. By Lemma 2,(n(u))n 
= (n(v))n. Then
by Lemma 3, there exists a hamiltonian pathQ2
of Pn(〈n〉 − {i1}) joining n(u) and n(v). Then 〈u,
n(u),Q2, n(v),v,Q1,u〉 forms a hamiltonian cycle o
Pn − F .

Case 2: |F(Pn(i1))| = n−4. Thus,|F −F(Pn(i1))|
� 1. Hence, there exists an indexi2 such that
∣
∣F

(
Pn(〈n〉 − {i1, i2})

)∣∣ = 0.

Since|Ei1,i2 − F | � (n − 2)! − (n − 3), there exists
an F -fault free edge(u,v) in Ei1,i2 such thatu ∈
V (Pn(i1)) andv ∈ V (Pn(i2)). By the assumption o
this lemma, there exists a hamiltonian cycleC1 of
Pn(i1) − F and there exists a hamiltonian cycleC2

of Pn(i2) − F . We may writeC1 as 〈u,w,Q1,z,u〉
and C2 as 〈v,y,Q2,x,v〉. Since d(x,y) � 2 and
d(w,z)� 2, by Lemma 2
(
n(x)

)
n


= (
n(y)

)
n

and
(
n(w)

)
n

= (
n(z)

)
n
.

Thus, we can choose a vertex fromx andy, sayx, and
we can choose a vertex fromw andz, sayw, such that
(n(w))n 
= (n(x))n and (w, n(w)) and (x, n(x)) are
F -fault free. By Lemma 3, there exists a hamiltoni
pathQ3 of Pn(〈n〉 − {i1, i2}) − F joining n(w) and
n(x). Hence,〈u,v,y,Q2,x, n(x),Q3, n(w),w,Q1,

u〉 forms a hamiltonian cycle ofPn − F .
Case 3: |F(Pn(i1))| � n−5. We can choose anyF -

fault free edge(u,v) in Ei1,i2 such thatu ∈ V (Pn(i1))
andv ∈ V (Pn(i2)). By the assumption of this lemm
anyPn(i) − F is hamiltonian connected fori ∈ 〈n〉.
Then by Lemma 3, there exists a hamiltonian pathQ1

of Pn−F joining u andv. Then〈u,Q1,v,u〉 forms a
hamiltonian cycle ofPn − F . ✷
then Pn is (n− 4)-fault hamiltonian connected.

Proof. Assume thatF is any faulty set ofPn with
|F | � n− 4. Letu andv be any two arbitrary vertice
of Pn − F . We want to construct a hamiltonian pa
of Pn − F joining u andv. Obviously,|Ei,j − F | �
(n− 2)!− (n− 4)� 5 for any 1� i, j � n with n� 5.
Thus, there are at least fiveF -fault free edges betwee
Pn(i) andPn(j) for any 1� i 
= j � n. We assume
that|F(Pn(i1))| � |F(Pn(i2))| � · · · � |F(Pn(in))|.

Case 1: |F(Pn(i1))| = n− 4. Hence,F ⊂ Pn(i1).
Subcase 1.1: (u)n = (v)n = i1. Choose any el

ement f in F(Pn(i1)). By the assumption of thi
lemma, there exists a hamiltonian pathQ of Pn(i1)−
F + {f } joining u and v. We may writeQ as
〈u,Q1,x, f

′,y,Q2,v〉 where f ′ = f if f is inci-
dent withQ or f ′ is any edge ofQ if otherwise.
Obviously, d(x,y) � 2. By Lemma 2,(n(x))n 
=
(n(y))n. By Lemma 3, there exists a hamiltonian pa
Q3 of Pn(〈n〉 − {i1}) joining n(x) and n(y). Then
〈u,Q1,x, n(x),Q3, n(y),y,Q2,v〉 forms a hamil-
tonian path ofPn − F joining u to v.

Subcase 1.2: (u)n = i1 and (v)n = ij with j 
=
1. By the assumption of this lemma, there exi
a hamiltonian cycleC1 of Pn(i1) − F . We may
write C1 as 〈u,y,Q1,x,u〉. Sinced(x,y) � 2, by
Lemma 2 (n(x))n 
= (n(y))n. Thus, we can choos
a vertex fromx and y, say x, such that(n(x))n 
=
(v)n. By Lemma 3, there exists a hamiltonian pa
Q2 of Pn(〈n〉 − {i1}) joining v and n(x). Then
〈u,y,Q1,x, n(x),Q2,v〉 forms a hamiltonian path o
Pn − F joining u to v.

Subcase 1.3: (u)n = (v)n = ij with j 
= 1. Since
there are at least fiveF -fault free edges inEi1,ij , there
exists anF -fault free edge(w,x) in Ei1,ij such that
(w)n = i1, (x)n = ij , andx 
= v. By the assumption
of this lemma, there exists a hamiltonian cycleC1 of
Pn(i1)− F and a hamiltonian pathQ1 of Pn(ij ) join-
ing u andv. We may writeQ1 as〈u,Q2,x,y,Q3,v〉
and C1 as 〈w,z′,Q4,z,w〉. Since d(z′,z) � 2, by
Lemma 2(n(z))n 
= (n(z′))n. Thus, we can choos
a vertex fromz and z′, say z, such that(n(z))n 
=
(n(y))n. By Lemma 3, there exists a hamiltonia
pathQ5 of Pn(〈n〉 − {i1, ij }) joining n(y) andn(z).
Then〈u,Q2,x,w,z

′,Q4,z, n(z),Q5, n(y),y,Q3,v〉
forms a hamiltonian path ofPn − F joining u andv.
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Subcase 1.4: (u)n = ij and (v)n = ik with ij , ik
and i1 are all distinct. Since there are at least five
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F -fault free edges inEi1,ij , there exists anF -fault free
edge(w,x) in Ei1,ij such that(w)n = i1, (x)n = ij ,
and x 
= u. By the assumption of this lemma, the
exists a hamiltonian cycleC1 of Pn(i1) − F and a
hamiltonian pathQ1 of Pn(ij ) joining u andx. We
may write C1 as 〈w,z,Q2,y,w〉. Since d(y,z) �
2, by Lemma 2(n(y))n 
= (n(z))n. Thus, we can
choose a vertex fromy and z, say y, such that
(n(y))n 
= (v)n. By Lemma 3, there exists a ham
tonian pathQ3 of Pn(〈n〉 − {i1, ij } joining n(y) and
v. Thus,〈u,Q1,x,w,z,Q2,y, n(y),Q3,v〉 forms a
hamiltonian path ofPn − F joining u andv.

Case 2: |F(Pn(i1))| � n− 5. By the assumption o
this lemma,Pn(i) is hamiltonian connected for eve
1 � i � n.

Subcase 2.1: (u)n = (v)n = ij . By the assumption
of this lemma, there exists a hamiltonian pathQ1 of
Pn(ij )− F joining u to v. We claim that there exist
anF -fault free edge(x,y) in Q1 such that(x, n(x))
and (y, n(y)) are F -fault free. Suppose there is n
such edge,|F | � |V (F(Pn(ij )))| + |(V (Pn(ij )) −
V (F(Pn(ij )))|/2 � (n − 1)!/2 > n − 3 for n � 5.
However,|F | � n− 3. We get a contradiction. Henc
such edge exists.

Write Q1 as〈u,Q2,x,y,Q3,v〉. Sinced(x,y) =
1, by Lemma 2(n(x))n 
= (n(y))n. By Lemma 3, there
exists a hamiltonian pathQ4 of Pn(〈n〉 − {ij }) joining
n(x) and n(y). Then 〈u,Q2,x, n(x),Q4, n(y),y,
Q3,v〉 forms a hamiltonian path ofPn − F joining u
andv.

Subcase 2.2:(u)n 
= (v)n. By Lemma 3, there exist
a hamiltonian path ofPn − F joining u andv. ✷
Theorem 1. Let n be a positive integers with n � 4.
Then Pn is (n− 3)-fault hamiltonian and (n− 4)-fault
hamiltonian connected.

Proof. We prove this theorem by induction. Th
induction base,n = 4, is proved in Lemma 4. With
Lemmas 5 and 6, we prove the induction step.✷
Corollary 1. Hf (Pn) = n − 3 and Hκf (Pn) = n − 4
for any positive integer n with n� 4.
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