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Abstract

In this paper, we consider the fault hamiltonicity and the fault hamiltonian connectivity of the pancakeRyraésume
thatF C V(P,)UE(Py,). Forn > 4, we prove thaP, — F is hamiltonian if F| < (n — 3) and P, — F is hamiltonian connected
if |[F| < (n—4). Moreover, all the bounds are optimal.
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1. Introduction degree inG. We uses(G) to denote mifdeg;(x) |

x € V(G)}. Two verticesu and v are adjacent if

Network topology is a crucial factor for the in- (u,v) € E. A path is represented byvo, v1, vz, ...,
terconnection networks since it determines the per- vt). Thelength of a pathQ is the number of edges

formance of the networks. Many interconnection net- in Q. We also write the pathvo, v1, v2, ..., vx) as

work topologies have been proposed in the litera- (vo, Q1, vi, Vig1,...,vj, Q2, s, ..., k), WhereQq is
ture for the purpose of connecting hundreds or thou- the path(vg, v1, ..., v;) and Q3 is the path(v;, vji1,
sands of processing elements. Network topology is al- ..., v;). Hence, it is possible to write a path as

ways represented by a graph where nodes representuvg, v1, Q, v1, v2, ..., v) if the length of Q is 0.
processors and edges represent links between procesSometimes, a path is also representedigy vy, . . .,
Sors. vi,e,vi+1,...,U,) t0 emphasize that is the edge
For the graph definition and notation we follow (v;, v;,1). We used(u, v) to denote the distance be-
[2]. G=(V,E) is agraphif V is a finite set and  tweenu andv, i.e., the length of the shortest path join-
E is a subset of(u, v) | (4, v) is an unordered pair  ingx andv. A path is ahamiltonian path if its vertices
of V}. We say thatV is thevertex set and £ is the  spanV. A cycleis a path with at least three vertices
edge set. For any vertexc of V, deg;(x) denotes its  gych that the first vertex is the same as the last vertex.
Throughout this paper, we assume thas a posi-
msponding author. Address: 112 Shan-Jiau Rd, Da-Tsuen, tive mte_ger' V_Ve usén) to denote the sdtl, 2., n}
Changhua 51505, Taiwan, R.O.C. The n-dimensional pancake graph, denoted byP,, is
E-mail address: spring@mail.dyu.edu.tw (C.-N. Hung). a graph with the vertex set
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Fig. 1. The pancake grapi#, P3, and P4.

V(Py) = {uguz...uy | uj € (n) andu; # u;
fori # j}.

The adjacency is defined as followsius ... u; .. .u,
is adjacency tovivz...v;...v, through an edge of
dimension with2<i <nifv; =u;_;j111f1 < j <i
andv; =u; if i < j <n.The pancake graph®, Ps,
and P, are illustrated in Fig. 1. By definitiorR, is an
(n — 1)-regular graph with:! vertices. Moreover, it is
vertex transitive.

The pancake graphs are an important family of in-
terconnection networks proposed by Akers and Krish-
nameurthy [1]. Some interesting properties of pancake

graphs are studied [3,10,4-7]. In particular, Gates and

Papadimitriou [6] studied the diameter of the pancake
graphs. Until now, we do not know the exact value
of the diameter of the pancake graphs [7]. Kanevsky
and Feng [10] proved that all cycles of lengtivhere

6 <! < n!—2andl =n! can be embedded in the pan-
cake graphP, with n > 4.

In this paper, we consider two important properties
of the pancake graphs, fault hamiltoniancity and fault
hamiltonian connectivity. These two parameters for
interconnection networks are proposed by Huang et al.
[8,9].

A hamiltonian cycle of G is a cycle that traverses
every vertex ofG exactly once. A graph isamiltonian
if it has a hamiltonian cycle. A hamiltonian grajgh
is k-fault hamiltonian if G — F remains hamiltonian
for every F C V(G) U E(G) with |F| < k. Thefault
hamiltonicity, 7 ¢ (G), is defined to be the maximum
integer k such thatG is k-fault hamiltonian if G
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is hamiltonian and undefined if otherwise. Clearly,
Hr(G) <8(G) —2if Hy(G) is defined. In this paper,
we prove that{ s (P,) =n—3ifn > 4. Sinces(P,) =
n — 1, the fault hamiltonicity of the pancake graph
is optimal ifn > 4. In particular, the fact thak, — F
is hamiltonian wherF consists of only a single vertex
implies the existence of a cycle of length— 1. As a
simple consequence, we improve the result in [10].
To discuss the fault hamiltonicity of the pancake
graphs, we need the concept of fault hamiltonian
connectivity. A graphG is hamiltonian connected if
there exists a hamiltonian path joining any two vertices
of G. All hamiltonian connected graphs exceépt and
K> are hamiltonian. A graply is k-fault hamiltonian
connected if G — F remains hamiltonian connected
for every F Cc V(G) U E(G) with |F| < k. The
fault hamiltonian connectivity, H’}(G), is defined to
be the maximum integek such thatG is k-fault
hamiltonian connected i is hamiltonian connected
and undefined if otherwise. It can be checked that
H’}(G) <8(G)-3if H’}(G) is defined andlV (G)| >
4. In this paper, we prove that’(P,) =n — 4 if
n > 4. Again, the fault hamiltonian connectivity of the
pancake grapl®, is optimal ifn > 4.

2. Some properties of the pancake graph P,

Let u = ujuz...u, be any vertex of the pancake
graph P,. We say thaty; is theith coordinate ofu,
denoted by(u);, for 1 < i < n. By the definition of
P,, there is exactly one neighberof u such thatu
andv are adjacent through @rdimensional edge with
2 <i < n. For this reason, we uséu) to denote the
uniquei-neighbor ofu. Obviously,i (i (u)) = u. For
1<i < n,letP,(i) denote the subgraph &, induced
by those verticeg with (u), = i. Obviously, P, can
be decomposed inta subgraphP, (i), 1 <i < n,
such that eachP,(i) is isomorphic toP,_1. Thus,
the pancake graph can be constructed recursively. Let
I C (n). We useP, (I) to denote the subgraph &f,
induced bylJ;; V(P (i)). For 1<i # j < n, we
useE"/ to denote the set of edges betwa®yii) and
P, (j). Obviously, we have the following lemmas.

Lemmal. |[Ei/|=n—2) forany1<i # j <n.
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Lemma 2. Let u and v be two distinct vertices of
P, with (u), = (v),, such that d(u,v) < 2. Then
(n@))n # (n(v))n-

Let F Cc V(P,)UE(P,) be any faulty set oP,. An
edge(u, v) is F-fault if (u,v)e F,ue F,orve F,
and (u, v) is F-fault free if (u, v) is not F-fault. Let
H = (V’, E') be a subgraph of,,. We useF (H) to
denote the setV' UE' )N F.

Lemma 3. Assumethatn >5and I = {i1,i2,...,in}
is a subset of (n) such that |I| =m > 2. Let F C
V(P,) U E(P,) be any faulty set such that P,(i) — F
is hamiltonian connected for any i € I and there are
at least three F-fault free edges in E'i-ii+1 for any
1 < j < m. Then there exists a hamiltonian path of
P,(I) — F joining any two vertices u and v with
uecV(P,(i1)— Fandve V(P,(in)) — F

Proof. Letu! = u andv™ = v. Since there are at least
three F-fault free edges ik’ -\i+1 for any 1< j < m,
we can easily choose two different vertice’s and
v'/+1 in P,(i;) such that(v'/, u'i+1) is F-fault free.
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path of P,(I) — F joining u andv. The lemma is
proved. O

3. Fault hamiltonicity and fault hamiltonian
connectivity of the pancake graphs

Lemma 4. Py is 1-fault hamiltonian and hamiltonian
connected.

Proof. To provePy is 1-fault hamiltonian we need to
prove P4 — F is hamiltonian for anyF = {f} with

f € V(P4) U E(Pyg). Without loss of generality, we
may assume thaf = 1234 if f is a vertex, orf €
{(1234 2134, (1234 3214, (1234 432D} if f isan
edge. The corresponding hamiltonian cycle®pf F
are listed in Table 1.

To prove P4 is hamiltonian connected, we have
to find the hamiltonian path joining any two vertices
u andv. By the symmetric property oP;, we may
assume that = 1234 andv is any vertex inV (P4) —
{u}. The corresponding hamiltonian paths are listed in
Table 2. Thus, the lemma is provedd

Obviously,u'/ # v'i. SinceP,(i;) — F is hamiltonian

connected for ali; € I, there is a hamiltonian path
Q; of P,(ij) jommg u'i andv'i. Thus,(ut, 01, v'1,
w2, Qo ... vim-1 yin Q. vim) formsahamlltoman

Lemmab. Supposethat n > 5. If P,_1 is (n — 4)-fault
hamiltonian and (n — 5)-fault hamiltonian connected,
then P, is (n — 3)-fault hamiltonian.

Table 1

(3214, 2314, 4132, 1432, 2341, 4321, 3421, 2431, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 4312, 2134, 3124, 1324, 4231, 3241, 1423, 4123, 3214)

(1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143, 4123, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321, 1234)
(1234, 4321, 3421, 2431, 4231, 3241, 2341, 1432, 4132, 3142, 1342, 4312, 3412, 2143, 1243, 4213, 2413, 1423, 4123, 3214, 2314, 1324, 3124, 2134, 1234)
(1234, 3214, 2314, 4132, 1432, 3412, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324, 3124, 2134, 1234)

Table 2

(1234, 3214, 2314, 1324, 4231, 3241, 2341, 4321, 3421, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134, 3124, 4213, 2413, 1423, 4123, 2143, 1243)
(1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341, 1432, 3412, 2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 2134, 3124, 1324)
(1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 4231, 1324, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4231, 1432, 3412, 2143, 4123, 1423)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213, 1243, 3421, 4321, 2341, 2141, 4231, 2431, 1342, 3142, 4132, 1432)
(1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 4132, 4132, 3142, 1342, 2431, 4231, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 1423, 4123, 2143)
(1234, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 4231, 1324, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 3142, 4132, 2314)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 2143, 3412, 1432, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 2341, 4321, 3421, 1243, 4213, 2413)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143, 4123, 1423, 2413, 4213, 1243, 3421, 4321, 2341, 3214, 4231, 2431)
(1234, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 4321, 2341, 1432, 3412, 4312, 2134, 3124)
(1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 1423, 4123, 2143, 3412, 1432, 4132, 3142)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

1234, 2134, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 4231, 3241, 1423, 2413, 4213, 1243, 2143, 4123, 3214
1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213, 1243, 3421, 4321, 2341, 1432, 4132, 3142, 1342, 2431, 4231, 3241
1234, 3214, 2314, 1324, 4231, 3241, 2341, 4321, 3421, 2431, 1342, 4312, 2134, 3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412
1234, 3214, 2314, 4132, 1432, 3412, 4312, 2134, 3124, 1324, 4231, 2431, 1342, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421
1234, 3214, 2314, 1324, 4231, 3241, 2341, 4321, 3421, 2431, 1342, 4312, 2134, 3124, 4213, 1243, 2143, 3412, 1432, 4132, 3142, 2413, 1423, 4123
1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132
1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431, 4231, 3241, 2341, 4321, 3421, 1243, 2143, 4123, 1423, 2413, 4213
1234, 4321, 3421, 2431, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 2134, 3124, 1324, 4231
1234, 3214, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 1342, 2431, 4231, 1324, 3124, 2134, 4312
1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143, 4123, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321
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Proof. Assume thatF is any faulty set ofP, with
|F| <n—3.Sincen >5, |[E"/ — F| > (n —2)! —
(n — 3) > 4 for any 1< i, j < n. Thus, there are at
least fourF-fault free edges betwed?, (i) and P, (j)
forany 1<i # j <n. We may assume that

|F(Pu(in)| = [F(Pu(i2)| = -+ = |F(Pu(in))|-

Case 1: |F(P,(i1)| = n — 3. Thus,F C P,(i1).
Choose any element in F(P,(i1)). By the assump-
tion of this lemma, there exists a hamiltonian cy-
cle Q of P,(i1) — F + {f}. We may write Q as
(w, Q1,v, f',u) where f' = f if f is incident with
Q or f’ is any edge ofQ if otherwise. Obviously,
d(u,v) < 2. By Lemma 2,(n(u)), # (n(v)),. Then
by Lemma 3, there exists a hamiltonian pafh
of P,({n) — {i1}) joining n(u) and n(v). Then (u,
n(u), Q2,n(v), v, Q1, u) forms a hamiltonian cycle of
P, — F.

Case2: |F(P,(i1)| =n—4.Thus|F — F(P,(i1))]
< 1. Hence, there exists an indexsuch that

|F(Pu((n) — {i1.i2}))| = 0.

Since|Ev2 — F| > (n — 2)! — (n — 3), there exists
an F-fault free edge(u, v) in E'2 such thatu
V(P,(i1)) andv € V(P,(i2)). By the assumption of
this lemma, there exists a hamiltonian cydg of
P,(i1) — F and there exists a hamiltonian cyd®
of P,(i2) — F. We may writeC1 as (u, w, 01,2z, u)
and C, as (v, y, Q2,x,v). Sinced(x,y) <2 and
d(w,z) <2,byLemma 2

(n(x))n # (n(y))n and (n(w))n 7& (n(z))n

Thus, we can choose a vertex franandy, sayx, and
we can choose a vertex fromandz, sayw, such that
(n(w)), # (n(x)), and (w,n(w)) and (x,n(x)) are
F-fault free. By Lemma 3, there exists a hamiltonian
path Q3 of P,({n) — {i1,i2}) — F joining n(w) and
n(x). Hence,(u, v, y, 02, x,n(x), 03, n(w), w, Q1,
u) forms a hamiltonian cycle o, — F.

Case3:|F(P,(i1))| < n—5. We can choose anfy-
fault free edgéu, v) in E'12 such thaw € V (P, (i1))
andv € V(P,(i2)). By the assumption of this lemma,
any P, (i) — F is hamiltonian connected fare (n).
Then by Lemma 3, there exists a hamiltonian p@th
of P, — F joining u andv. Then(u, Q1, v, u) forms a
hamiltonian cycleof, — F. O
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Lemma 6. Supposethat n > 5. If P,_1 is (n — 4)-fault
hamiltonian and (n — 5)-fault hamiltonian connected,
then P, is (n — 4)-fault hamiltonian connected.

Proof. Assume thatF is any faulty set ofP, with
|F| <n—4.Letu andv be any two arbitrary vertices
of P, — F. We want to construct a hamiltonian path
of P, — F joining u andv. Obviously,|E"/ — F| >
n—2!—m—4) >5forany 1< i, j <nwithn > 5.
Thus, there are at least fivefault free edges between
P, (i) and P,(j) for any 1< i # j < n. We assume
that| F (P, (i) 2 |F(Pu(i2))| = - 2 [F (Pu(in))]-

Casel: |F(P,(i1))|=n —4.HenceF C P,(i1).

Subcase 1.1: (u), = (v), = i1. Choose any el-
ement f in F(P,(i1)). By the assumption of this
lemma, there exists a hamiltonian padhof P, (i1) —

F + {f} joining u and v. We may write Q as
(u, Q1,x, f',y, Q2,v) where f' = f if f is inci-
dent with Q or f’ is any edge ofQ if otherwise.
Obviously, d(x, y) < 2. By Lemma 2, (n(x)), #
(n(y)),. By Lemma 3, there exists a hamiltonian path
03 of P,({n) — {i1}) joining n(x) and n(y). Then
(u, 01, x,n(x), 03,n(y),y, 02,v) forms a hamil-
tonian path ofP, — F joining u to v.

Subcase 1.2: (u), = i1 and (v), = i; with j #

1. By the assumption of this lemma, there exists
a hamiltonian cycleC; of P,(i1) — F. We may
write C1 as (u, y, Q1,x,u). Sinced(x,y) < 2, by
Lemma 2 (n(x)), # (n(y)),. Thus, we can choose
a vertex fromx and y, sayx, such that(n(x)), #
(v),. By Lemma 3, there exists a hamiltonian path
02 of P,({n) — {i1}) joining v and n(x). Then
(u,y, 01,x,n(x), Q2, v) forms a hamiltonian path of
P, — F joiningu to v.

Subcase 1.3: (u), = (v), =i; with j # 1. Since
there are at least fivE-fault free edges itfE'1-/, there
exists anF-fault free edggw, x) in E'*/j such that
(w), = i1, (x), =ij, andx # v. By the assumption
of this lemma, there exists a hamiltonian cy¢lge of
P,(i1) — F and a hamiltonian patf®; of P, (i;) join-
ingu andv. We may writeQ1 as(u, 02,x,y, 03, v)
and C1 as (w, 7/, Qa,z, w). Sinced(z’,z) < 2, by
Lemma 2 (n(z)), # (n(z')),. Thus, we can choose
a vertex fromz and z’, say z, such that(n(z)), #
(n(y)),. By Lemma 3, there exists a hamiltonian
path Qs of P,({n) — {i1,i;}) joining n(y) andn(z).
Then(u, Q2,x,w,z’, Q4,2,1(2), 0s5,n(y), y, 03,v)
forms a hamiltonian path af, — F joining u andv.
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Subcase 1.4: (), =i; and (v), = i with i;, i
and i1 are all distinct. Since there are at least five
F-fault free edges £/, there exists ai-fault free
edge(w, x) in EJ such that(w), = i1, (x), =i,
and x # u. By the assumption of this lemma, there
exists a hamiltonian cycl€; of P,(i1) — F and a
hamiltonian pathQy of P,(i;) joining # andx. We
may write C1 as (w, z, Q2, y, w). Sinced(y,z) <
2, by Lemma 2(n(y)), # (n(z)),. Thus, we can
choose a vertex fromy and z, say y, such that
n(y)n # (v),. By Lemma 3, there exists a hamil-
tonian pathQs of P,({(n) — {i1,i;} joining n(y) and
v. Thus,(u, Q1,x,w, z, 02, y,n(y), O3, v) forms a
hamiltonian path o, — F joining u andv.

Case 2: |F(P,(i1))| < n — 5. By the assumption of
this lemma,P, (i) is hamiltonian connected for every
1<i<n.

Subcase 2.1: (u), = (v), =i;. By the assumption
of this lemma, there exists a hamiltonian padh of
P,(ij) — F joining u to v. We claim that there exists
an F-fault free edggx, y) in Q3 such that(x, n(x))
and (y,n(y)) are F-fault free. Suppose there is no
such edge,|F| > [V(F(P,(i)))| + [(V(Pa(ij) —
V(F(P,iNI/2= (n — DY/2>n — 3 for n > 5.
However,| F| < n — 3. We get a contradiction. Hence,
such edge exists.

Write Q1 as{u, Q2,x, y, O3, v). Sinced(x, y) =
1, by Lemma2n(x)), # n(y)),. By Lemma 3, there
exists a hamiltonian pat@4 of P,({n) — {i;}) joining
n(x) and n(y). Then (u, Q2, x,n(x), Q4,n(y), y,
03, v) forms a hamiltonian path aP, — F joining u
andv.

Subcase2.2:(u), # (v),. By Lemma 3, there exists
a hamiltonian path oP, — F joiningu andv. O

Theorem 1. Let n be a positive integers with n > 4.
Then P, is (n — 3)-fault hamiltonian and (n — 4)-fault
hamiltonian connected.

Proof. We prove this theorem by induction. The
induction basep = 4, is proved in Lemma 4. With
Lemmas 5 and 6, we prove the induction stem
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Sincesd(P,) =n — 1, we have the following corol-
lary.

Corollary 1. Hy(P,) =n — 3 and H’}(Pn) =n-—4
for any positive integer n withn > 4.
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