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Abstract

In this paper we propose a family of cubic bipartite planar graphs, brother trees, denoted byBT(n) with n � 2. Any BT(n)

is hamiltonian. It remains hamiltonian if any edge is deleted. Moreover, it remains hamiltonian when a pair of nodes (o
each partite set) is deleted. These properties are optimal. Furthermore, the number of nodes inBT(n) is 6 · 2n − 4 and the
diameter is 2n + 1.
 2003 Elsevier Science B.V. All rights reserved.
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An interconnection network connects the proc
sors of the parallel computer. Its architecture can
represented as a graph in which the nodes corres
to the processors and the edges to the commun
tion links. Hence we use graphs and networks in
changeably. There are many mutually conflicting
quirements in designing the topology of computer n
works. It is almost impossible to design a netwo
optimum from all aspects. One has to design a s
able network satisfying the requirements. Diamete
one of the major requirements in designing the top
ogy of network. Usually a network with smaller d
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ing” approach is used in some distributed operat
systems. Interconnection network requires the p
ence of hamiltonian cycles in the structure to m
this approach. Fault tolerance is also desirable in m
sive parallel systems that have a relatively high pr
ability of failure. A number of fault tolerant design
for specific multiprocessor architectures have b
proposed based on graph theoretic models in wh
the processor-to-processor interconnection structu
represented by a graph.

For the graph definition and notation, we follow [1
G = (V ,E) is a graph if V is a finite set andE is a
subset of{(a, b) | (a, b) is an unordered pair ofV }. We
say thatV is thenode set andE is theedge set of G.
Two nodes,a andb, areadjacent if (a, b)∈ E. A path
is a sequence of consecutive adjacent nodes. A

hts reserved.
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is usually delimited by〈x0, x1, x2, . . . , xn−1〉. We use
P−1 to denote the path〈xn−1, xn−2, . . . , x1, x0〉 if P
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A 1p-hamiltonian graphG is optimal if it contains
the least number of edges among all 1p-hamiltonian
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is the path〈x0, x1, x2, . . . , xn−1〉. Let dG(x, y) denote
the distance between two nodesx andy in graphG

andD(G) denote the diameter ofG. A path is called a
hamiltonian path if its nodes are distinct and spanV .

A cycle is a path of at least three nodes such t
the first node is the same as the last node. A cy
is called ahamiltonian cycle if its nodes are distinc
except for the first node and last node and if they s
V . A graph ishamiltonian if it contains a hamiltonian
cycle. A graphG = (V ,E) is 1-edge hamiltonian if
G − e is hamiltonian for anye ∈ E. Obviously, any
1-edge hamiltonian graph is hamiltonian. A 1-ed
hamiltonian graphG is optimal if it contains the leas
number of edges among all 1-edge hamiltonian gra
with the same number of nodes asG. A graphG =
(V ,E) is 1-node hamiltonian if G − v is hamiltonian
for any v ∈ V . A 1-node hamiltonian graphG is
optimal if it contains the least number of edges amo
all 1-node hamiltonian graphs with the same num
of nodes asG. A graphG = (V ,E) is 1-hamiltonian
if it is 1-edge hamiltonian and 1-node hamiltonia
A 1-hamiltonian graphG is optimal if it contains the
least number of edges among all 1-hamiltonian gra
with the same number of nodes asG. This study of
optimal 1-hamiltonian graphs is motivated by optim
fault tolerant token ring design in computer networ
A number of optimal 1-hamiltonian graphs have be
proposed [2,5,7]. Obviously, degG(x) � 3 for any
nodex in a 1-edge hamiltonian, 1-node hamiltonia
or 1-hamiltonian graphG. It has been proven that an
1-hamiltonian regular graph is optimal if and only if
is 3-regular.

Note that any cycle of a bipartite graph contains
same number of nodes in each partite set. Thus,
deletion of a node from a hamiltonian bipartite gra
results in a non-hamiltonian graph. However, the fa
tolerant hamiltonian property is not the only fact
in designing the topology of networks. For examp
the hypercubeQn is a hamiltonian bipartite grap
for n � 2. Hence, it is not 1-hamiltonian. When fau
occurs, we are interested in the longest cycle in
faulty hypercube [6].

Let G be a bipartite graph with bipartitionW and
B. We useF(G) to denote{{c, d} | c ∈ W, d ∈ B}.
A hamiltonian bipartite graph is 1p-hamiltonian if
G − F remains hamiltonian for anyF ∈ F(G).
graphs with the same number of nodes asG. Obvi-
ously, degG(x) � 3 for any nodex in a 1p-hamiltonian
graph G. Thus any 1p-hamiltonian graph that i
3-regular is optimal. In [3], a family of optimal 1-edg
hamiltonian and 1p-hamiltonian bipartite graphs, ca
led honeycomb rectangular torus, is discussed. It ca
be shown that the diameter of the honeycomb rec
gular torus is�(

√
p ), wherep is the number of nodes

In this paper, we propose a family of graphs, cal
brother trees, denoted byBT(n). The graphBT(n)

is planar, bipartite, 3-regular, 1-edge hamiltonian a
1p-hamiltonian. The diameter of the brother tree
�(logp), wherep is the number of nodes.

2. Definitions and notation

To define brother trees, first we define brother ce
Assume thatk is an integer withk � 2. Thekth brother
cell BC(k) is the five tuple(Gk,wk, xk, yk, zk), where
Gk = (V ,E) is a bipartite graph with bipartitionW
(white) andB (black) and contains four distinct nod
wk,xk, yk and zk . wk is the white terminal; xk the
white root; yk theblack terminal andzk theblack root.
We can recursively defineBC(k) as follows:

(1) BC(2) is the 5-tuple(G2,w2, x2, y2, z2) where
V (G2) = {w2, x2, y2, z2, s, t}, and E(G2) =
{(w2, s), (s, x2), (x2, y2), (y2, t), (t, z2), (w2, z2),

(s, t)}.
(2) The kth brother cellBC(k) with k � 3 is com-

posed of two disjoint copies of(k − 1)th brother
cells

BC1(k − 1) = (
G1

k−1,w
1
k−1, x

1
k−1, y

1
k−1, z

1
k−1

)
,

BC2(k − 1) = (
G2

k−1,w
2
k−1, x

2
k−1, y

2
k−1, z

2
k−1

)
,

a white rootxk, and a black rootzk. To be specific,

V (Gk) = V
(
G1

k−1

) ∪ V
(
G2

k−1

) ∪ {xk, zk},
E(Gk) = E

(
G1

k−1

) ∪ E
(
G2

k−1

)

∪ {(
zk, x

1
k−1

)
,
(
zk, x

2
k−1

)
,
(
xk, z

1
k−1

)
,

(
xk, z

2
k−1

)
,
(
y1
k−1,w

2
k−1

)}
,

wk = w1
k−1, andyk = y2

k−1.



S.-S. Kao, L.-H. Hsu / Information Processing Letters 86 (2003) 263–269 265
Fig. 1. (a)BC(2), (b) BC(3) and (c)BC(4).

Fig. 2. (a)BT(1), (b) BT(3).

BC(2), BC(3), and BC(4) are shown in Fig. 1.
1 2

∪ {(z1
n+1, x

2
n), (y1

n+1,w
2
n), (x1

n+1, z
2
n), (w1

n+1, y
2
n)}.
We note thatBC (k − 1) and BC (k − 1) are iso-
s
,

s

BT(1) and BT(3) are shown in Fig. 2. Obviously,

i-
e

in
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morphic for k � 3. This property is referred to a
the symmetrical property of BC(k). For this reason
we define the degenerate case,BC(1), as the 5-tuple
(G1,w1, x1, y1, z1) as V (G1) = {w1, y1}, E(G1) =
{(w1, y1)} such thatx1 = w1 andy1 = z1.

We can also define the brother cellBC(k) from
the complete binary tree B(k), whereV (B(k)) = {1,
2, . . . ,2k − 1} and E(B(k)) = {(i, j) | �j/2� = i}.
Assume thatk is a positive integer withk � 2. The
kth brother cellBC(k) = (Gk,wk, xk, yk, zk) can be
constructed by combining twoB(k)’s, theupper tree
B(k)u and thelower tree B(k)l , and adding edge
between their leaf nodes.

Let n be a positive integer withn � 1. Thebrother
tree, BT(n), is composed of an(n + 1)th brother
cell BC(n+ 1) = (G1

n+1,w
1
n+1, x

1
n+1, y

1
n+1, z

1
n+1) and

annth brother cellBC(n) = (G2
n,w

2
n, x

2
n, y

2
n, z

2
n) with

V (G1
n+1) ∩ V (G2

n) = ∅. To be specific,V (BT(n)) =
V (G1

n+1)∪V (G2
n) andE(BT(n)) = E(G1

n+1)∪E(G2
n)
BT(n) is a 3-regular bipartite planar graph with 6·2n−
4 nodes. Because the(n + 1)th brother cell is com-
posed of two disjointnth brother cells and two term
nals, thenth brother treeBT(n) is composed of thre
disjoint nth brother cells,BC1(n), BC2(n), BC3(n)

and two terminals,{x1
n+1, z

1
n+1}. Moreover,BC1(n),

BC2(n) andBC3(n) are arranged in a cyclic order
BT(n). Thus any two nodes ofBT(n) are in the union
of two in the node set ofBC1(n), BC2(n), BC3(n) and
{x1

n+1, z
1
n+1}. For this reason, we can assume with

loss of generality that any two nodes ofBT(n) are in
G1

n+1 and any edge ofBT(n) is inG1
n+1. This property

is referred to as thesymmetrical property of BT(n).

3. Diameter

Theorem 3.1. D(BT(n)) = 2n + 1 for any positive
integer n with n � 1.
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Proof. It is easy to prove by induction that
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4. 1-edge hamiltonian

sy
dBT(n) x1
n+1, z

1
n+1 = 2n+ 1.

Let u andv be any two nodes ofBT(n). We will prove
that dBT(n)(u, v) � 2n + 1. Using the symmetrica
property of brother trees, we may assume thatu and
v are in the brother cellG1

n+1. Note that the brothe
cell G1

n+1 is composed of two complete binary tre
B(n + 1)u andB(n + 1)l . Thus,

(1) bothu andv are inV (B(n + 1)u), or bothu and
v are inV (B(n + 1)l), or

(2) u ∈ V (B(n + 1)u) andv ∈ V (B(n + 1)l).

Now, we introduce some notations before our pro
LetV (B(n+1)u) = {1,2, . . . ,2n+1−1} andV (B(n+
1)l) = {1′,2′, . . . , (2n+1 − 1)′}. Now, join B(n + 1)u
and B(n + 1)l with the edge set{(2n + i, (2n +
i)′), ((2n + i)′,2n + i + 1) | 0 � i � 2n − 2} ∪
{(2n+1 − 1, (2n+1 − 1)′)} to obtain the brother ce
(G1

n+1,w
1
n+1, x

1
n+1, y

1
n+1, z

1
n+1), wherexn+1 = 1 and

zn+1 = 1′ if n is even andxn+1 = 1′ andzn+1 = 1 if
otherwise. Moreover,wn+1 = 2n andyn+1 = (2n+1 −
1)′.

Case 1: By symmetry, we may assume that bothu

andv are inV (B(n + 1)u). Suppose thatu is labeled
i and v is labeledj . Obviously, max{log2(i + 1),
log2(j + 1)} � n + 1. SincedB(n+1)(i,1) = �log2(i +
1)� − 1, there exists a pathP1 of length �log2(i +
1)� − 1 joining u to the root ofB(n + 1)u. Similarly,
there exists a pathP2 of length �log2(j + 1)� − 1
joining v to 1. Thus,〈u,P1,1,P−1

2 , v〉 forms a path
joining u to v in B(n + 1)u. Thus, dBT(n)(u, v) �
�log2(i + 1)� + �log2(j + 1)� − 2 � 2n+ 1.

Case 2: We may assume thatu is labeledi andv

is labeledj ′. Without loss of generality, we assum
that i � j . There then exists a pathP1 from i to some
leaf nodeh of B(n + 1)u of length n − (�log2(i +
1)� − 1). Let h′ be a neighborhood ofh of BT(n) in
B(n + 1)l . Obviously, there exists a path of lengthn
from h′ to the root 1′ of B(n + 1)l . Moreover, there
exists a pathP3 of length�log2(j + 1)� − 1 joining
v to 1′. Obviously,〈u,P1, h,h

′,P2,1′,P−1
3 , v〉 forms

a path joiningu to v in G1
n+1. Thus,dBT(n)(u, v) �

2n+ 1− �log2(i + 1)� + �log2(j + 1)�. Since,i � j ,
dBT(n)(u, v) � 2n+ 1.

The theorem is proven.✷
Lemma 4.1. Assume that BC(n) = (Gn,wn, xn, yn, zn)

for some integer n � 2.

(1) There exists a hamiltonian path P 1
n of Gn joining

wn to yn.
(2) There exists a hamiltonian path P 2

n of Gn joining
wn to zn.

(3) There exists a hamiltonian path P 3
n of Gn joining

xn to yn.
(4) There exists a hamiltonian path P 4

n of Gn joining
xn to zn.

(5) There exist two disjoint paths P 5
n and P 6

n such that
(i) they span Gn, (ii) P 5

n joins wn and xn, and
(iii) P 6

n joins yn and zn.
(6) There exist two disjoint paths P 7

n and P 8
n such that

(i) they span Gn, (ii) P 7
n joins wn and zn, and

(iii) P 8
n joins xn and yn.

Proof. We prove this lemma by induction. It is ea
to check that the lemma holds inBC(2). Assume that
the lemma holds forBC(n). By definition,BC(n + 1)
is composed of two disjoint copies ofnth brother cells
BC1(n) and BC2(n), a white rootxn+1, and a black
rootzn+1. By induction,{P i,1

n }8
i=1 exists satisfying the

lemma forBC1(n) and{P i,2
n }8

i=1 exists satisfying the
lemma forBC2(n).

We then set

P 1
n+1 = 〈

wn+1 = w1
n,P

5,1
n , x1

n, zn+1, x
2
n, (P

5,2
n )−1,w2

n,

y1
n,P

6,1
n , z1

n, xn+1, z
2
n, (P

6,2
n )−1, y2

n = yn+1
〉;

P 2
n+1 = 〈

wn+1 = w1
n,P

2,1
n , z1

n, xn+1, z
2
n,

(P 4,2
n )−1, x2

n, zn+1
〉;

P 3
n+1 = 〈

xn+1, z
2
n, (P

7,2
n )−1,w2

n, y
1
n, (P

3,1
n )−1,

x1
n, zn+1, x

2
n,P

8,2
n , y2

n = yn+1
〉;

P 4
n+1 = 〈

xn+1, z
2
n, (P

2,2
n )−1,w2

n, y
1
n, (P

3,1
n )−1,

x1
n, zn+1

〉;
P 5
n+1 = 〈

wn+1 = w1
n,P

1,1
n , y1

n,w
2
n,P

7,2
n , z2

n, xn+1
〉;

P 6
n+1 = 〈

yn+1 = y2
n, (P

8,2
n )−1, x2

n, zn+1
〉;

P 7
n+1 = 〈

wn+1 = w1
n,P

5,1
n , x1

n, zn+1
〉;

P 8
n+1 = 〈

xn+1, z
1
n, (P

6,1
n )−1, y1

n,w
2
n,P

1,2
n , y2

n = yn+1
〉
.

The lemma is proven. ✷
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Lemma 4.2. Assume that BC(n) = (Gn,wn, xn, yn,

zn) for some integer n � 2. Let e be any edge of BC(n).

sy

,
for
g

Q8
n+1(e) = 〈

xn+1, z
2
n,

(
P 6,2
n

)−1
, y2

n = yn+1
〉;

〈

-
-
-

f

f

r
es
Then at least one of the following properties holds.

(1) There exists a hamiltonian path Q1
n(e) of Gn − e

joining wn to yn.
(2) There exists a hamiltonian path Q2

n(e) of Gn − e

joining wn to zn.
(3) There exists a hamiltonian path Q3

n(e) of Gn − e

joining xn to yn.
(4) There exists a hamiltonian path Q4

n(e) of Gn − e

joining xn to zn.
(5) There exist two disjoint paths Q5

n(e) and Q6
n(e)

such that (i) they span Gn − e, (ii) Q5
n(e) joins wn

and xn, and (iii) Q6
n(e) joins yn and zn.

(6) There exist two disjoint paths Q7
n(e) and Q8

n(e)

such that (i) they span Gn − e, (ii) Q7
n(e) joins wn

and zn, and (iii) Q8
n(e) joins xn and yn.

Proof. We prove this lemma by induction. It is ea
to check that the lemma holds forBC(2). Assume that
the lemma holds forBC(n). By definition,BC(n + 1)
is composed of two disjoint copies ofnth brother cells
BC1(n) and BC2(n), a white rootxn+1, and a black
root zn+1. Let e be any edge ofBC(n + 1). Using the
symmetrical property ofBC(n + 1), we may assume
thate is (zn+1, x

1
n), (z

1
n, xn+1), (y1

n,w
2
n), or an edge in

BC1(n). By induction, there exists{P i,1
n }8

i=1 satisfying
the lemma forBC1(n) if e /∈ E(BC1(n)) and there
exists {P i,2

n }8
i=1 satisfying the lemma forBC2(n) if

e /∈ E(BC2(n)).
Case 1: e = (zn+1, x

1
n). We setQ7

n+1(e) as〈wn+1 =
w1

n,P
1,1
n , y1

n,w
2
n,P

5,2
n , x2

n, zn+1〉 andQ8
n+1(e) as

〈xn+1, z
2
n, (P

6,2
n )−1, y2

n = yn+1〉.
Case 2: e = (z1

n, xn+1). We setQ5
n+1(e) as〈wn+1 =

w1
n,P

1,1
n , y1

n,w
2
n,P

7,2
n , z2

n, xn+1〉 andQ6
n+1(e) as

〈yn+1 = y2
n, (P

8,2
n )−1, x2

n, zn+1〉.
Case 3: e = (y1

n,w
2
n). We setQ3

n+1(e) as〈xn+1, z
1
n,

(P
4,1
n )−1, x1

n, zn+1, x
2
n,P

3,2
n , y2

n = yn+1〉.
Case 4: e is in BC1(n). By induction hypothesis

one of the six properties of the lemma holds
BC1(n). In the following, we find the correspondin
paths that satisfy the lemma forBC(n + 1).

(1) Q7
n+1(e) = 〈

wn+1 = w1
n,Q

1,1
n (e), y1

n,w
2
n,P

5,2
n ,

x2
n, zn+1

〉; and
(2)Q2
n+1(e) = wn+1 = w1

n,Q
2,1
n (e), z1

n, xn+1, z
2
n,

(
P 4,2
n

)−1
, x2

n, zn+1
〉;

(3)Q4
n+1(e) = 〈

xn+1, z
2
n,

(
P 2,2
n

)−1
,w2

n, y
1
n,

(
Q3,1

n (e)
)−1

, x1
n, zn+1

〉;
(4)Q3

n+1(e) = 〈
xn+1, z

1
n,

(
Q4,1

n (e)
)−1

, x1
n, zn+1, x

2
n,

P 3,2
n , y2

n = yn+1
〉;

(5)Q7
n+1(e) = 〈

wn+1 = w1
n,Q

5,1
n (e), x1

n, zn+1
〉; and

Q8
n+1(e) = 〈

xn+1, z
1
n,

(
Q6,1

n (e)
)−1

, y1
n,w

2
n,

P 1,2
n , y2

n = yn+1
〉; and

(6)Q2
n+1(e) = 〈

wn+1 = w1
n,Q

7,1
n (e), z1

n, xn+1, z
2
n,

(
P 2,2
n

)−1
,w2

n, y
1
n,

(
Q8,1

n (e)
)−1

, x1
n, zn+1

〉
.

The lemma is proven. ✷
Theorem 4.1. The brother tree BT(n) is 1-edge
hamiltonian for any positive integer n with n � 1.

Proof. Note thatBT(1) is isomorphic to the hyper
cube Q3. Since Q3 is hamiltonian and edge sym
metric, BT(1) is 1-edge hamiltonian. Now we con
sider n � 2. By definition, BT(n) is composed o
an (n + 1)th brother cell, denoted byBC1(n + 1) =
(G1

n+1,w
1
n+1, x

1
n+1, y

1
n+1, z

1
n+1) and an nth brother

cell, denoted byBC2(n) = (G2
n,w

2
n, x

2
n, y

2
n, z

2
n). Let e

be any edge ofBT(n). By the symmetrical property o
BT(n), we assume thate is an edge inG1

n+1. Using

Lemma 4.1,{P i,2
n }8

i=1 exists satisfying the lemma fo
BC2(n). Using Lemma 4.2, one of the six properti
of Lemma 4.2 holds forBC1(n + 1). In the follow-
ing, we find the corresponding hamiltonian cycleHe

of BT(n) − e.

(1)He = 〈
w1

n+1,Q
1,1
n+1(e), y

1
n+1,w

2
n,P

1,2
n , y2

n,w
1
n+1

〉;
(2)He = 〈

w1
n+1,Q

2,1
n+1(e), z

1
n+1, x

2
n,P

3,2
n , y2

n,w
1
n+1

〉;
(3)He = 〈

x1
n+1,Q

3,1
n+1(e), y

1
n+1,w

2
n,P

2,2
n , z2

n, x
1
n+1

〉;
(4)He = 〈

x1
n+1,Q

4,1
n+1(e), z

1
n+1, x

2
n,P

4,2
n , z2

n, x
1
n+1

〉;
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Fig. 3. Illustration of case (6) of Theorem 4.1, wheree = (a, x1
4) is the faulty edge.Q7,1

4 is the path joiningw1
4 to z1

4, Q8,1
4 is the path joining

x1
4 to y1

4, P 5,2
3 is the path joiningw2

3 to x2
3, P 6,2

3 is the path joiningy2
3 to z2

3.

(5) He = 〈
w1

n+1,Q
5,1
n+1(e), x

1
n+1, z

2
n, (P

7,2
n )−1,w2

n, we may assume thatc is a node inBC1(n) or c = zn+1.
i,1 8 1
6,1 〉

in

sy

Using Lemma 4.1, there exists{Pn } for BC (n)

y1
n+1,Qn+1(e), z

1
n+1, x

2
n,P

8,2
n , y2

n,w
1
n+1 ;

(6) He = 〈
w1

n+1,Q
7,1
n+1(e), z

1
n+1, x

2
n, (P

5,2
n )−1,w2

n,

y1
n+1,

(
Q

8,1
n+1(e)

)−1
, x1

n+1, z
2
n, (P

6,2
n )−1,

y2
n,w

1
n+1

〉
.

The theorem is proven. An illustration is shown
Fig. 3. ✷

5. 1p-hamiltonian

Lemma 5.1. Assume that n is an integer with n � 2.
Let BC(n) = (Gn,wn, xn, yn, zn). Suppose that c is
any node of Gn. There then exists a hamiltonian path
Rn(c) of Gn − c such that Rn(c) joins yn to zn if c is
a white node, and Rn(c) joins wn to xn if c is a black
node.

Proof. We prove this lemma by induction. It is ea
to check that the lemma holds forBC(2). Assume that
the lemma holds forBC(n). By definition,BC(n + 1)
is composed of two disjoint copies ofnth brother
cells BC1(n) = (G1

n,w
1
n, x

1
n, y

1
n, z

1
n) and BC2(n) =

(G2
n,w

2
n, x

2
n, y

2
n, z

2
n), a white rootxn+1, and a black

root zn+1. We only prove the case thatc is a black
node. Using the symmetrical property ofBC(n + 1),
i=1

if c /∈ V (BC1(n)) and {P i,2
n }8

i=1 for BC2(n) if c /∈
V (BC2(n)).

Suppose thatc is in BC1(n). By induction, there
exists a hamiltonian pathR1

n(c) of G1
n − c that joins

w1
n to x1

n. Then, we setRn+1(c) as 〈wn+1 = w1
n,

R1
n(c), x

1
n, zn+1, x

2
n,P

4,2
n , z2

n, xn+1〉.
Suppose thatc = zn+1. We setRn+1(c) as〈wn+1 =

w1
n,P

1,1
n , y1

n,w
2
n,P

2,2
n , z2

n, xn+1〉.
The lemma is proven. ✷

Lemma 5.2. Assume that n is an integer with n � 2.
Let BC(n) = (Gn,wn, xn, yn, zn). Let c be a white
node of Gn and d be a black node of Gn. Then at least
one of the following properties holds.

(1) There exists a hamiltonian path S1
n(c, d) of Gn −

{c, d} joining wn to yn.
(2) There exists a hamiltonian path S2

n(c, d) of Gn −
{c, d} joining wn to zn.

(3) There exists a hamiltonian path S3
n(c, d) of Gn −

{c, d} joining xn to yn.
(4) There exists a hamiltonian path S4

n(c, d) of Gn −
{c, d} joining xn to zn.

(5) There exist two disjoint paths S5
n(c, d) and S6

n(c, d)

such that (i) they span Gn − {c, d}, (ii) S5
n(c, d)

joins wn and xn, and (iii) S6
n(c, d) joins yn and zn.
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(6) There exist two disjoint paths S7
n(c, d) and S8

n(c, d)

such that (i) they span Gn − {c, d}, (ii) S7
n(c, d)

sy

f
ng

or

ix

e
a
we

lar

te

is a planar, bipartite, 3-regular graph, and the number
of nodes inBT(n) is 6 · 2n − 4. Moreover, we prove

l
at

e
ge
h

ne
ion
ns
com-
that
ec-

ous
nd

72.

1-
72

b
84.

i-
n

in-
m.

lty
7–

hs,
joins wn and zn, and (iii) S8
n(c, d) joins xn and yn.

Proof. We prove this lemma by induction. It is ea
to check that the lemma holds forBC(2). Assume that
the lemma holds forBC(n). By definition,BC(n + 1)
is composed of two disjoint copies ofnth brother
cells BC1(n) and BC2(n), a white rootxn+1, and a
black rootzn+1. Using the symmetrical property o
BC(n + 1), we may assume that one of the followi
cases holds:

(1) c = xn+1 andd = zn+1,
(2) c = xn+1 andd ∈ V (BC1(n)),
(3) c ∈ V (BC1(n)) andd = zn+1,
(4) c ∈ V (BC1(n)), d ∈ V (BC2(n)) or
(5) {c, d} ⊂ V (BC1(n)).

In the following, we find the corresponding path(s) f
each case.

Case 1: We setS1
n+1(c, d) as〈wn+1 = w1

n,P
1,1
n , y1

n,

w2
n,P

1,2
n , y2

n〉.
Case 2: With Lemma 5.1, we setS1

n+1(c, d) as

〈wn+1 = w1
n,R

1
n(d), x

1
n, zn+1, x

2
n,P

3,2
n , y2

n〉.
Case 3: With Lemma 5.1, we setS3

n+1(c, d) as

〈xn+1, z
1
n, (R

1
n(c))

−1, y1
n,w

2
n,P

1,2
n , y2

n〉.
Case 4: With Lemma 5.1, we setS4

n+1(c, d) as
〈xn+1, z

1
n, (R

1
n(c))

−1, y1
n, w

2
n,R

2
n(d), x

2
n, zn+1〉.

Case 5: By induction hypothesis, one of the s
properties of the lemma holds forBC1(n). Note
that the endpoints ofSi

n(c, d) are the same as th
endpoints ofQi

n(e) stated in Lemma 4.2. With
similar argument for the case (4) in Lemma 4.2,
can prove that the lemma is true for this case.

Hence, the lemma is proven.✷
Theorem 5.1. The brother tree BT(n) is 1p-hamilto-
nian for any positive integer n with n � 1.

Proof. This theorem can be obtained with a simi
argument of Theorem 4.1.✷
6. Conclusion

In this paper, we propose a family of biparti
graphs called brother trees, denoted byBT(n). BT(n)
that BT(n) is optimal 1-edge hamiltonian and 1p-
hamiltonian, and the diameter ofBT(n) is 2n+ 1.

Let G be a graph withp nodes and with maxima
degreed . The famous Moore bound [2] states th
the diameterD(G) is at least log(d−1) p − 2/d . Thus
the diameter ofBT(n) is about 2 times the Moor
bound. It is interesting to find other optimal 1-ed
hamiltonian and 1p-hamiltonian bipartite graphs wit
smaller diameters.

We also note that the complete binary tree is o
of the most important architectures for interconnect
networks [4]. A lot of complete binary tree variatio
have been proposed. Because the brother tree is
posed of several complete binary trees, we believe
the brother tree is another candidate for interconn
tion networks.
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