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Abstract

In this paper we propose a family of cubic bipartite planar graphs, brother trees, den@®&dbywith n > 2. Any BT (n)

is hamiltonian. It remains hamiltonian if any edge is deleted. Moreover, it remains hamiltonian when a pair of nodes (one from

each partite set) is deleted. These properties are optimal. Furthermore, the number of ri®ties is 6- 2" — 4 and the

diameteris 2 + 1.
00 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

An interconnection network connects the proces-

ameter is more preferable. The hamiltonian proper-
ties is another requirement. For exampliken Pass-
ing” approach is used in some distributed operation

sors of the parallel computer. Its architecture can be SyStéms. Interconnection network requires the pres-

represented as a graph in which the nodes correspondE"c€ Of hamiltonian cycles in the structure to meet
to the processors and the edges to the communica-this approach. Fault tolerance is also desirable in mas-

tion links. Hence we use graphs and networks inter-
changeably. There are many mutually conflicting re-
quirements in designing the topology of computer net-
works. It is almost impossible to design a network
optimum from all aspects. One has to design a suit-
able network satisfying the requirements. Diameter is
one of the major requirements in designing the topol-
ogy of network. Usually a network with smaller di-

* Corresponding author.
E-mail address: skao@math.cycu.edu.tw (S.-S. Kao).

sive parallel systems that have a relatively high prob-
ability of failure. A number of fault tolerant designs
for specific multiprocessor architectures have been
proposed based on graph theoretic models in which
the processor-to-processor interconnection structure is
represented by a graph.

For the graph definition and notation, we follow [1].
G = (V,E) is agraphif V is a finite set ancE is a
subsetof(a, b) | (a, b) is an unordered pair df }. We
say thatV is thenode set and E is theedge set of G.
Two nodesq andb, areadjacent if (a, b) € E. A path
is a sequence of consecutive adjacent nodes. A path

0020-0190/03/$ — see front mattér 2003 Elsevier Science B.V. All rights reserved.
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is usually delimited byxg, x1, x2, ..., x,—1). We use A 1,-hamiltonian graphG is optimal if it contains

P~ to denote the patlix,_1, x,—2, ..., x1, xo) if P the least number of edges among ajFamiltonian
is the path{xg, x1, x2, ..., x,—1). Letdg(x, y) denote graphs with the same number of nodes@sObvi-
the distance between two nodesand y in graphG ously, deg; (x) > 3 for any nodex in a 1,-hamiltonian
andD(G) denote the diameter @f. A pathiscalleda  graph G. Thus any J1-hamiltonian graph that is
hamiltonian path if its nodes are distinct and spah 3-regular is optimal. In [3], a family of optimal 1-edge

A cycleis a path of at least three nodes such that hamiltonian and A-hamiltonian bipartite graphs, cal-
the first node is the same as the last node. A cycle led honeycomb rectangular torus, is discussed. It can
is called ahamiltonian cycle if its nodes are distinct  be shown that the diameter of the honeycomb rectan-
except for the first node and last node and if they span gular torus is2 (,/p ), wherep is the number of nodes.
V. A graph ishamiltonian if it contains a hamiltonian In this paper, we propose a family of graphs, called
cycle. A graphG = (V, E) is 1-edge hamiltonian if brother trees, denoted BT (n). The graphBT ()

G — e is hamiltonian for any € E. Obviously, any is planar, bipartite, 3-regular, 1-edge hamiltonian and
1-edge hamiltonian graph is hamiltonian. A 1-edge 1,-hamiltonian. The diameter of the brother tree is
hamiltonian graplG is optimal if it contains the least ~ ®(log p), wherep is the number of nodes.

number of edges among all 1-edge hamiltonian graphs

with the same number of nodes &s A graphG =

(V, E) is 1-node hamiltonian if G — v is hamiltonian 2. Definitionsand notation

for any v € V. A 1-node hamiltonian graplt; is

optimal if it contains the least number of edges among To define brother trees, first we define brother cells.
all 1-node hamiltonian graphs with the same number Assume that is an integer wittk > 2. Thekth brother

of nodes as5. A graphG = (V, E) is 1-hamiltonian cell BC(k) is the five tuple(Gy, wg, xk, yk, zx), where

if it is 1-edge hamiltonian and 1-node hamiltonian. G, = (V, E) is a bipartite graph with bipartitionV

A 1-hamiltonian graplG is optimal if it contains the (white) andB (black) and contains four distinct nodes
least number of edges among all 1-hamiltonian graphs wy, x¢, y+ and z;. wy is the white terminal; x; the
with the same number of nodes &s This study of whiteroot; y; theblack terminal andz; theblack root.
optimal 1-hamiltonian graphs is motivated by optimal We can recursively defin8C(k) as follows:

fault tolerant token ring design in computer networks.

A number of optimal 1-hamiltonian graphs have been (1) BC(2) is the 5-tuple(Ga, wa, x2, y2, z2) Where

proposed [2,5,7]. Obviously, dggx) > 3 for any V(G2) = {w2,x2,y2,22,5,t}, and E(G2) =

nodex in a 1-edge hamiltonian, 1-node hamiltonian, {(w2, 5), (s, x2), (x2, y2), (y2, 1), (¢, z2), (w2, 22),

or 1-hamiltonian grapliz. It has been proven that any (s, 0)}.

1-hamiltonian regular graph is optimal if and only if it (2) The kth brother cellBC(k) with k£ > 3 is com-

is 3-regular. posed of two disjoint copies qk — 1)th brother
Note that any cycle of a bipartite graph contains the cells

same number of nodes in each partite set. Thus, the

1 (el o1 1 11
deletion of a node from a hamiltonian bipartite graph BC(k — 1) = (Gir—1, Wic—1: ¥e-1 V-1 T-1):

results in a non-hamiltonian graph. However, the fault BC?(k — 1) = (G,f_l, w,f_l, x,§_1, y/g_r Z/E—l)’
tolerant hamiltonian property is not the only factor ) B
in designing the topology of networks. For example, a white rootx, and a black roat;. To be specific,
the hypercubeQ, is a hamiltonian bipartite graph V(Gy) = V(G,%_l)u V(G%_l)u{xk,Zk},

for n > 2. Hence, it is not 1-hamiltonian. When fault 1 5

occurs, we are interested in the longest cycle in the E(Gy) = E(Gy_1) UE(Gi_q)

faulty hypercube [6]. 1 5 1
Let G be a bipartite graph with bipartitiow and U {(zks xie-a)- (@0 ) (o Za)s

B. We .use.]—'(G)'to c_ienote{{c,c.l} |ce W d'e B}. (xkvzlg—l)’ (Ykl—r wlg_l)},

A hamiltonian bipartite graph is ;thamiltonian if 1 5

G — F remains hamiltonian for any¥ € F(G). wk = wy_g, andyr = yi_y.
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Fig. 1. (2)BC(2), (b) BC(3) and (c)BC(4).

(a)

Fig. 2. (@)BT(1), (b) BT(3).

BC(2), BC(3), and BC(4) are shown in Fig. 1.
We note thatBCl(k — 1) and BC%(k — 1) are iso-
morphic for k > 3. This property is referred to as
the symmetrical property of BC(k). For this reason,
we define the degenerate caB€(1), as the 5-tuple
(G1, w1, x1, ¥1,21) as V(G1) = {wa, y1}, E(G1) =
{(w1, y1)} such thatv1 = w1 andy; = z3.

We can also define the brother c8C(k) from
the complete binary tree B(k), whereV (B(k)) = {1,
2,...,2x — 1) and E(B(k)) = {(, j) | |j/2] = i}.
Assume that is a positive integer withk > 2. The
kth brother cellBC(k) = (G, wg, xx, yk, 2k) can be
constructed by combining twB(k)’s, the upper tree
B(k), and thelower tree B(k);, and adding edges
between their leaf nodes.

Let n be a positive integer with > 1. Thebrother
tree, BT(n), is composed of ann + 1)th brother
cellBC(n+1) = (G, wk 4, x1 ;v .zt )and

n

annth brother celBC(n) = (G2, w2, x2, y2, z2) with

V(Gi, 1) NV (G2) = 0. To be specificV (BT (n)) =
V(GL, UV (G2 andE(BT(n)) = E(GL, ) UE(G?)

U {Grpg ). Oy wd)e (020, (Wi q 3D}
BT(1) and BT(3) are shown in Fig. 2. Obviously,
BT (n) is a 3-regular bipartite planar graph with28 —

4 nodes. Because th@a + 1)th brother cell is com-
posed of two disjoint:th brother cells and two termi-
nals, thenth brother treeBT (n) is composed of three
disjoint nth brother cells,BC'(n), BC?(n), BC3(n)
and two terminals{x,}ﬂ, z,hl}. Moreover,BC(n),
BC?(n) andBC3(n) are arranged in a cyclic order in
BT (n). Thus any two nodes @&T (r) are in the union
of two in the node set #8C(n), BC2(n), BC3(n) and
{x,}+l, ziﬂ}. For this reason, we can assume without
loss of generality that any two nodesBT (n) are in
G!,,and any edge &T(n) isin GL, ;. This property
is referred to as theymmetrical property of BT (n).

3. Diameter

Theorem 3.1. D(BT(n)) = 2n + 1 for any positive
integer n withn > 1.
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Proof. Itis easy to prove by induction that

detin (%1 Znsn) = 20+ L.

Letu andv be any two nodes @T (n). We will prove
that dgr() (4, v) < 2n + 1. Using the symmetrical
property of brother trees, we may assume thaind
v are in the brother ceIthJrl Note that the brother

cell Gi+1 is composed of two complete binary trees

B(n+1), andB(n + 1);. Thus,

(1) bothu andv are inV(B(n + 1),), or bothu and
vareinV(B(n + 1);), or
(2 ueV(Bmn+1),) andv e V(B(n + 1))).

Now, we introduce some notations before our proof.

LetV(B(n+1),)={1,2,....,2""1—1}andV(B(n+
1) ={1,2,..., (2" - 1)}. Now, join B(n + 1),
and B(n + 1); with the edge sef{(2" + i, (2" +
DN+, 2" +i+1)]|0<i<2"-2}U
{(2"+l 1, (2"t — 1) )} to obtain the brother cell
(Gn+l’ i+1’ ;}+1’ Yn+1 n+1) wherex,+1 =1 and
zna1=1"if nisevenandy, 1 =1 andz, 1 =1if
otherwise. Moreovery, ;1 = 2" andy,+1 = ("1 —

1y.

Case 1. By symmetry, we may assume that bath
andv are inV(B(n + 1),). Suppose that is labeled
i and v is labeled ;. Obviously, maxlog,(i + 1),
log,(j + D} <n+ 1. Sincedp,41)(i, 1) = [log, (i +
17 — 1, there exists a patt®; of length [log,(i +
1)1 — 1 joining u to the root of B(n + 1),. Similarly,
there exists a pattP, of length [log,(j + 1)] — 1
joining v to 1. Thus,(u, P1,1, P, 1, v) forms a path
joining u to v in B(n + 1),. Thus, dgr) (1, v) <
Mog,(i + D1+ logy(j + D1 —2<2n + 1.

Case 2: We may assume thatis labeled: andv
is labeled;’.
thati > j. There then exists a path from i to some
leaf noder of B(n + 1), of lengthn — ([log,(i +
1)1 — 1). Let ' be a neighborhood of of BT (n) in
B(n + 1);. Obviously, there exists a path of length
from 1’ to the root 1 of B(n + 1);. Moreover, there
exists a pathPs of length[log,(j + 1)1 — 1 joining
v to 1. Obviously,(u, Py, h, i, P2, 1, P31, v) forms
a path joiningu to v in G%_ ;. Thus,dgr() (1, v) <
2n+1—Tlogy(i +1)] + [logy(j + 1)7. Since,i > j,
dpT(my(u,v) <2n+1.

The theorem is proven.O

Without loss of generality, we assume

4. 1-edge hamiltonian

Lemma4.1. Assumethat BC(n) = (G, wy, Xn, Yn» Zn)
for someinteger n > 2.

(1) There exists a hamiltonian path Pnl of G, joining
wy to y,.

(2) There exists a hamiltonian path Pn2 of G, joining
wy, 10 z,.

(3) There exists a hamiltonian path P2 of G, joining
Xxp 10 y,.

(4) There exists a hamiltonian path P,f‘ of G, joining
X 10 z,.

(5) Thereexist two digoint paths P> and P8 such that
() they span G, (i) P® joins w, and x,, and
(iiiy PS8 joinsy, and z,.

(6) Thereexist two digoint paths P/ and P8 such that
(i) they span G, (i) P/ joins w, and z,, and
(iiiy P8 joinsx, and y,.

Proof. We prove this lemma by induction. It is easy
to check that the lemma holds BC(2). Assume that
the lemma holds foBC(n). By definition,BC(n + 1)
is composed of two disjoint copies nth brother cells
BCl(n) and BC?(n), a white rootx,,1, and a black
rootz,+1. By induction {P’ 1}8 1 EXists satisfying the
lemma forBC(n) and{ P} 2}8 | exists satisfying the
lemma forBC?(n).
We then set

1 51 52 1 2
Pl =(wys1=w} P> ,xn,zn+1,xn, (P4~

Vo PO b xp, 22, (PR Y2 = yupa);
,z,%,xn+1,z,%,

U I n,znﬂ)
PEy =(xns1. 25 (B wd yr (PEH T
VP = Yng);
Ply={xar1, 22, (PF2) "L w? vy (PEDH T

X’}, Zn+1>;

2 l 2,1

1 2 8,2
Xy Znt+1s X5 Py

= (w1 =wl, PPY kw2, P12, 22, x4a);
n+1_(y 1=y (PP a8, 2t
(wn+1—wn, Pn5 , ,},zn+1)
Pfﬂ = (xn41. 20, (PEHTL yh w2, P12, 52

The lemma is proven. O

= Yn+1>-
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Lemma 4.2. Assume that BC(n) = (G, wy, Xn, Yn,
zn) for someinteger n > 2. Let e beany edgeof BC(n).
Then at least one of the following properties holds.

(1) There exists a hamiltonian path Q%(e) of G, —e
joining w;, to yj,.

(2) There exists a hamiltonian path Q,%(e) of G, —e
joining w;, to z,.

(3) There exists a hamiltonian path Q3(e) of G, — e
joining x, to y,.

(4) There exists a hamiltonian path Q%(e) of G, — e
joining x, to z,,.

(5) There exist two digoint paths Q>(e) and Q%(e)
such that (i) they span G, — e, (ii) Q3(e) joinsw,
and x,,, and (i) Q%(e) joinsy, and z,,.

(6) There exist two digoint paths Q/(e) and Q2 (e)
such that (i) they span G, — e, (ii) Q! (e) joinsw,
and z,, and (i) Q8(e) joinsx, and y,.

Proof. We prove this lemma by induction. It is easy
to check that the lemma holds fBC(2). Assume that
the lemma holds foBC(n). By definition,BC(n + 1)
is composed of two disjoint copies oth brother cells
BC(n) and BC?(n), a white rootx,1, and a black
rootz,+1. Lete be any edge oBC(n + 1). Using the
symmetrical property oBC(n + 1), we may assume
thate is (z,41, x1), (2%, x,41), (v}, w?), or an edge in
BC(n). By induction, there exist{:.‘l’,i’l}?:l satisfying
the lemma forBCl(n) if e ¢ E(BC(n)) and there
exists {Py?)8_; satisfying the lemma foBC?(n) if

e ¢ E(BC?(n)).

Caselie = (zn+1, X ) We setQ7+1(e) as(wy41 =
wk, Pty w2, P2 a2 zps1) and 08 (o) as
(xn+19 Z,%a (PnG 2) la Yu = Yn+l)-

Case2:e = (zn, xn+1) We setQ5+1(e) as(w,1 =
wl plht yl yn, w2, pl zn,an) and QP (e) as
(Yn41 =2, (P8 2) ! xn, Znt1).-

Case3:e = (yl, w?). We setQ3 , (e) as(xy41, 7,
(P;Ll)_l’ xi}’ in+1, xn’ Pn ’ y,f = Yn+1)-

Case 4: e is in BCY(n). By induction hypothesis,
one of the six properties of the lemma holds for
BCl(n). In the following, we find the corresponding
paths that satisfy the lemma fBC(n + 1).

1) Q) 1(e)= Ll yt w2, P22,

1
<wn+1 =Wy, n>tn

2 .
X Zn+l>, and

267

05 1(e) = (PSR y2=ypa);
(2) 02, 1(e) = (wp1 = w},
(Pr:l’z) 1’ 3»2n+1>
(onra. 22, (P22) 1 w2, yh,
(034@) " xk zusa);

@) 03,1(e) = (xur1, 22, (Q%%e)) H kL, 2y, 12,
P32, y2 =

<Xn+l7

2,1 1 2
n (e)9 Zna xn—i—l, Zna

(3) 02 ()=

yn+1);
(5) 0F ,1(e) = (wpy1=wy, Ox(e). x;, Zny1): and
08, 1(e) = (xup1, 22, (084(0) 7H yh wd,
P2 yE = yai1) and
(6) 04, 1(e) = (wns1=wyy. Q7€) 2y, Xuy1. 25,

(P22~ w2, L (08(e)) "

The lemma is proven. O

xn 5 Zn-‘,—l)

Theorem 4.1. The brother tree BT(n) is 1-edge
hamiltonian for any positive integer n withn > 1

Proof. Note thatBT(1) is isomorphic to the hyper-
cube Q3. Since Q3 is hamiltonian and edge sym-
metric, BT (1) is 1-edge hamiltonian. Now we con-
sider n > 2. By definition, BT(n) is composed of
an (n + Dth brother cell, denoted bBC(n + 1) =
(Gn-i-l’ i+1’ Xot1s yn+l’ n+1) and an nth brother
cell, denoted byBC?(n) = (G2, w2, x2, y2, 72). Lete
be any edge 0BT (n). By the symmetrical property of
BT(n), we assume that is an edge inG,%H. Using
Lemma 4.1,{P,i’2}f.3:l exists satisfying the lemma for
BC?(n). Using Lemma 4.2, one of the six properties
of Lemma 4.2 holds foBCY(n + 1). In the follow-
ing, we find the corresponding hamiltonian cydle
of BT(n) —e.

(1) He = (w1, Oy ty(e). yaig w2, PR y2 wh )
() H, = (wy 4 n+1(e),z,%+l,X,f, P32, yi wyyq):
(3) He =[x} 1. 031 (0. yitiq w2 P22, 22 5L ,);
(@) He = (x}, 1, 001 (0), 2t g, x2, PM2 22 52 ),
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Fig. 3. lllustration of case (6) of Theorem 4.1, where (4, x}) is the faulty edgeQ/* is the path joinings} to 23, Qﬁ’l is the path joining

X310y}, Pg,z is the path joiningw? to x3, Pg’z

(5) He = (wy 11, Ona (). X1, 2 (PP TH w0l
yn+l’ ini-l(e)’ Zn+l’ xf. P32 yE, wrjz.+1>;

(6) He = (wy 1. Q111(0). . 3o (PYDTH W)
yrz+l’(szil(e)) ,}+l,zn,(P6 2) l’

2 .1
Yn> wn+1>'

The theorem is proven. An illustration is shown in

Fig.3. O

5. 1,-hamiltonian

Lemma 5.1. Assume that » is an integer with n > 2
Let BC(n) = (G, Wy, Xn, Yn, 2n)- ppose that ¢ is
any node of G,,. There then exists a hamiltonian path
R, (¢) of G, — ¢ suchthat R,(c) joins y, to z,, if c is
a white node, and R, (¢) joins wy, to x,, if ¢ isa black
node.

Proof. We prove this lemma by induction. It is easy

to check that the lemma holds fBC(2). Assume that
the lemma holds foBC(n). By definition,BC(n + 1)
is composed of two disjoint copies aith brother
cells BCl(n) = (G}, wk xt vyl zb) and BC?(n) =
(G2, w?, x?,y2,72), a white rootx, 1, and a black
root z,+1. We only prove the case thatis a black
node. Using the symmetrical property BE(n + 1),

is the path joiningy3 to z3.

we may assume thatis a node irBC'(n) or ¢ = z,,11.
Using Lemma 4.1, there exist®,"}8_, for BC'(n)
if ¢ ¢ V(BCYn)) and {Py?)8_ for BCz(n) if c¢
V(BC?(n)).

Suppose that is in BCl(n) By induction, there
eX|sts a hamiltonian patR (c) of Gl — ¢ that joins
wl to x1. Then, we setR,i1(c) as (wy+1 = wl,
REO). x1 1. 32, PA2. 2. 1),

Suppose that = zn+1 We setR,,+1(c) as{w,+1 =
wn’Pﬂ ’yn’wn’Pn Zrz’x”+l)

The lemma is proven. O

Lemma 5.2. Assume that » is an integer with n > 2
Let BC(n) = (G, wy, xn, yn, 2n). Let ¢ be a white
nodeof G, and d beablack nodeof G,,.. Then at least
one of the following properties holds.

(1) There exists a hamiltonian path S,}(c, d) of G, —
{c, d} joining w, to y,.

(2) There exists a hamiltonian path
{c,d} joining w, tO z,.

(3) There exists a hamiltonian path S,:f(c, d) of G, —
{c,d}joining x,, tO y,.

(4) There exists a hamiltonian path S#(c, d) of G,, —
{c,d} joining x, to z,,.

(5) Thereexist two digoint paths S2(c, ) and S8(c, d)
such that (i) they span G, — {c, d}, (i) S>(c,d)
joinsw, and x,,, and (iii) S8(c, d) joinsy, and z,,.

S2(c,d) of G, —
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(6) Thereexist two digoint paths S’ (c, d) and S8(c, d)
such that (i) they span G, — {c, d}, (ii) S/(c,d)
joinsw, and z,, and (iii) S&(c, d) joinsx, and y,.

Proof. We prove this lemma by induction. It is easy
to check that the lemma holds fBC(2). Assume that
the lemma holds foBC(n). By definition,BC(n + 1)

is composed of two disjoint copies eafth brother
cells BC'(n) and BC?(n), a white rootx,;1, and a
black rootz, 1. Using the symmetrical property of
BC(n + 1), we may assume that one of the following
cases holds:

(1) ¢ =xp41 andd = z41,

(2) ¢ =x,41 andd € V(BC'(n)),

(3) c e V(BCY(n)) andd = z,,41,

(4) ¢ € V(BCY(n)),d € V(BC?(n)) or
(5) {c,d} c V(BC(n)).

In the following, we find the corresponding path(s) for
each case.
Casel:We setst, (¢, d) as(wy41=w}, Prt, yl,
1,2
w,%, P ,y,%).
Case 2: With Lemma 5.1, we sef. ;(c.d) as
(Wna1 = wk, RYd), x}, 241,52, P2 Y2).

n’

Case 3: With Lemma 5.1, we sef?

n-+
_ 1,2
(xn+192,%9(R,%(c)) lyyﬂl-a w%a Pn ,}’3)

Case 4: With Lemma 5.1, we sef; ;(c.d) as

(X1, 2y, (RA() L v, wd, RE(d), X2, 2041).-

Case 5: By induction hypothesis, one of the six
properties of the lemma holds faBC!(n). Note
that the endpoints oS;(c,d) are the same as the
endpoints of Q! (¢) stated in Lemma 4.2. With a
similar argument for the case (4) in Lemma 4.2, we
can prove that the lemma is true for this case.

Hence, the lemma is provens

1(c,d) as

Theorem 5.1. The brother tree BT (n) is 1,-hamilto-
nian for any positive integer n withn > 1.

Proof. This theorem can be obtained with a similar
argument of Theorem 4.1.0

6. Conclusion

In this paper, we propose a family of bipartite
graphs called brother trees, denotedBiy(n). BT (n)

269

is a planar, bipartite, 3-regular graph, and the number
of nodes inBT(n) is 6- 2" — 4. Moreover, we prove
that BT(n) is optimal 1-edge hamiltonian and,1
hamiltonian, and the diameter B (n) is 2n + 1.

Let G be a graph withp nodes and with maximal
degreed. The famous Moore bound [2] states that
the diameteD(G) is at least log,_q) p — 2/d. Thus
the diameter ofBT(n) is about 2 times the Moore
bound. It is interesting to find other optimal 1-edge
hamiltonian and }-hamiltonian bipartite graphs with
smaller diameters.

We also note that the complete binary tree is one
of the most important architectures for interconnection
networks [4]. A lot of complete binary tree variations
have been proposed. Because the brother tree is com-
posed of several complete binary trees, we believe that
the brother tree is another candidate for interconnec-
tion networks.
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