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Abstract

We study the electron and hole energy states for a complete three-dimensional (3D) model of semiconductor nano-
scale quantum rings in an external magnetic field. In this study, the model formulation includes: (i) the position de-
pendent effective mass Hamiltonian in non-parabolic approximation for electrons, (ii) the position dependent effective
mass Hamiltonian in parabolic approximation for holes, (iii) the finite hard wall confinement potential, and (iv) the Ben
Daniel-Duke boundary conditions. To solve this 3D non-linear problem, we apply the non-linear iterative method to
obtain self-consistent solutions. We find a non-periodical oscillation of the energy band gap between the lowest electron
and hole states as a function of external magnetic fields. The result is useful in describing magneto-optical properties of

the nano-scale quantum rings.
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1. Introduction

Recent progress in the fabrication of semicon-
ductor nano-structures makes it possible to fabri-
cate nano-scopic quantum rings [1-3]. Although
micro-scopic and meso-scopic metallic semicon-
ductor quantum rings have been of a considerable
attention in recent years, the development in fab-
rication of semiconductor nano-scopic rings sig-
nificantly bridges the gap between quantum dots
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and meso-scopic quantum ring structures. The
trapping a single magnetic flux and unusual exci-
tation properties for such non-simply connected
quantum systems determine the practical interest
to nano-scale quantum rings. Various investiga-
tions have been performed to study the electronic
structure for semiconductor quantum rings; how-
ever, most theoretical quantum ring models as-
sume only electrons moving in a 1D or 2D
parabolic confinement potential [2,6-8]. These
models do not consider some important phenom-
ena, such as (i) effects of the inner or outer radius
of the ring, (ii) the finite hard wall confinement
potential, and (iii) the effect of non-parabolic band
approximation for the electron effective mass.
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In this work we study electron and hole energy
states for a realistic 3D model of InAs/GaAs
quantum rings under an external magnetic field B.
Our model formulation includes: (i) the position
dependent effective mass Hamiltonian in non-
parabolic approximation for electrons, (ii) the
position dependent effective mass Hamiltonian in
parabolic approximation for holes, (iii) the finite
hard wall confinement potential, and (iv) the Ben
Daniel-Duke boundary conditions. To solve this
3D non-linear problem, we apply the non-linear
iterative method to calculate self-consistent solu-
tions. The non-linear iterative method for electron
and hole energy levels calculation of quantum dots
and rings has been proposed by us [4,5].

We investigate the electron and hole energy
state dependence on an external magnetic field.
The field includes a transition between configura-
tions with the lowest electronic (hole) energy state
corresponding to the electron angular momentum
/=0 and s = +1 and with the one corresponding
to the electron angular momentum /= —1 and
s = +1. These transitions are related to the per-
sistent current in the ring and the Aharonov—Bohm
oscillations. The non-periodic Aharonov—Bohm
oscillations obtained by us in 3D nano-rings are in
a good agreement with experimental data [2,6] and
do not obey well-known rules for the 1D models
[6]. Therefore, our calculations observe that there
is a non-periodical oscillation of the energy band
gap between the lowest electron and hole states as
a function of external magnetic fields. The calcu-
lation results presented in this work demonstrate
the importance of the 3D modeling and simulation
in the characteristics and physics of nano-scopic
semiconductor quantum rings. The outline of the
paper is as follows. Section 2 states the 3D quan-
tum ring model and the solution method. Section 3
is the results and discussion. Section 4 draws the
conclusions and suggests the future works.

2. 3D quantum ring model and method of solution

We consider quantum rings with the hard-wall
confinement potential [9-11]. In a magnetic field,
the effective mass Hamiltonian for electrons (k =
e) and for holes (k = k) is given in the form

N i 1
By= My, + Vi(r) + =
ey Tt D 3

x (E,r)ugBo, (1)

where I1, = —iiV, + eA(r) stands for the electron
momentum vector, V, is the spatial gradient, A(r)
is the vector potential (B = curl A), and o is the
vector of the Pauli matrixes. For electrons, m.(E,r)
and g.(E, r) are the energy- and position-dependent
effective mass and the Landé factor, respectively
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where V. (r) is the confinement potential, £,(r) and
A(r) stand for position-dependent energy band gap
and spin—orbit splitting in the valence band, P is
the momentum matrix element, m, is the free
electron mass, and e is the charge. For holes, m(r)
and g,(r) are assumed to be only position depen-
dent. For both the electron and hole, the hard-wall
confinement potential in the inner region of the
ring (1) and environmental crystal matrix (2) can
be presented as: ¥;(r) =0 for allr € 1 and ¥;(r) =
Vio for all r € 2, respectively. The Ben Daniel-
Duke boundary conditions for the electron and
hole wave functions ¥(r) are given by [9-11]

Tkl (l‘s) = 'f/kz(l's) and

(i)

where ry denotes the position of the system inter-
face.

Because the cylindrical symmetry of the system,
the wave function for electrons and holes can be
represented as Py (r) = @, (R, z) exp(il/¢) where / =
0,4+1,42,.. ., is the orbital quantum number. This
leads to a problem in the (R,z) coordinates, and
the Schrodinger equation for electrons (k = ¢) and
holes (k = h) is

¥, (r;) = const.,

n
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where j=1,2, Q(E) =eB/my(E), and s = +I
refers to the orientation of the electron spin along
z-axis. The Ben Daniel-Duke boundary conditions
can be written as

‘Dkl (R,Z) = (pkz(R,Z), z :f(R),
1 (a@kl (R,2) + df (R) 0P (RJ))
mpq (E) OR dR Oz =f(R)
_ 1 6@k2(R,z)
o mkz(E) < aR
df (R) 0Piz(R, 2)
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where z = f(R) presents the generating contour of
the ring on {R,z} plane. To compute electron and
hole energy states in a quantum ring with an el-
lipsoidal cross-section (the inserted figure in Fig. 1),
we apply the non-linear iterative method to calcu-
late the self-consistent solution. We briefly state the
solution scheme and details can be found in [4,5].
For a given magnetic field, our calculation con-
sists of iteration loops to reach a “‘self-consistent”
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Fig. 1. A plot of electron energy states for the ellipsoidal InAs/
GaAs nano-rings with the inner radius R;, = 8 nm.

energy solution: (1) set initial energy; (2) compute
the effective mass; (3) compute the Landé factor;
(4) and solve the Schrodinger equation and return
to step (2). The iterations will be terminated
when the maximum norm error of the computed
energy is less than a specified error bound. In our
calculation experience, the proposed computa-
tional method converges monotonically, and a
strict convergence criteria on energies (the maxi-
mum norm error is less than 10712 eV) can be
reached by only 12-15 feedback non-linear itera-
tive loops.

With the computed electron and hole energy
levels, we investigate the magnetic field depen-
dence of the system energy band gap. The energy
band gap AE(B) is defined as: AE(B) = AE,.(B) +
AEy,(B) + AE,r (B), where E,. and E,, are the
ground state energies for electrons and holes, and
E.r is the energy gap in the quantum ring, re-
spectively.

3. Results and discussion

We simulate the InAs/GaAs ring when the
material parameters for InAs inside the rings are
E\y =042¢eV, 4, =0.38 ¢V, and m;(0) = 0.024m,.
The parameters for GaAs outside of the rings are
E2g =1.52 €V, Az =0.34 CV, I’YZ2(V0) = 00671’}’10,
and ¥ = 0.77 eV [10]. The energy states are nu-
merated by a set of quantum numbers {n,/ s},
where n = 0,1,2, ... is the main quantum number.
Fig. 1 shows the electron energy spectrum versus B
for the ellipsoidal quantum ring with the inner
radii Ry, = 8 nm [2], height 2 = 2.4 nm, and width
AR = Ry — Ry, = 24 nm (R, is the outer radius)
[2,3]. For the clarity, we plot only Ey, . (B) states.
We note that the energy difference between two
sets {0,/,s} and {1,/,s} of energy states is con-
trolled by the cross section area of the ring. The
energy difference for this ring is Ej o5 — Egos =
0.298 eV. Using the same calculation method, we
obtained hole energy states for rings of the same
shape and size. The hole effective mass was taken
as myp, = 0.4my and my, = 0.5my [10], respectively.
The hole band offset is taken as Vo = 0.33 eV [10].
Fig. 2 shows the energy dependence versus B for
holes.
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The calculated result of the energy gap between
the lowest electron and hole states for the InAs/
GaAs ring is shown in Fig. 3. We find a non-
periodical oscillation of the energy band gap
between the lowest electron and hole states
as a function of external B. The oscillation of
AE(B) does not obey the well-known rule for 1D
models: @, /P, = n, &, = n(Ri, + AR)*B s a typical
applied magnetic flux and » is an integer number,
and @, is the quantum of magnetic flux. In addi-
tion, the first fracture @, ~ 0.65®, is substantially
larger than the commonly quoted value &,/2 that
follows the 1D and 2D approaches [6]. For large
inner radii R;, = 18 and 28 nm (when # = 2.4 nm
and R,y = Ry, + 24 nm), we have the same non-
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Fig. 2. A plot of hole energy states for ellipsoidal InAs nano-
rings with the inner radius R;,, = 8§ nm.
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Fig. 3. The energy gap for the ellipsoidal InAs/GaAs nano-
rings with the inner radius R;, = 8 nm.
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Fig. 4. The energy gap for the ellipsoidal InAs/GaAs nano-
rings with different inner radii R;, = 18 nm (left figure) and
R;, = 28 nm (right one).

periodical oscillation phenomena in the energy gap
(see Fig. 4). The non-periodical oscillation behav-
ior of the energy gap is a direct sequence of
our correct 3D description. It doesn’t appear in
the traditional 1D approach. This phenomenon
should be seen in the magnetic-photo-luminescence
spectra of nano-rings.

4. Conclusions

In a short conclusion, we have investigated the
electron and hole energy states for a 3D model of
semiconductor nano-scale quantum rings in an
external magnetic field. We found a non-periodical
oscillation of the energy band gap between the
lowest electron and hole states as a function of
external magnetic fields. The result is useful in
describing magneto-optical properties of the nano-
scale quantum rings.
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