
The design and implementation of the NCTUns 1.0
network simulator

S.Y. Wang *, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang,
C.C. Chiou, C.C. Lin

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,

30050 Hsinchu, Taiwan

Received 2 May 2002; received in revised form 20 November 2002; accepted 20 January 2003

Responsible Editor: I. Nikolaidis

Abstract

This paper presents the design and implementation of the NCTUns 1.0 network simulator, which is a high-fidelity

and extensible network simulator capable of simulating both wired and wireless IP networks. By using an enhanced

simulation methodology, a new simulation engine architecture, and a distributed and open-system architecture, the

NCTUns 1.0 network simulator is much more powerful than its predecessor––the Harvard network simulator, which

was released to the public in 1999. The NCTUns 1.0 network simulator consists of many components. In this paper, we

will present the design and implementation of these components and their interactions in detail.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Network simulator; Simulation methodology

1. Introduction

Network simulators implemented in software

are valuable tools for researchers to develop, test,

and diagnose network protocols. Simulation is

economical because it can carry out experiments

without the actual hardware. It is flexible because

it can, for example, simulate a link with any

bandwidth and propagation delay or a router with

any queue size and queue management policy.
Simulation results are easier to analyze than ex-

perimental results because important information

at critical points can be easily logged to help re-

searchers diagnose network protocols.
Network simulators, however, have their limi-

tations. A complete network simulator needs to

simulate networking devices (e.g., hosts and rou-

ters) and application programs that generate net-

work traffic. It also needs to provide network

utility programs to configure, monitor, and gather

statistics about a simulated network. Therefore,

developing a complete network simulator is a large
effort. Due to limited development resources, tra-

ditional network simulators usually have the fol-

lowing drawbacks:

• Simulation results are not as convincing as

those produced by real hardware and software

*Corresponding author.

E-mail address: shieyuan@csie.nctu.edu.tw (S.Y. Wang).

1389-1286/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S1389-1286(03)00181-6

Computer Networks 42 (2003) 175–197

www.elsevier.com/locate/comnet

mail to: shieyuan@csie.nctu.edu.tw


equipment. In order to constrain their complex-

ity and development cost, most existing net-

work simulators can only simulate real-life

network protocol implementations with limited

detail, and this can lead to incorrect results. For
example, OPNET�s modeler product [1] uses a
simplified finite state machine model to model

complex TCP protocol processing. As another

example, in ns-2 [2] package, it is documented

that ‘‘there is no dynamic receiver�s advertised
window for TCP.’’

• These simulators are not extensible in the sense

that they lack the standard UNIX POSIX ap-
plication programming interface (API). As

such, existing or to-be-developed real-life appli-

cation programs cannot run normally to gener-

ate traffic for a simulated network. Instead, they

must be rewritten to use the internal API pro-

vided by the simulator (if there is any) and be

compiled with the simulator to form a single

big and complex program. For example, since
the ns-2 network simulator itself is a user-level

program, there is no way to let another user-

level application program ‘‘run’’ on top of it.

As such, a real-life application program cannot

run normally to generate traffic for a network

simulated by ns-2.

To overcome these problems, Wang proposed a
simulation methodology in [3,4] and used it to

implement the Harvard network simulator. The

Harvard network simulator has two desirable

properties as follows. First, it uses the real-life

UNIX TCP/IP protocol stack, real-life network

application programs, and real-life network utility

programs. As such, it can generate more accurate

simulation results than a traditional TCP/IP net-
work simulator that abstracts a lot away from a

real-life TCP/IP implementation. Second, it lets

the system default UNIX POSIX API (i.e., the

standard UNIX system call interface) be provided

on every node in a simulated network. Any real-

life UNIX application program, either existing or

to-be-developed, thus can run normally on any

node in a simulated network to generate traffic.
One important advantage of this property is that

since an application program that is developed for

simulation study is a real UNIX program, the

program�s simulation implementation can be its
real implementation on a UNIX machine. As such,

when the simulation study is finished, we can

quickly implement the real system by reusing its

simulation implementation.

Although the methodology proposed in [3,4]
can provide the above two advantages, it has

several limitations and drawbacks. To remove

these problems, we enhanced the methodology,

designed a new simulation engine architecture, and

used these improvements to develop a new net-

work simulator called ‘‘the NCTUns 1.0 network

simulator.’’ In the rest of the paper, we will present

these enhancements as well as the features, com-
ponents, design, and implementation of the

NCTUns 1.0 network simulator. (For the sake of

brevity, we will just call it the ‘‘NCTUns 1.0’’ in

the rest of the paper.)

2. Related work

The predecessor of the NCTUns 1.0 is the

Harvard network simulator [5], which was au-

thored by Wang in 1999. Since its release in July

1999, as of January 1, 2002, the Harvard network

simulator has been downloaded by more than 2000

universities, research institutions, industrial re-

search laboratories, and ISPs.

As feedback about using the Harvard network
simulator gradually comes back, it becomes clear

that the Harvard network simulator has several

limitations and drawbacks that need to be over-

come and solved. Also, it is clear that some useful

features and functions need to be implemented and

added to it. For these reasons, Wang decided to

develop the NCTUns 1.0.

In the literature, some approaches also use a
real-life TCP/IP protocol stack to generate results

[6–10]. However, unlike our approach, these ap-

proaches are used for emulation purposes, rather

than for simulation purposes. Among these ap-

proaches, Dummynet [10] most resembles our

simulator. Both Dummynet and our simulator use

tunnel interfaces to use the real-life TCP/IP pro-

tocol stack on the simulation machine. However,
there are some fundamental differences. Dummy-

net uses the real time, rather than the simulated

176 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



network�s virtual time. Thus the simulated link
bandwidth is a function of the simulation speed

and the total load on the simulation machine. As

the number of simulated links increases, the

highest link bandwidth that can be simulated de-

creases. Moreover, in Dummynet, routing tables
are associated with incoming links rather than

with nodes. As such, the simulator does not know

how to route packets generated by a router, as

they do not come from any link.

OPNET, REAL [11], ns-2, and SSFnet [12]

represent the traditional network simulation ap-

proach. In this approach, the thread-supporting

event scheduler, application programs that gener-
ate network traffic, utility programs that configure,

monitor, or gather statistics about a simulated

network, the TCP/IP protocol implementation on

hosts, the IP protocol implementation on routers,

and links are all compiled together to form a single

user-level program. Due to the enormous com-

plexity, such a simulator tends to be difficult to

develop and verify. In addition, a simulator con-
structed using this approach cannot provide

UNIX POSIX API for real-life application pro-

grams to run normally to generate network traffic.

Although some simulators may provide their own

internal API, real-life application programs still

need to be rewritten so that they can use the in-

ternal API, be compiled with the simulator suc-

cessfully, and be concurrently executed with the
simulator during simulation.

ENTRAPID [9] uses another approach. It uses

the virtual machine concept [13] to provide mul-

tiple virtual kernels on a physical machine. Each

virtual kernel is a process and simulates a node in

a simulated network. The system calls issued by

an application program are redirected to a virtual

kernel. As such, UNIX POSIX API can be pro-
vided by ENTRAPID and real-life application

programs can be run in separate address space

normally. However, because the complex kernel

needs to be ported to and implemented at the user-

level, many involved subsystems (e.g., the file, disk

I/O, process scheduling, inter-process communi-

cation (IPC), virtual memory subsystems) need to

be modified extensively. As such, the porting effort
is very large and the correctness of the ported

system may need to be extensively verified.

3. High level architecture

The NCTUns 1.0 uses a distributed architecture

to support remote simulations and concurrent

simulations. It also uses an open-system architec-
ture to enable protocol modules to be easily added

to the simulator. Functionally, it can be divided

into eight separate components described below:

• The first component is the fully-integrated GUI

environment by which a user can edit a network

topology, configure the protocol modules used

inside a network node, specify mobile nodes�
moving paths, plot performance curves, play

back animations of logged packet transfers, etc.

From a network topology, the GUI program

can generate a simulation job description file

suite. Since the GUI program uses Internet

TCP/IP sockets to communicate with other

components, it can submit a job to a remote

simulation machine for execution. When the
simulation is finished, the simulation results and

generated log files are transferred back to the

GUI program. The user then can either examine

logged data, plot performance curves, or play

back packet transfer animations, etc.

While a simulation is running at the remote

simulation machine, the user can query or set an

object�s value at any time. For example, the user
may query or set the routing table of a router or

the switch table of a switch at any time. If the

user does not want to do any query or set op-

eration during a simulation, the user can choose

to disconnect the currently running simulation

so that he (she) can use the GUI program to

handle other simulation cases. The user can later

reconnect to a disconnected simulation at any
time, whether it is still running or has finished. A

user thus can submit many simulation jobs in a

short period of time. This can increase simula-

tion throughput if there are many simulation

machines available to service these jobs con-

currently.

• The second component is the simulation engine.

A simulation engine is a user-level program.
It functions like a small operating system.

Through a defined API, it provides useful and

basic simulation services to protocol modules

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 177



(to be described soon). Such services include

virtual clock maintenance, timer management,

event scheduling, variable registrations, etc.

The simulation engine needs to be compiled

with various protocol modules to form a single
user-level program, which we call the ‘‘simula-

tion server’’. When executed to service a job,

the simulation server takes a simulation job de-

scription file suite as its input, runs the simula-

tion, and generates data and packet transfer log

files as its output. When a simulation server is

running, because it needs to use a lot of kernel

resources, no other simulation server can be
running at the same time.

• The third component is various protocol mod-

ules. A protocol module is like a layer of a pro-

tocol stack. It performs a specific protocol or

function. For example, the ARP protocol or a

FIFO queue is implemented as a protocol mod-

ule. A protocol module is composed of a set of

functions. It needs to be compiled with the sim-
ulation engine to form a simulation server. In-

side the simulation server, multiple protocol

modules can be linked into a chain to form a

protocol stack.

• The fourth component is the simulation job dis-

patcher, which is a user-level program. It should

be executed and remain alive all the time to man-

age multiple simulation machines. We use it to
support concurrent simulations on multiple sim-

ulation machines. The job dispatcher can oper-

ate between a large number of GUI users and

a large number of simulation machines. When

a user submits a simulation job to the job dis-

patcher, the dispatcher will select an available

simulation machine to service this job. If there

is no available machine at this time, the submit-
ted job can be queued in the dispatcher as a

background job. Background jobs are managed

by the dispatcher. Various scheduling policies

can be used to schedule their service order.

• The fifth component is the coordinator. which is

a user-level program. On every machine where a

simulation server program resides, a coordina-

tor program needs to be executed and remain
alive. Its task is to let the job dispatcher know

whether this machine is currently busy running

a simulation or not. When executed, it immedi-

ately registers itself with the dispatcher to join

the dispatcher�s simulation machine farm. Later
on, when its status (idle or busy) changes, it will

notify the dispatcher of its new status. This en-

ables the dispatcher to choose an available ma-
chine from its machine farm to service a job.

When the coordinator receives a job from the

dispatcher, it forks (executes) a simulation ser-

ver to simulate the specified network and pro-

tocols. At certain times during a simulation, the

coordinator may also fork (start) or kill (end)

some real-life application programs, which are

specified in the job to generate traffic for the
simulated network. Because the coordinator has

the process IDs of these forked traffic genera-

tors, the coordinator passes these process IDs

into the kernel to register these traffic generators

with the kernel. From now on, all time-related

system calls issued by these registered traffic

generators will be performed based on the vir-

tual time of the simulated network, rather than
the real time.

When the simulation server is running, the co-

ordinator communicates with the job dispatcher

and the GUI program on behalf of the simula-

tion server. For example, periodically the sim-

ulation server sends the current virtual time of

the simulated network to the coordinator. The

coordinator then forwards this information to
the GUI program. This enables the GUI user to

know the progress of the simulation. During a

simulation, the user can also on-line set or get

an object�s value (e.g., to query or set a switch�s
switch table). Message exchanges happening

between the simulation server and the GUI

program are all done via the coordinator.

• The sixth component is the modifications that
need to be made to the kernel of the simulation

machine so that a simulation server can cor-

rectly run on it. For example, during a simula-

tion, the timers of TCP connections used in

the simulated network need to be triggered

by the virtual time rather than by the real time.

• The seventh component is various protocol dae-

mons (programs) running at the user-level. Like
the routing daemon ‘‘routed’’ or ‘‘gated’’ run-

ning on UNIX machines that exchange routing

messages and set up system routing tables,

178 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



when the NCTUns 1.0 is running to simulate a

network, some protocol daemons can run at the

user-level to perform specific jobs. For example,

the real-life routed (using the RIP routing pro-

tocol) or gated (using the OSPF routing proto-
col) daemons can run with the NCTUns 1.0 to

set up the routing tables used by the routers in

a simulated network.

• The last component is all real-life application

programs running at the user-level. As stated

previously, any real-life user-level application

program can run on a simulated network to ei-

ther generate network traffic, configure net-
work, or monitor network traffic, etc. For

example, the tcpdump program can run on a

simulated network to capture packets flowing

over a link and the traceroute program can

run on a simulated network to find out the rout-

ing path traversed by a packet.

Fig. 1 depicts the distributed architecture of the
NCTUns 1.0. It shows that, due to the nature of

the distributed architecture, simulation machines

can be very far away from the machines where the

GUI programs run. For example, the simulation

service center may be at NCTU in Taiwan while

the GUI users come from many different places of

the world.

When the components of the NCTUns 1.0 are
run on multiple machines to carry out simulation

jobs, we say that the NCTUns 1.0 is operating in

the ‘‘multiple machine’’ mode. This mode can

support remote simulations and concurrent simu-

lations. These components can also run on the

same machine to carry out simulation jobs. This

mode is called the ‘‘single-machine’’ mode and is
more suitable for a user who has only one ma-

chine. Due to the nature of the IPC design, the

NCTUns 1.0 can be used for either mode without

changing its program code. Only the mode pa-

rameter in its configuration file needs to be chan-

ged.

4. Design and implementation

4.1. Fully-integrated GUI environment

The NCTUns 1.0 has a fully-integrated GUI

environment by which a user can easily perform

simulation studies. The GUI program is composed

of four main components. In the following, we will
present each of them.

The first component is the topology editor,

which is shown in Fig. 2. The topology editor

provides a convenient and intuitive way to graph-

ically construct a network topology, specify vari-

ous parameters of network devices and protocols,

and specify the application programs that will

be run during simulation to generate traffic.

Fig. 1. The distributed architecture of the NCTUns 1.0.

Fig. 2. The topology editor of the NCTUns 1.0 network sim-

ulator.

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 179



A constructed network can be either a fixed wired

network or a mobile wireless network.

The second component is the performance

monitor, which is shown in Fig. 3. The perfor-

mance monitor can easily and graphically display

the plots of some monitored performance metrics
such as a link�s utilization or a TCP connection�s
achieved throughput.

The third component is the packet animation

player, which is shown in Fig. 4. By using the

packet animation player, a logged packet transfer

trace can be graphically replayed at any speed.

Both wired and wireless networks are supported.

The network at the top of Fig. 4 is a fixed wired

network. When the packet animation player starts,

packets are represented as line segments with ar-

rows flowing smoothly on the links. The network
at the bottom is a mobile ad hoc network. When

the player starts, a wireless transmission is repre-

sented by two circles centered at the transmitting

node. These two circles represent the transmission

and interference ranges of the wireless network

interface. Their display time is proportional to the

packet transmission time of this wireless transfer.

The packet animation player is a very useful tool
because it can help a researcher to visually debug

the behaviors of a protocol. It is also very useful

for educational purposes.

The last component is the node editor, which is

shown in Fig. 5. A node in the NCTUns 1.0 rep-

resents a network device such as a switch or an

IEEE 802.11(b) wireless LAN access point. The

node editor provides a convenient environment to
flexibly configure the protocol modules used inside

a network node. By using this tool, a user can use

the mouse to graphically add, delete, or replace a

protocol module with his (her) own module. As

Fig. 3. The performance monitor of the NCTUns 1.0 network

simulator.

Fig. 4. The animation player of the NCTUns 1.0 network

simulator. Fig. 5. The node editor of the NCTUns 1.0 network simulator.

180 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



such, the node editor enables a user to easily test

the functionality and performance of a new de-

signed protocol. Fig. 5 shows the internal protocol

stacks used by a router, which in this case has three

network interface ports. In Fig. 5, each square box

represents a protocol module. We see that each
network interface port is configured with a chain

of protocol modules (i.e., a protocol stack). The

protocol modules supported by the NCTUns 1.0

are classified into different categories (e.g., MAC,

PHY, Packet Scheduling, etc.). They are displayed

at the top of the node editor.

4.2. The enhanced simulation methodology

The NCTUns 1.0 uses an enhanced simulation

methodology, which enables it to be much more

powerful and useful than the Harvard network

simulator. The enhancements come from the de-

sires to support multiple subnets in a simulated

network, simulate various network devices oper-

ating at different layers, simulate various proto-
cols, simulate various types of networks, support

both broadcast and unicast transfer modes for

application programs, let users use the familiar

real-life IP address and port number scheme to

specify the network parameters of application

programs, etc. In summary, the goal of the en-

hanced simulation methodology is to allow users

to simulate any desired network and operate it in
exactly the same way as they operate a physical

real network.

In the following, we present the design and

implementation of the enhanced simulation

methodology.

4.2.1. Tunnel network interface

Tunnel network interfaces is the key facility in
the used simulation methodology. A tunnel net-

work interface, available on most UNIX ma-

chines, is a pseudo network interface that does not

have a real physical network attached to it. The

functions of a tunnel network interface, from the

kernel�s point of view, are no different from those
of an Ethernet network interface. A network ap-

plication program can send out its packets to its
destination host through a tunnel network inter-

face or receive packets from a tunnel network in-

terface, just as if these packets were sent to or

received from a normal Ethernet interface.

Each tunnel interface has a corresponding de-

vice special file in the/dev directory. If an appli-

cation program opens a tunnel interface�s special
file and writes a packet into it, the packet will enter
the kernel. To the kernel, the packet appears to

come from a real network and just be received.

From now on, the packet will go through the

kernel�s TCP/IP protocol stack as an Ethernet
packet would do. On the other hand, if the ap-

plication program reads a packet from a tunnel

interface�s special file, the first packet in the tunnel
interface�s output queue in the kernel will be de-
queued and copied to the application program.

To the kernel, the packet appears to have been

transmitted onto a link and this pseudo transmis-

sion is no different from an Ethernet packet

transmission.

4.2.2. Simulating single-hop networks

Using tunnel network interfaces, we can easily
simulate the single-hop TCP/IP network depicted

in Fig. 6(a), where a TCP sender application pro-

gram running on host 1 is sending its TCP packets

Fig. 6. (a) A TCP/IP network to be simulated. (b) By using

tunnel interfaces, only the two links need to be simulated. The

complicated TCP/IP protocol stack need be simulated. Instead,

the real-life TCP/IP protocol stack is directly used in the simu-

lation.

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 181



to a TCP receiver application program running on

host 2. We set up the virtual simulated network

by performing the following two steps. First, we

configure the kernel routing table of the simulation

machine so that tunnel network interface 1 is

chosen as the outgoing interface for the TCP
packets sent from host 1 to host 2, and tunnel

network interface 2 is chosen for the TCP packets

sent from host 2 to host 1. Second, for the two

links to be simulated, we run a simulation server to

simulate them. For the link from host i to host j
(i ¼ 1 or 2, j ¼ 3� i), the simulation server opens
tunnel network interface i�s and j�s special file in/
dev and then executes an endless loop until the
simulated time elapses. In each step of this loop, it

simulates a packet�s transmission on the link from
host i to host j by reading a packet from the spe-
cial file of tunnel interface i, waiting the link�s
propagation delay time plus the packet�s trans-
mission time on the link, and then writing this

packet to the special file of tunnel interface j.
After performing the above two steps, the vir-

tual simulated network has been constructed. Fig.

6(b) depicts this simulation scheme. Since the trick

of replacing a real link with a simulated link

happens outside the kernel, the kernels on both

hosts do not know that their packets actually are

exchanged on a virtual simulated network. The

TCP sender and receiver programs, which run on

top of the kernels, of course do not know the fact
either. As a result, all existing real-life network

application programs can run on the simulated

network, all existing real-life network utility pro-

grams can work on the simulated network, and the

TCP/IP network protocol stack used in the simu-

lation is the real-life working implementation, not

just an abstract or a ported version of it.

Note that in this simulation methodology, the
kernel of the simulation machine is shared by all

nodes (hosts and routers) in a virtual simulated

network. Therefore, although in Fig. 6(b) there are

two TCP/IP protocol stacks depicted, actually they

are the same one––the protocol stack of the single

simulation machine.

4.2.3. Simulating multi-hop networks

The above simulation methodology can only

simulate a network composed of two hosts that are

directly connected by a full-duplex link. To simu-

late a multi-hop network composed of layer-1

hubs, layer-2 switches, and layer-3 routers, to allow

multiple subnets to exist in a simulated network,

and to let packets be routed automatically through

routers as they are forwarded toward their desti-
nation nodes, we need to enhance the basic simu-

lation methodology. In the following, we use Fig. 7

to illustrate the enhanced simulation methodology.

Suppose that we want to simulate the network

depicted in Fig. 7(a), which has two subnets. The

first subnet is subnet 8 (its network address is

1.0.8.X) while the second subnet is subnet 9 (its

network address is 1.0.9.X). A layer-3 router (i.e.,
router 1) connects both of these two subnets to-

gether and forward packets between them. In

subnet 9, a layer-2 switch (i.e., switch 1) connects

to both router 1 and host 2 and switches packets

between them. In the following, we define the

schemes used in the NCTUns 1.0.

• Interface IP address scheme: In a simulated net-
work, multiple subnets can exist. For each layer-

3 or above network node (e.g., a host or a

router), if it has multiple network interfaces,

each one is simulated by a tunnel network inter-

face. A tunnel network interface has an IP ad-

dress assigned to it, just like a normal network

interface does. Suppose that a tunnel interface

connects to subnet A and its host number on this
subnet is B, its IP address is configured as

1.0.A.B in this scheme. (In the rest of the paper,

we assume that IPv4 addresses are used to con-

struct a simulated network.) Arbitrarily chosen,

1.0.X.X represents the network address of the

whole simulated network. Using the common

netmask of 255.255.255.0, a simulated network

can have up to 255 subnets, each having up to
255 hosts or routers residing on it. This interface

IP address scheme is the same as the standard IP

address scheme used in real-life networks.

If a tunnel interface is used in a simulation, its

IP address needs to be configured. We can use

the UNIX ifconfig program to do this task. For

example, to configure tun1, we can use the ‘‘if-

config tun1 1.0.8.1 netmask 255.255.255.0’’
command. Other tunnel interfaces used in Fig.

7(a) are configured in a similar way.

182 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



In the NCTUns 1.0, a layer-1 network node

(e.g., a hub) or a layer-2 network node (e.g., a

switch) does not have any IP address assigned to

its interface ports. This is correct as in real-life

networks an IP address is used for addressing

a layer-3 network interface. Note that although

the familiar network mask of 255.255.255.0 is
used as the network mask for a simulated net-

work, it can be set to any valid value as well. In

short, the IP address scheme used in this meth-

odology is the same as that used in real-life

networks.

Fig. 7(a) shows that tun1 is used by host 1 to

connect to subnet 8, tun2 used by router 1

to connect to subnet 8, tun3 used by router 1 to

connect to subnet 9, tun4 used by host 2 to

connect to subnet 9, and switch 1 does not have

any IP address assigned to its interface ports.

We see that each tunnel interface is configured

with an IP address and a MAC address. These

MAC addresses can be arbitrarily chosen as

long as they are different on a subnet.
• Source-destination-pair IP address scheme: After

assigning an IP address to each tunnel interface

used in a simulated network, now an application

program running on a node can send packets to

an application program running on a different

node. Assuming that the sending node has a tun-

nel interface whose assigned IP address is 1.0.A.B

and the receiving node has a tunnel interface

Fig. 7. (a) An example network to be simulated. (b) The automatic routing scheme is used to automatically forward packets across

layer-3 routers. (c) The simulation server participates in the simulation to simulate links and switches.

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 183



whose assigned IP address is 1.0.C.D, in this

methodology the sending application program

should use A.B.C.D as the destination IP address

when sending packets to the receiving node.

We call such addresses the ‘‘source-destination-
pair’’ addresses. These addresses are not used

by any interface in a simulated network. In-

stead, they are used by sending application

programs to indicate their intended destination

nodes. Using the source-destination-pair ad-

dress scheme enables packets to be automati-

cally forwarded through layer-3 routers in a

simulated network. The details about the au-
tomatic routing scheme will be explained later.

Although using source-destination-pair ad-

dresses to specify the address parameters of

application programs is unnatural to simulator

users, by using the fully-integrated GUI envi-

ronment, a user need not know the concept and

need not use the source-destination-pair address

scheme at all. In the GUI program, the user can
still use 1.0.C.D as the destination address when

specifying the address parameters of application

programs. On the simulation machine, the co-

ordinator will automatically translate the des-

tination address to A.B.C.D before launching

these application programs.

• Automatic routing scheme: To let the simulation

machine�s kernel automatically route a packet
through many layer-3 routers in a simulated

network, we can properly configure the routing

entries of the simulation machine�s system rout-
ing table. The automatic routing design has two

main advantages. First, we can use the real-life

IP protocol stack of the simulation machine�s
kernel to forward packets in a simulated net-

work. Simulation results thus can be more accu-
rate. Second, we can reuse the system default

routing scheme to add, delete, or change rout-

ing entries and look up the routing table. As

such, we need not waste time and effort to re-

implement the same scheme in the simulator.

Note that although there may be many routers

in a simulated network, they all share and use

the same system routing table.
For example, in Fig. 7(b), several routing en-

tries are added to the system routing table of the

simulation machine. When host 1 wants to send

packets to host 2, it uses the 8.1.9.4 source-

destination-pair address to look up the routing

table. The found entry is [8.1.9.4 tun1 1.0.8.2].

This entry indicates that the packet needs to be

sent through tun1 and the used gateway IP

address should be 1.0.8.2. The ARP module at
the sending node then finds the MAC address

used by 1.0.8.2 (by using the ARP request/reply

protocol) and puts it (i.e., BB) in the MAC

header of the packet as the destination MAC

address. The MAC module at the sending node

then sends out the completed MAC frame,

which will then reach the interface whose as-

signed IP address is 1.0.8.2.
Note that the source-destination-pair address

8.1.9.4 is used only for looking up the routing

table. After the corresponding routing entry

is found, the source-destination-pair address

8.1.9.4 is no longer used. The destination IP

address carried in the IP header of the packet is

always 1.0.9.4. It remains the same from the

source node to the destination node, no matter
how many routers the packet needs to traverse.

When the MAC frame arrives at router 1, its

MAC header is stripped off by the MACmodule

at router 1. At the IP layer of the simulation

machine�s kernel protocol stack, the 1.0.9.4 ad-
dress carried in the IP header is taken out and

translated to 9.3.9.4 source-destination-pair ad-

dress for looking up the routing table. The rea-
son why 9.3.9.4 is used is because 1.0.9.3 is one of

router 1�s IP addresses. Actually, because 1.0.8.2
is also one of router 1�s IP addresses, the 8.2.9.4
source-destination-pair address can also be used.

In Fig. 7(b), we see that both [9.3.9.4 tun3] and

[8.2.9.4 tun3] routing entries exist in the system

routing table. As such, whether 1.0.9.4 is trans-

lated to 9.3.9.4 or 8.2.9.4, the found routing
entry will indicate that the destination node (i.e.,

host 2) is already on the same subnet as router 1

(because there is no gateway IP address as-

sociated with this entry) and the packet should

be sent out via tun3 directly to 1.0.9.4. The

ARP module at router 1 then finds the MAC

address used by 1.0.9.4 (i.e., DD) and puts it

into the MAC header of the packet. The
completed MAC frame is then sent out through

tun3.

184 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



When the MAC frame arrives at switch 1, its

destination MAC address is taken out by switch

1 for looking up the switch table. Because the

found switch entry is [DD port2], which indi-

cates that this MAC frame should be forwarded

out via port 2, this MAC frame is forwarded
out without modification via port 2 of switch 1.

Note that the switch is simulated by the simu-

lation server (which is compiled and linked with

the switch protocol module). Unlike a layer-3

router, which is simulated by letting packets re-

enter the kernel IP protocol stack, a layer-2

switch or a layer-1 hub is simulated internally

inside the simulation server.
When theMAC frame arrives at host 2, itsMAC

header is stripped off. The destination IP address

1.0.9.4 is taken out and translated to the source-

destination-pair address 9.4.9.4 before the ker-

nel looks up the routing table. Because the first

two numbers 9.4 is the same as the second two

numbers 9.4 in the source-destination-pair ad-

dress 9.4.9.4, the kernel knows that this packet
has reached its final destination node and

therefore there is no need to look up the routing

table. The kernel then delivers the packet to the

TCP/UDP layer for further processing.

4.3. Simulation engine

The NCTUns 1.0 is a network simulator, not a
network emulator. As such, it can simulate net-

works with a very large number of links and nodes.

Links with very high bandwidth can also be sim-

ulated. As a simulator, when simulating a net-

work, the simulation engine needs to maintain a

virtual clock for the simulated network. Simula-

tion events are triggered and executed based on the

virtual clock, rather than the real clock.
The virtual clock in the simulation engine is

maintained by a counter. The time unit represented

by one tick of the counter can be set to any value

(e.g., one nanosecond) to simulate high speed links.

The current virtual time thus is the current value of

the counter times the time unit used. The simula-

tion engine uses the discrete-event simulation

method to advance its virtual clock. During simu-
lation, the counter is continuously advanced to the

timestamp of the event to be processed next.

The simulation engine needs to pass the current

virtual time down into the kernel. This is required

for many purposes. First, the timers of TCP con-

nections used in the simulated network need be

triggered by the virtual time rather than by the

real time. Second, for those application programs
launched to generate traffic in the simulated net-

work, the system calls issued by them must be

performed based on the virtual time rather than

the real time. For example, if we launch a ping

program in a simulated network to send out a ping

request every 1 s, the sleep (1) system call issued by

the ping program must be triggered by the virtual

time, not the real time. Third, the in-kernel packet
logging mechanism (i.e., the Berkeley-packet-filter

(BPF) scheme used by tcpdump) needs to use

timestamps based on the virtual time, rather than

the real time, to log packets transferred in a sim-

ulated network.

The simulation engine needs to pass the current

virtual time to the kernel in a low-cost and fine-

grain way. The simulation engine can pass the
current virtual time into the kernel by periodically

making a system call. (For example, the simulation

engine can make the system call once every 1 ms in

virtual time.) However, the cost of this approach

will be too high when we want the virtual time

maintained in the kernel to be as precise as that

maintained in the simulation engine. For example,

the in-kernel packet logging mechanism needs a
microsecond-resolution clock to generate time-

stamps. To solve this problem, the simulation

engine uses a memory-mapping technique. The

simulation engine maps the memory location that

stores the current virtual time in the simulation

engine to a memory location in the kernel. As

such, at any time the virtual time in the kernel is as

precise as that maintained in the simulation engine
without any system call overhead.

4.4. Protocol modules

Protocol modules are compiled and linked with

the simulation engine to simulate layer-2 and

belowdevices, protocols, and transmissionmedium.

Although the automatic routing scheme enables
the simulation machine�s kernel to use its layer-3
and above TCP/IP protocol stack to forward

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 185



packets, layer-2 and below devices, protocols, and

transmission medium are not simulated when this

scheme is used. As such, the simulation server (i.e.,

the simulation engine plus protocol modules)

needs to simulate transmission medium, all layer-2

and below protocols, and devices. For example,
Fig. 7(c) shows that, to simulate the network de-

picted in Fig. 7(a), the simulation server needs to

simulate link 1, link 2, link 3, and switch 1. (It does

not need to simulate host 1, host 2, and router 1

because they are ‘‘simulated’’ by using the auto-

matic routing scheme.)

Layer-2 and below devices, protocols and

transmission medium are simulated as proto-
col modules. Several protocol modules may be

chained together to form a protocol stack. A layer-

3 interface (i.e., a tunnel interface) uses such a

protocol stack to simulate its layer-2 and below

processing. For example, a layer-3 interface nor-

mally has the following protocol modules. First,

an ARP module is required to find the MAC ad-

dress used by an IP address (i.e., the destination IP
address of an outbound packet). Second, a packet

scheduling and buffer management (PSBM) mod-

ule is required for storing and scheduling out-

bound packets. (The simplest one is a FIFO

queue.) Third, a Medium Access Control (e.g.,

802.3 or 802.11) module is required for controlling

when to send a packet onto the link. Lastly, a

physical layer (PHY) module is required to simu-
late the characteristics of the transmission medium

(e.g., delay, bandwidth, Bit-Error-Rate, etc.).

These modules are chained together. When a

layer-3 interface sends out a packet onto a link, the

packet will be passed down module-by-module to

the PHY module. In the other direction, when the

PHY module of a layer-3 interface receives a

packet, the packet will be passed up module-
by-module to the layer-3 interface if a lower-layer

module does not discard it (e.g., to simulate bit

errors).

Although by default each layer-3 interface (i.e.,

tunnel interface) has an output queue (FIFO) as-

sociated with it inside the kernel, the NCTUns 1.0

does not use it. Instead, whenever the kernel en-

queues a packet into a tunnel interface�s output
queue, a notification event is immediately passed

to the simulation server, which enables the simu-

lation server to immediately dequeues the packet

and reads it out from the kernel. This operation

takes no time in virtual time because the simula-

tor�s virtual clock is stopped during this period.
The simulation server then passes the packet to

the ARP module associated with this tunnel in-
terface, which in turn passes the packet down to

the PSBM module below it. At the PSBM module,

any sophisticated PSBM scheme can be used. This

design enables a host or a router to use various

sophisticated PSBM scheme for its ports. For ex-

ample, a router�s first port can use a PSBM module

that implements the Round-Robin scheme while

its second port can use a PSBM module that im-
plements the FIFO scheme. Another advantage of

this design is that a PSBM module developed for

layer-2 switches can be readily used for layer-3

routers. No extra time and effort are needed.

As an example, Fig. 8(b) shows how the simu-

lation server simulates the network depicted in Fig.

8(a). Suppose that the TCP sender sends a packet

to the TCP receiver. On host 1, the packet will pass
through the TCP/IP protocol stack and be en-

queued into the output queue of tun1. The simu-

lation server will immediately dequeue it and read

it out from the kernel. The simulation server then

delivers it to the protocol stack created for tun1.

The packet then passes the ARP module, the

PSBM module, the 802.3 module, and finally

reaches the PHY module of this protocol stack.
Before being delivered to the other end of the

link, the packet needs to wait a certain amount of

time to simulate the delay of link 1 and its packet

transmission time on link 1. While waiting, it is

stored as a timeout event in the simulation engine�s
event heap. When the packet�s timer expires, the
simulation server then delivers the packet to

the protocol stack created for tun2 by moving the
packet to the PHY module of the second protocol

stack. The packet then is passed up and reaches the

802.3 module. At the 802.3 module, the packet�s
destination MAC address is checked against tun2�s
MAC address to see whether this packet should be

accepted or discarded. If the packet should be

accepted, it is passed to the PSBM module. The

PSBM module simply passes the packet to the
ARP module because its PSBM functions are for

outbound packets, not for inbound packets. When

186 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



the ARP module receives the packet, because ARP

protocol is for outbound packets only, it simply

writes the packet into the kernel. The packet then

passes through the TCP/IP protocol stack and fi-

nally reaches the TCP receiver.

To enable the user-level simulation server to

quickly detect that the kernel has enqueued a

packet into a tunnel interface�s output queue, a
memory-mapping technique similar to that used

for passing the current virtual time down into the

kernel is used. In the kernel, a bit-map is used to

record the empty or non-empty status of every

tunnel interface�s output queue. The memory lo-
cation that stores this bit-map in the kernel is

mapped to a memory location in the simulation

server. By using this technique, the simulation
server can immediately detect that a packet has

been enqueued into a tunnel interface�s output
queue without any system call overhead.

4.5. Kernel modifications

Some parts of the simulation machine�s kernel
need to be modified. In the following, we present

some important kernel modifications.

4.5.1. IP address translation

The use of source-destination-pair IP address

scheme enables the kernel to automatically for-

ward a packet toward its destination node. How-

ever, when a simulator user specifies an application

program�s destination IP address parameter, he
(she) should be able to use the normal IP address
scheme for this task. For example, in Fig. 7(a), the

destination IP address parameter given to the TCP

sender should be 1.0.9.4, rather than 8.1.9.4. The

internally used and unnatural source-destination-

pair IP address scheme should be hidden from the

user. The user need not know how we use the

source-destination-pair address to automatically

route packets.
Internally, the kernel needs to perform the ad-

dress translation on each node that is on the path

from the source node to the destination node, and

use the translated IP address to look up the rout-

ing table. However, to translate the address, the

kernel first needs to know the identity of the cur-

rent node. That is, when a packet is forwarded to

and enters node i, the kernel should know that the
identity of the current node is i. After obtaining
this information, the kernel can look up the in-

terface table associated with node i and pick up an

interface IP address to perform the translation.

(The kernel keeps an interface table for each node,

which records the IP addresses used by this node.)

As an example, in Fig. 7(a), when a packet is

forwarded to node 2, the kernel can pick up an IP
address (say 1.0.9.3) from node 2�s interface table
and translate 1.0.9.4 to 9.3.9.4 before looking up

the routing table. (Note: the kernel could pick up

1.0.8.2 and translate 1.0.9.4 to 8.2.9.4 as well. The

reason has been explained in Section 4.2.3.)

To pass the current node identity to the kernel

when a packet arrives at a node, the simulation

server, after simulating the packet�s transmission
on a link, can put the identity of the destination

node of the link (e.g., i) into the packet�s header
before writing it into the kernel.

Fig. 8. (a) A network to be simulated. (b) Using the simulation

server to simulate the network depicted in (a).

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 187



Although the above method seems to work

successfully for all nodes on the path, actually it

cannot work successfully for the source node. For

a non-source node, before a packet enters it, the

packet must be transmitted on a link. As such, the

simulation server knows the identity of the desti-
nation node of this link. However, for the source

node, since the packet does not come from any

link, this information is unavailable and thus

cannot be provided by the simulation server.

We solve this problem by explicitly telling the

kernel the current node identity when an applica-

tion program is launched. Since in the NCTUns

1.0 every application program is launched by the
coordinator, the coordinator is designed to issue a

system call to the kernel before launching an ap-

plication program. The system call passes the

identity of the node on which the application

program is intended to run into the kernel. The

kernel then stores this information in one of its

variables. Very soon when the application pro-

gram is launched, the kernel will store this infor-
mation in the control block of this launched

process. Form now on, every packet generated by

this application program can carry this informa-

tion in its header when it is sent down from the

socket layer to the IP layer. This solves the address

translation problem on the source node.

4.5.2. Port number translation

An inherent problem with the proposed simu-

lation methodology is that application programs

cannot bind to the same port in a simulated net-

work, even though they are running on different

nodes in the simulated network. The reason is that,

since these application programs are running on a

single-machine (i.e., the simulation machine), they

cannot choose the same port to bind. In real-life
networks, however, this is possible and should be

allowed. For example, in a network, there may be

a Web server binding to port 80 on every host and

a RIP routing daemon binding to port 520 on

every router.

From an application program�s viewpoint, it
does not matter which port to use as long as it can

use the port to communicate with its partners. As
such, when multiple application programs running

on different nodes want to bind to the same port in

a simulated network, a network simulator user can

solve this problem by letting them choose different

port numbers to bind. Although this solution

works and does not affect the simulation result, it

makes a simulated network unnatural to the sim-

ulator user, which should be avoided. A better
solution would be that these application programs

are still allowed to bind to the same port when they

are launched; however, the kernel internally

translates the port number used by them to dif-

ferent port numbers to avoid port number colli-

sions.

To achieve this goal, the kernel maintains a bit-

map to record which port numbers have been used
and which have not been used. During a simula-

tion, suppose that an application program (say A)

running on node i wants to bind to port number j,

the kernel will find an unused port number (say k)

and instead let application program A bind to port

number k. The kernel then creates an association

(nodeID ¼ i, real port num ¼ j, remapped port
num ¼ k) and inserts it into a hash table.
With this arrangement, if an application pro-

gram (say B) wants to send packets to application

program A, application program B can use the

port number originally used by application pro-

gram A (i.e., j) as the destination port number.
Application program B need not know the port

number translation details. The simulated network

looks like a real network to it.
The port number translation process occurs at

the destination node(s), not at the source node.

When application program B sends a packet to

application program A, before the packet reaches

the destination node, the destination port number

carried in the packet remains j, not k. Only after
the packet reaches the destination node is its des-

tination port number translated to k. Finding k is
achieved by searching the hash table using the key

pair (i; j), where j is readily available from the

packet header. As for the value of i (the current
node identity), the kernel can obtain this infor-

mation by using the method described in Section

4.5.1.

Translating the port number at the destination

node(s), not at the source node, has two advan-
tages. The first advantage is that it supports

broadcast transfers on a subnet. If the translation

188 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



is performed at the source node, only unicast

transfers can be supported. Broadcasting a packet

on a subnet to multiple application programs that

bind to the same port but run on different machines

(e.g., the routing daemons case) will be impossible.

At present, we have not investigated how to sup-
port multicast transfers. The second advantage is

that we can use the tcpdump program to correctly

filter and capture packets in a simulated network.

The tcpdump program can use port numbers to

filter and capture packets. When a user wants to

capture the packets sent from application program

A to B, naturally he (she) will set the filtering des-

tination port number to j. If we translate the port
number at the source node, the destination port

number carried in the packet will be k when it is
traversing the network. This will make the tcp-

dump program unable to capture this packet.

4.5.3. Process scheduling

We modified the default UNIX process sched-

uler so that the processes of the simulation server
and all launched traffic generators can be sched-

uled in a controlled way. The default UNIX pro-

cess scheduler uses a priority-based dynamic

scheme to schedule processes. As such, the order in

which the simulation server and traffic generator

processes are scheduled cannot be precisely con-

trolled. Also, the CPU cycles allocated to each of

these processes cannot be guaranteed. This may
result in a potential problem. For example, after

getting the control of CPU, the simulation server

may use the CPU too long before releasing it to

traffic generators. Because the simulation server is

responsible for advancing the virtual clock while it

is executing, if it monopolizes the CPU too long,

no network traffic can be generated during this

long period of time, which should not occur. To
avoid this potential problem, we modified the de-

fault UNIX process scheduler so that the simula-

tion server and all traffic generator processes are

explicitly scheduled according to the timestamp

order of their events.

4.6. System functions

In addition to simulating network devices and

protocols, to be a useful software, the NCTUns 1.0

provides many useful system functions. In the

following, we present two of them.

4.6.1. Per-node command console shell

For each node in a simulated network, we

provide a command console. A GUI user can
easily invoke a node�s command console by right-
clicking the node�s icon in the topology editor.
Immediately a terminal window (like the X ter-

minal window) will appear and automatically log

into the (possibly remote) simulation machine. On

the simulation machine, a shell program is then

executed to process the real-life UNIX commands

that may be typed in by the GUI user.
The command console is a very useful feature.

During a simulation, in a node�s command con-
sole, a user can launch application programs or

execute UNIX commands at run time, just like he

(she) is operating in a real-life network node�s
command console. For example, a user can run the

‘‘netstat’’ command to get the packet transfer

statistics of an interface. The user can run the
‘‘traceroute’’ command to see the routing path

between any pair of nodes in the simulated net-

work. This is useful for quickly checking the

routing paths generated by routing daemons. The

user can also run the ‘‘tcpdump’’ command to

monitor the packets flowing on an interface. Ac-

tually, any real-life command can be executed in

the command console. The user can immediately
get the output of these commands without waiting

until the simulation is finished.

To make a command console totally natural

to the user, we modified the system default shell

program so that the user will not see anything

inconsistent. The modification handles interface

name conversion and filtering. On a real-life

UNIX machine, a user may execute the ‘‘ifconfig’’
command to check the settings of an (or all) in-

terface(s). The output is useful as it includes the

name assigned to the interfaces. (For example, the

first Intel EtherExpress Ethernet interface is as-

signed the name fxp0, the second assigned the

name fxp1, etc.) Knowing an interface�s name is
important as some utility programs need this in-

formation. For example, if we run the tcpdump
program to monitor the packets flowing on an

interface, we need to know the interface�s name

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 189



and give it as a parameter to the tcpdump pro-

gram.

If the default shell program is not modified,

when the user uses the ‘‘ifconfig -a’’ command to

see all interfaces used by this node, he (she) will see

all the tunnel interfaces used by the simulation
machine and will not know which tunnel interfaces

are internally used for the interfaces of this node.

As such, the shell program needs to perform two

tasks. The first task is to filter out unrelated output

and the second task is to convert interface names

between tunXXX and fxpXXX, where XXX rep-

resents a number.

For example, suppose that 256 tunnel inter-
faces (tun0; tun1; . . . ; tun255) are used by the

simulation machine to simulate a network, and

among them, tun1, tun8 and tun9 are inter-

nally used to simulate the three interfaces used by

a node in the simulated network. Suppose that in

the topology editor, these three interfaces are given

the names fxp0, fxp1, and fxp2, respectively. Now

in the node�s command console, if the user exe-
cutes the ifconfig -a command, what he (she)

should see is the settings about fxp0, fxp1, and

fxp2, rather than the settings about tun0; tun1; . . . ;
and tun255. The shell program needs to internally

convert tun1 to fxp0, tun8 to fxp1, and tun9 to

fxp2 before displaying the command�s output. It
also needs to filter out the settings of all other

tunnel interfaces before displaying the output. To
the user, the names of the interfaces used by this

node are fxp0, fxp1, and fxp2. He (she) should be

able to use any of these interface names (fxpXXX)

as a parameter for any real-life command or pro-

gram.

To achieve this goal, the interface name con-

version and filtering operations must be performed

for both the input and output of the shell program.
For example, after the user finds that the node has

three interfaces named fxp0, fxp1, and fxp2, he

(she) may decide to execute the tcpdump program

to monitor the packets flowing on fxp2. (The exact

command is ‘‘tcpdump -i fxp2.’’) Before launching

the tcpdump command, the shell program needs to

intercept this command string and convert fxp2

back to tun9 so that the internally-launched tcp-
dump command will be ‘‘tcpdump -i tun9’’ rather

than ‘‘tcpdump -i fxp2.’’

To intercept both the input and output of the

shell program, we fork a process and insert it be-

tween the shell process and the system terminal

device driver. This process acts as a relaying pro-

cess. All input to and output from the shell process

must be relayed by this process. As such, it has a
chance to perform its tasks. This process actually

performs more tasks than those described here.

This is because a command string may contain the

shell I/O redirection (i.e., >) and pipe (i.e., j) op-
erators. The interface name conversion and filter-

ing operations must still be handled properly in

such cases.

The command console shell needs to perform
two other tasks, which are also performed by the

coordinator. First, before launching an application

program, the shell needs to pass the current node

identity into the kernel. (The reason is explained in

Section 4.5.1.) Second, after launching an appli-

cation program, the shell needs to register the

forked process with the kernel. (The reason is ex-

plained in Section 4.5.)

4.6.2. Tcpdump packet filtering and capturing tool

The tcpdump program is a packet filtering and

capturing tool. It is a user-level program that can

pass filtering rules to the kernel and display cap-

tured packets. Packet filtering operations are actu-

ally performed by the BPF module in the kernel.

When a packet is sent or received at an interface, the
device driver of the interface passes the packet to

the BPF module for evaluation. If the BPF module

decides to accept this packet, it will associate a

timestamp with the packet. The module gives each

captured incoming packet a timestamp to record

when it is received by the interface. The module also

gives each captured outgoing packet a timestamp to

record when it is transmitted onto a link.
The tcpdump program operates on an interface.

Since from the kernel�s viewpoint, a tunnel inter-
face is no different from a real interface, the tcp-

dump program should be able to work correctly to

capture packets flowing on a node�s interface in a
simulated network. In the current design, however,

some modifications are needed to let the tcpdump

program generate correct output.
In Section 4.4, we show that in the current de-

sign, the packets that should be sent through a

190 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



tunnel interface are no longer queued in the output

queue of the tunnel interface. Instead, they are

immediately dequeued by the simulation server as

soon as they are enqueued into the tunnel inter-

face�s output queue. The only place where they
may be queued (and delayed) is in the PSBM
module associated with this tunnel interface, which

is in the simulation server. This causes a problem

as now the timestamps given by the tunnel inter-

face�s device driver to these packets are incorrect.
On a real-life machine, the timestamp given to an

outgoing packet represents the time when the

packet is transmitted to a link rather than the time

when the packet is enqueued into the output
queue. However, in the current design, if there is

no modification, a packet will receive a timestamp

that represents the time when it leaves the tunnel

interface (or enters the PSBM module, they are the

same.), rather than when it is transmitted to a link.

To solve this problem, we disabled the part of

the tunnel interface device driver that is responsi-

ble for passing each outgoing and incoming packet
to the BPF module. We also developed a tcpdump

module and insert it between the MAC and PHY

modules. This tcpdump module cannot hold any

packet. When receiving a packet from the MAC

module (if it is an outbound packet) or from the

PHY module (if it is an inbound packet), the

tcpdump module makes a copy of the packet, gives

it a special tag, and associates it with the current
timestamp. The tcpdump module then writes the

copy into the kernel through the tunnel interface

that the user-level tcpdump program is currently

operating on. The tunnel interface�s device driver,
when seeing this special tag, passes the packet to

the BPF module for evaluation. If the BPF module

decides to accept this packet, it then passes this

packet to the user-level tcpdump program.
As an example, suppose that during a simula-

tion a user wants to monitor the traffic of a node�s
interface and this interface is internally simulated

by tun4. In the node�s command console, the user
will execute the user-level tcpdump program and

the command console shell will internally translate

this command string to ‘‘tcpdump -i tun4.’’ From

now on, a user-level tcpdump program is running
and monitoring packets on tun4. At the same time,

the shell also asks the simulation server to insert a

tcpdump module between the MAC and PHY

modules that are associated with tun4. From now

on, when receiving a packet (either incoming or

going), the inserted tcpdump module will make a

copy of this packet, give it a special tag, and as-

sociate it with the current timestamp. The module
will then write it into the special file of tun4 (i.e., /

dev/tun4). After entering tun4, due to the special

tag, the copy of the packet will be passed to the

BPF module for evaluation. If accepted, the copy

will be received by tcpdump program operating on

tun4 at the user-level.

The above design has two advantages. First, we

can fully exploit the power of the tcpdump pro-
gram. Any feature of the real-life tcpdump pro-

gram can be used. Second, we reuse the user-level

tcpdump program and in-kernel BPF module code

to the maximum extent. They need not be modified

at all. We only need to disable a very small part of

the tunnel device driver code and write a very

simple tcpdump module.

5. Scalability issues

Because in our scheme a single UNIX machine

is used to simulate a whole network (including

nodes� protocol stacks, traffic generators, etc.), the
scalability of the simulator is a concern. In the

following, we discuss several scalability issues.

5.1. Number of nodes

Because our scheme simulates multiple routers

and hosts by letting packets re-enter the simulation

machine�s kernel, there is no limitation on the
maximum number of routers and hosts that can be

simulated in a network. For hubs and switches,
since they are simulated in the simulation server,

there is no limitation on them either.

5.2. Number of interfaces

In our scheme, because each layer-3 interface

uses a tunnel interface, the maximum number of

layer-3 interfaces that can be simulated is limited
by the maximum number of tunnel interfaces that

a BSD UNIX system can support, which currently

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 191



is 256. (This limitation is caused by UNIX using

an 8-bit integer as a device�s identity.) Since this
problem can be easily solved, (for example, we can

clone tunnel interfaces, give the cloned interfaces

different names, and use them in the same way as

we use the original tunnel interface.), there is no
limitation on the maximum number of layer-3 in-

terfaces that can be simulated in a network. For

layer-1 and layer-2 interfaces (used in hubs and

switches, respectively), since they are simulated in

the simulation server, there is no limitation on

them either.

5.3. Number of routing entries

In our scheme, the kernel routing table needs to

store many source-destination-pair IP addresses

so that packets can be automatically forwarded

across routers by the kernel. Since the kernel

routing table is used only by routers, if a simulated

network has only one subnet (and thus has no

router), the kernel routing table need not be used
and can be empty.

The NCTUns 1.0 supports the ‘‘subnet’’ con-

cept. Therefore, the more efficient subnet-routing

scheme can be used instead of the less-efficient

host-routing scheme. For example, for the net-

work depicted in Fig. 7(a), instead of storing the

two routing entries [8.1.9.3 tun1 1.0.8.2] and

[8.1.9.4 tun1 1.0.8.2] in the kernel routing table, we
can store only one routing entry [8.1.9 tun1 1.0.8.2]

in the table. Because the subnet-routing scheme

can be used, suppose that in a simulated network

there are S different subnets and on average there

are H hosts residing on a subnet, the number of

source-destination-pair routing entries that need

to be stored in the kernel routing table would be

about S � H � S. As an example, suppose that S is
30 and H is 20, the number of required routing

entries would be about 18,000.

We have tested several network configurations

that need to store over 60,000 routing entries in the

kernel routing table. We found that because the

BSD UNIX systems use the radix tree [14] to ef-

ficiently store and look up routing entries, using a

large number of routing entries in a simulation is
feasible and does not slow down simulation speed

much.

5.4. Number of application programs

Since application programs running on a UNIX

simulation machine are all real independent pro-

grams, the simulation machine�s physical memory
requirement would be proportional to the number

of application programs running on top of it. Al-

though, at first glance, this requirement may seem

severe and may greatly limit the maximum number

of application programs that can simultaneously

run on a UNIX machine, we found that the virtual

memory mechanism provided on a UNIX machine

together with the ‘‘working set’’ property of a
running program greatly alleviate the problem.

The reason is that, when an application program is

running, only a small portion of its code related to

network processing will need to be present in the

physical memory. In addition, because UNIX

machines support the uses of shared libraries and

shared virtual memory pages, the required mem-

ory space for running the same application pro-
gram multiple times can be greatly reduced.

6. Simulator performance

Here we report the simulation speed of the

NCTUns 1.0 under several network and traffic

configurations. The used machine for performance
testing is an IBM A31 notebook computer equip-

ped with a 1.6 GHz Pentium processor and 128

MB RAM.

6.1. Variable CBR UDP on a single-hop network

case

In this test suite, the network topology is a
single-hop network in which a sending host and a

receiving host are connected together by a link.

The bandwidth of the link is set to 10 Mbps and

the delay is set to 10 ms, in both directions. The

traffic generated is a one way constant-bit-rate

(CBR) UDP packet stream. Each UDP packet size

is set to 576 bytes.

We varied the packet inter-arrival time of the
CBR packet stream to see how the simulator�s
speed will change when it needs to process more

events in each simulated second. The packet inter-

192 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



arrival time is the time interval between two suc-

cessive packet transmissions. The tested intervals

are 0.001, 0.005, 0.025, 0.125, 0.625, and 3.125 s,

respectively.

The performance metric reported is the ratio of

the simulated seconds to the elapsed seconds for
running the simulation. In all of our tests, the

simulated seconds is set to 999 s. A simulation case

with a higher ratio means that it can be finished

more quickly than a case with a lower ratio. A

simulation case with a ratio of 1 means that it

needs the same amount of time in real time to

finish simulating the amount of time that it wants

to simulate.
Fig. 9 shows the ratio vs. CBR packet inter-

arrival time performance plot. We see that due to

the discrete-event simulation engine design, a

simulation case can be finished very quickly if it

does not have many events to process (i.e., traffic)

per simulated second. We also see that the ratio

(2.5) of the high-load case (0.001 s) is still greater

than 1. This means that the simulator can still run
2.5 times faster than the real world under this load

on the testing machine.

6.2. Multiple greedy TCP connections on a single-

hop network case

Since during a simulation the applications that

are run to generate traffic are real-world programs,
we are interested to see how the simulator�s speed

will change if more applications need to be run at

the same time. To perform this test, we used the

network configuration depicted in Fig. 10.

In this configuration, there are six source nodes,

one destination node, and a bottleneck router
node. The bandwidth and delay of all links are set

to 10 Mbps and 10 ms, respectively. The maximum

packet queue length of the FIFO queue in the

bottleneck router is the default 50 packets. Be-

tween a pair of a source and the destination node,

we can set up a greedy TCP connection by running

the stcp program on the source node and the rtcp

program on the destination node. The length of
TCP data packets is 1500 bytes, which is Ether-

net�s MTU.
In this test, we varied the number of greedy

TCP connections that are set up to compete for the

bottleneck link�s bandwidth. The numbers tested
are 1, 2, 3, 4, 5, and 6, respectively. In all of these

cases, the bottleneck link�s bandwidth is always
100% utilized.
Fig. 11 shows that the simulator�s speed does

not degrade as more applications (stcp and rtcp)

are run to generate traffic. This phenomenon can

be explained because the number of events that

need to be processed per simulated second remains

about the same. No matter how many greedy TCP

connections (their stcp and rtcp programs) are

launched to send and receive their data, the ag-
gregate amount of data that can be pumped into

the bottleneck link or received from the bottleneck

0

20

40

60

80

100

120

140

160

180

0 1 2 3

S
im

ul
at

ed
 T

im
e 

(9
99

 s
ec

on
ds

) 
/ E

la
ps

ed
 T

im
e

CBR Packet Interval Time (in seconds)

(0.001, 2.5)

(0.005, 12)

(0.025, 45)

(0.125, 111)

(0.625, 143)

(3.125, 166)

Fig. 9. The simulation performance under various CBR UDP

traffic load. (A higher ratio means a better performance.)

Fig. 10. The multi-source-node network topology used to test

whether the simulation performance will degrade when more

applications need to be run to generate traffic.

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 193



link per simulated second is always fixed to the 10

Mbps rate. As such, the stcp and rtcp programs of

the six greedy TCP connections will take turns to

run, and their aggregate context-switching rate is

about the same as in the single greedy TCP con-
nection case.

6.3. Fixed CBR UDP on multi-hop networks case

For a discrete-event simulation engine, the

more events it needs to process in each simulated

second, the slower its simulation speed will be. In

Section 6.1, we shows that on a single-hop network
if we decrease the CBR packet stream�s packet
inter-arrival time, the simulator will become

slower. Here we show that, given a fixed CBR

packet inter-arrival time, if packets need to go

through more hops, the simulator will also become

slower.

The network configurations used are multi-hop

chain networks shown in Fig. 12. The node on the
left hand side is the source host while the node on

the right hand side is the destination host. The

bandwidth and delay of all links are set to 10

Mbps and 10 ms, respectively. The packet inter-

arrival time of the CBR UDP packet stream is set

to 0.025 s and the packet length of each UDP

packet is set to 576 bytes.

We performed two suites of performance tests.
In the first suite, all of the intermediate forwarding

nodes are routers. In the second suite, all of them

are switches. We made these two cases to observe
how much more costly a router is in forwarding a

packet than a switch.

Fig. 13 shows the performances of these two

suites. We see that as the number of hops in-

creases, the simulation performance decreases.

This phenomenon is reasonable as in such a case,

the number of events that need to processed in

each simulated second increases.
We also see that a router is more costly than a

switch in forwarding a packet. This phenomenon

can be explained as follows. When simulating a

router�s forwarding a packet, the simulation en-

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

S
im

ul
at

ed
 T

im
e 

(9
99

 s
ec

on
ds

) 
/ E

la
ps

ed
 T

im
e

The number of greedy TCP connections

Fig. 11. The simulation performance remains about the same

for different numbers of application programs running as traffic

generators.

Fig. 12. The multi-hop networks used to test the simulation

performance. The source host is on the left while the destination

host is on the right. Intermediate forwarding nodes may be

routers or switches.

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7

S
im

ul
at

ed
 T

im
e 

(9
99

 s
ec

on
ds

) 
/ E

la
ps

ed
 T

im
e

Number of hops (Router or Switch in between, CBR = 0.025 seconds)

Router
Switch

Fig. 13. The simulation performance decreases as the number

of hops increases. The cost of forwarding a packet by a switch is

less than that of forwarding a packet by a router.

194 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197



gine needs to read a packet out of the kernel and

then write it into the kernel. However, to simulate

a switch�s forwarding a packet, the forwarding
operation can be simulated totally inside the sim-

ulation engine without issuing any read or write

system call to the kernel. Since issuing system calls
are costly, switches can forward packets more ef-

ficiently than routers in a simulation.

6.4. Discussions

For the following reasons, the NCTUns 1.0�s
speed may be slower than that of a traditional

network simulator such as ns-2. First, real-life
protocol stacks are executed rather than their ab-

stractions. Second, real-life application programs

are executed to generate traffic. Third, real data

payload are carried in each transmitted packet and

thus they need to be copied. Fourth, since packets

need to be read out of the kernel and then written

into the kernel, a lot of system calls need to be

made.
The reported results show that the performance

of the NCTUns 1.0 in its current form is still sat-

isfactory. When the network topology is not large

and the traffic load is not high, its simulation speed

is faster than the real world. Currently, we are

working to further improve its performance by

first identifying its performance bottleneck and

then using more efficient data structures and al-
gorithms for its execution.

7. Simulation result validations

The results generated by a simulator need to be

carefully validated and shown to be correct before

it can be trusted. In the following, we explain how
we validated simulation results.

For UDP traffic cases, our simulation results

show that each packet is transmitted (and re-

ceived) exactly at the specified times. For example,

if a CBR UDP packet stream has a packet inter-

arrival time of 0.001 s, our results show that the

first packet is transmitted at 0 s, the second packet

is transmitted at 0.001 s, and the third packet is
transmitted at 0.002 s, etc. Actually, we found that

transmitting a packet stream with any packet in-

ter-arrival time distribution is accurately simu-

lated. This is because the simulation engine can

just advance its virtual clock to the timestamps of

these transmitting (and receiving) events.

For TCP traffic cases, our simulation results

also show that each packet is transmitted or re-
ceived under correct TCP error and congestion

control. We dumped all TCP timer timeout events

(e.g., delay-ack and retransmission timers) and

used the tcpdump packet trace to perform corre-

lation checks across TCP timer events and packet

transfers. The checks confirm that the TCP pro-

tocol is correctly simulated during a simulation.

Actually, this is a natural result as the NCTUns
1.0 uses the in-kernel real-life TCP/IP protocol

stack to generate simulation results.

To confirm that the simulator can correctly

simulate a link�s bandwidth and delay, we also
have performed extensive validation tests covering

various network configurations. All of these re-

sults can be explained and shown to be correct.

Due to space limitation, we do not present these
cases here.

8. Discussions and limitations

Since only a single UNIX machine (with its own

protocol stack) is used to simulate multiple nodes,

the NCTUns 1.0 has a limitation that it allows
only one version of TCP/IP protocol stack in a

simulated network. Studying interactions between

different TCP versions (e.g., TCP tahoe and TCP

reno) or between different TCP implementations

(e.g., FreeBSD and Linux) thus cannot be done by

using our simulator as is. One way to overcome

this limitation is to use a distributed simulation

approach. In such a distributed approach, a UNIX
machine with a particular protocol stack can be

used to simulate nodes using the same stack, while

other UNIX machines with different stacks may be

used to simulate nodes using different stacks.

Currently, the FreeBSD platform provides a

user-level ‘‘sysctl -a or -w’’ command to view or

change various parameters used by the in-kernel

TCP/IP protocol stack. For example, a user can
use this command to change the size of a socket

send and receiver buffer, the TCP delay ACK time,

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 195



whether to perform TCP delay ACK mechanism,

whether to use TCP newreno version, etc. Al-

though right now this command can change a

large number (93) of protocol parameters or op-

tions, a user may still need to change the kernel

source code and recompile the kernel if his (her)
changes cannot be performed by this command.

Changing the kernel source code, however, may

not be comfortable to all users.

When installing the NCTUns 1.0, the user needs

to have the root privilege to be able to recompile

the kernel. This may be a problem for some users

who do not have their own computers. Since re-

compiling the kernel may not be comfortable to all
users, the NCTUns 1.0 package provides an in-

stallation script to perform this task automatically

without human intervention.

Since the NCTUns 1.0 uses real-life protocol

and application implementations to ‘‘simulate’’ a

network and its traffic, its generated results may

vary from one platform to another platform (e.g.,

from FreeBSD to Linux) or from one release to
another release (e.g., from FreeBSD 2.8 to Free-

BSD 4.6), although they are all correct. Thus,

when reporting or comparing simulation results

generated by the NCTUns 1.0, a user should re-

port the used platform and release version as well.

9. Ongoing work

Aimed to be a production-level and high-qual-

ity software, the NCTUns 1.0 still has many places

to improve in its future versions. For example, its

simulation speed needs to be improved and many

useful system functions (such as ‘‘print’’) need to

be added. We are working on these to-do items.

10. Conclusions

In this paper, we present the internal design and

implementation of the NCTUns 1.0 network sim-

ulator. Based on an enhanced simulation meth-

odology and a new simulation engine architecture,

the NCTUns 1.0 network simulator provides
much better functionality and performance than

its predecessor––the Harvard network simulator.

Its distributed and open-system architecture design

supports remote simulations and concurrent sim-

ulations, and allows new protocol modules to be

easily added to its simulation engine. With its

fully-integrated GUI environment, non-real-life

internal designs and implementations are totally
hidden from the user. A user, when using the GUI

environment to operate a simulated network, will

feel like he (she) is operating a real network.

Due to its unique advantages, the NCTUns 1.0

network simulator was selected as a research

demonstration at ACM MobiCom�02 interna-

tional conference, held in Atlanta, USA, from 09/

23/2002 to 09/28/2002. The NCTUns 1.0 network
simulator has been released to the networking

community on 11/01/2002 and its web site is set up

at http://NSL.csie.nctu.edu.tw/nctuns.html.

Acknowledgements

The authors are very grateful to the three
anonymous reviewers for their detailed and valu-

able comments, which make this paper much bet-

ter than its original version. This research was

supported in part by MOE program for promoting

Academic Excellence of Universities under the

grant number 89-E-FA04-1-4 and 91-E-FA06-4-4,

the Lee and MTI Center for Networking Re-

search, NCTU, and the Institute of Applied Sci-
ence and Engineering Research, Academia Sinica,

Taiwan.

References

[1] OPNET Inc. Available from <http://www.opnet.com>.

[2] S. McCanne, S. Floyd, ns-LBNL Network Simulator.

Available from <http://www-nrg.ee.lbl.gov/ns/>.

[3] S.Y. Wang, H.T. Kung, A simple methodology for

constructing extensible and high-fidelity TCP/IP network

simulators, IEEE INFOCOM�99, New York, USA, March
21–25, 1999.

[4] S.Y. Wang, H.T. Kung, A new methodology for easily

constructing extensible and high-fidelity TCP/IP network

simulators, Computer Networks 40 (2) (2002) 257–278.

[5] Harvard TCP/IP network simulator 1.0. Available from

<http://www.eecs.harvard.edu/networking/simulator.html>.

[6] K. Fall, Network emulation in the Vint/NS simulator,

ISCC99, July 1999.

[7] Nist net. Available from <http://snad.ncsl.nist.gov/itg/nist-

net>.

196 S.Y. Wang et al. / Computer Networks 42 (2003) 175–197

http://NSL.csie.nctu.edu.tw/nctuns.html
http://www.opnet.com
http://www-nrg.ee.lbl.gov/ns/
http://www.eecs.harvard.edu/networking/simulator.html
http://snad.ncsl.nist.gov/itg/nistnet
http://snad.ncsl.nist.gov/itg/nistnet


[8] J.S. Ahn, P. Danzig, Z. Liu, L. Yan, Evaluation of

TCP Vegas: emulation and experiment, ACM SIG-

COMM�95.
[9] X.W. Huang, R. Sharma, S. Keshav, The ENTRAPID

protocol development environment, IEEE INFOCOM�99,
New York, USA, March 21–25, 1999.

[10] L. Rizzo, Dummynet: a simple approach to the evaluation

of network protocols, Computer Communication Review

27 (1) (1997) 31–41.

[11] S. Keshav, REAL: a network simulator, Technical Report

88/472, Department of Computer Science, UC Berkeley,

1988.

[12] SSF network module (SSFnet). Available from <http://

www.ssfnet.org>.

[13] A. Meyer, L.H. Seawright, A virtual machine time-sharing

system, IBM Systems Journal 9 (3) (1970) 199–218.

[14] G.R. Wright, W.R. Stevens, TCP/IP Illustrated, vol. 2,

Addison-Wesley, Reading, MA, 1995.

S.Y. Wang is an Assistant Professor of
the Department of Computer Science
and Information Engineering at Na-
tional Chiao Tung University, Taiwan.
He received his Ph.D. degree in com-
puter science from Harvard University
in 1999. His research interests include
computer networks, network simula-
tions, and operating systems. He is the
author of the Harvard network simu-
lator and the NCTUns 1.0 network
simulator. Due to its unique advan-
tages, the NCTUns 1.0 network sim-
ulator was selected as a research

demonstration by ACM MobiCom�02 held on 09/23/2002. As
of 01/01/2003, it has been downloaded by more than 500 or-
ganizations world-wide since its release on 11/01/2002. More
information about these simulators is available at http://
NSL.csie.nctu.edu.tw/nctuns.html.

C.L. Chou currently is a Ph.D. student
at the Department of Computer Sci-
ence and Information Engineering,
National Chiao Tung University
(NCTU), Taiwan. He received his
master degree in computer science
from NCTU in 2002 and has partici-
pated in the NCTUns 1.0 network
simulator project for three years.

C.C. Hwang currently is a second-year
master student at the Department of
Computer Science and Information
Engineering, National Chiao Tung
University (NCTU), Taiwan. He has
participated in the NCTUns 1.0 net-
work simulator project for two years.

Z.M. Yang received his master degree
in computer science from NCTU in
2002 and currently is working for a
company. He participated in the
NCTUns 1.0 network simulator pro-
ject from 2000 to 2002.

C.C. Chiou received his master degree
in computer science from NCTU in
2001 and currently is working for a
company. He participated in the
NCTUns 1.0 network simulator pro-
ject from 1999 to 2001.

C.C. Lin is a first-year master student
at the Department of Computer Sci-
ence and Information Engineering,
National Chiao Tung University
(NCTU), Taiwan. He has participated
in the NCTUns 1.0 network simulator
project for one year.

C.H. Huang received his master degree
in computer science from NCTU in
2002 and currently is working for a
company. He participated in the
NCTUns 1.0 network simulator pro-
ject from 2000 to 2002.

S.Y. Wang et al. / Computer Networks 42 (2003) 175–197 197

http://www.ssfnet.org
http://www.ssfnet.org
http://NSL.csie.nctu.edu.tw/nctuns.html
http://NSL.csie.nctu.edu.tw/nctuns.html

	The design and implementation of the NCTUns 1.0 network simulator
	Introduction
	Related work
	High level architecture
	Design and implementation
	Fully-integrated GUI environment
	The enhanced simulation methodology
	Tunnel network interface
	Simulating single-hop networks
	Simulating multi-hop networks

	Simulation engine
	Protocol modules
	Kernel modifications
	IP address translation
	Port number translation
	Process scheduling

	System functions
	Per-node command console shell
	Tcpdump packet filtering and capturing tool


	Scalability issues
	Number of nodes
	Number of interfaces
	Number of routing entries
	Number of application programs

	Simulator performance
	Variable CBR UDP on a single-hop network case
	Multiple greedy TCP connections on a single-hop network case
	Fixed CBR UDP on multi-hop networks case
	Discussions

	Simulation result validations
	Discussions and limitations
	Ongoing work
	Conclusions
	Acknowledgements
	References


