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ABSTRACT An analytical function involving four parameters
is proposed to express the second-harmonic generation effi-
ciency as well as the parametric generation gain coefficient
in the Boyd–Kleinman theory. The analytical function clearly
reveals the dependence of conversion efficiency on the fo-
cusing parameter and the walk-off parameter. Moreover, the
optimum focusing parameter and its corresponding maximum
efficiency are explicitly given in the analytical function, leading
to a straightforward evaluation of a given crystal performance.

PACS 42.65.-k; 42.70.-a

1 Introduction

The demand for various laser sources covering the
spectrum from ultraviolet to infrared is always increasing in
many areas. The processes of second-harmonic generation
(SHG) and parametric generation (PG) are often employed for
optical wavelength conversion [1–4]. Thus, a study of opti-
mization in SHG and PG is important.

In most applications, either the crystal length or the fo-
cusing parameter is optimized to maximize the generation
efficiency. The optimum value for the crystal length or the
focusing parameter for focused Gaussian beams is usually
evaluated on the basis of the classical theory of Boyd and
Kleinman (BK) [5]. However, it is necessary to perform a two-
dimensional (2D) integral plus an optimization procedure on
the mismatch parameter in the calculation of the BK theory.
In view of the complexity, a simple analytical function for the
BK theory is desired and practically useful.

In this work, we propose a simple analytical function in-
volving four parameters to straightforwardly obtain the pre-
dictions of the BK theory. The analytical function expresses
the dependence of conversion efficiency on the focusing pa-
rameter and the walk-off parameter for the processes of SHG
and PG. Furthermore, the optimum focusing parameter and its
corresponding maximum efficiency are explicitly given in the
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analytical function; therefore, the evaluation of a given crystal
performance becomes extremely straightforward.

2 Boyd–Kleinman theory

Boyd and Kleinman presented a general theory for
the dependence of the SHG power and the PG threshold power
on the focusing parameter in a nonlinear uniaxial crystal. Here
a brief description is given for completeness. In terms of the
function h (σ, B, ξ), the SHG power is given by

η = P2/P1 = [(
2ω1

2deff
2) / (

πn2
1n2ε0c3)] P1lk1h (σ, B, ξ) ,

(1)

where P1 and P2 are the powers of the fundamental beam and
the second-harmonic beam, respectively; ω1 is the fundamen-
tal laser frequency; deff is the effective nonlinear coefficient;
l is the crystal length; k1 is the fundamental wavevector in the
crystal, n1 and n2 are the refractive indices for the fundamen-
tal beam and the second-harmonic beam, respectively; c is the
light velocity in vacuum; and ε0 is the vacuum permittivity.
The function h (σ, B, ξ) is given by

h(σ, B, ξ) = 1

4ξ

ξ∫

−ξ

ξ∫

−ξ

eiσ(τ−τ ′)e−B2(τ−τ ′)2
/ξ

(1 + iτ) (1 − iτ ′)
dτdτ ′, (2)

and the parameters are ξ = l/b, B = (
�
√

lk1
)
/2, and σ =

b∆k/2. Here b = 	2
0 k1 is the confocal parameter, 	0 is the

beam waist, ∆k = 2k1 − k2 is the phase mismatch, and � is
the walk-off angle. Since the SHG efficiency is usually opti-
mized with respect to the mismatch parameter σ , it is more
practically useful to define the function

hm (B, ξ) = max [h (σ, B, ξ)]σ . (3)

Similar to the expression of the SHG efficiency, a general
function h̄ (σ, B, ξ) is defined such that the PG gain coeffi-
cient is given by

G = [(
2ω2

0d2
eff

)/(
πn2

0n3ε0c3)] P3lk0
(
1 − δ2)2

h̄ (σ, B, ξ) ,

(4)
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where ω0 is the degeneracy frequency, P3 is the pump
power, n0 is defined as 2n0 = n1 + n2, k0 is defined as
k0 = n0ω0/c, and

(
1 − δ2

)2
is the degeneracy factor defined

by ω1 = ω0 (1 − δ), ω2 = ω0 (1 + δ), and ω1ω2 = ω2
0

(
1 − δ2

)
.

The function h̄ (σ, B, ξ) is given by

h̄ (σ, B, ξ) = 1

4ξ

ξ∫

−ξ

ξ∫

−ξ

eiσ(τ−τ ′)e−B2τ2/ξ

(1 + iτ) (1 − iτ ′)
dτdτ ′. (5)

As defined in (3), the function h̄ (σ, B, ξ) optimized with re-
spect to the mismatch parameter σ is given by

h̄m (B, ξ) = max
[
h̄ (σ, B, ξ)

]
σ

. (6)

It can be found from (1)–(6) that the calculation of the SHG
efficiency or the PG gain coefficient includes a 2D integral
plus an optimization procedure on the mismatch parameter σ .
Therefore, it is practically useful to develop an analytical rep-
resentation for the functions hm (B, ξ) and h̄m (B, ξ).

3 Analytical functions for BK theory

The calculated result reveals that the dependence of
the function hm (B, ξ) on the focusing parameter ξ is similar
to the Lorentzian line-shape function. To increase the fitting
accuracy, we propose

hm (B, ξ) = hmm (B) γ (B) ξ

|ξ − ξm (B)|n(B) +γ (B) ξ
(7)

for the SHG optimization. Here ξm (B) is the optimum focus-
ing parameter and hmm (B) represents the optimized SHG, i.e.
hmm (B) = hm [B, ξ (B)]. Moreover, γ (B) is the damping co-
efficient to describe the sensitivity of the function hm (B, ξ) on
the focusing parameter ξ . Finally, the parameter n (B) is used
to increase the fitting accuracy; its value is usually in the range
of 1.83–1.91. We have fitted (7) to the numerical results of the
BK theory to find ξm (B), hmm (B), γ (B), and n (B) that are
given by

ξm(B) = 2.84 +1.39B2

1 +0.1B+ B2
,

hmm(B) = 1.068

1 −0.7
√

B +1.62B
,

n(B) = 1.91 +1.83B

1 + B
,

γ(B) = [ξm(0)]n(0)

hmm(0)
e−B +13

(
1 − e−B/3

)
. (8)

Figure 1 shows a comparison of our results with the corres-
ponding numerical data for the function hm (B, ξ) as a func-
tion of focusing parameter ξ for several values of walk-off
parameter B. Good agreement is found for all cases.

FIGURE 1 Comparison between the numerical calculations with (2) and
(3) (solid lines) and analytical results with (7) and (8) (dashed lines) for
the function hm (B, ξ) of the BK theory, for several values of the walk-off
parameter B

The same functional form in (7) is also used to represent
the function h̄m (B, ξ):

h̄m (B, ξ) = h̄mm (B) γ̄ (B) ξ∣∣∣ξ − ξ̄m (B)

∣∣∣n̄(B) + γ̄ (B) ξ

. (9)

With (9) fitting the numerical results, we obtain

ξ̄m(B) = 2.84 +0.4B

1 + B
,

h̄mm(B) = 1.068

1 +1.3B2
,

n̄(B) = 1.91 +1.88B2

1 +0.06B+ B2
,

γ̄ (B) =
[
ξ̄m(0)

]n̄(0)

h̄mm(0)
e−1.75B +3.5B +0.6B2 . (10)

Figure 2 shows a comparison of our results with the corres-
ponding numerical data for the function h̄m (B, ξ) as a func-
tion of focusing parameter ξ for several values of walk-off pa-
rameter B. Again, the agreement is so close that only minute
differences can be seen.

One useful property of the present analytical function is
in terms of the optimum focusing parameter and the opti-
mum conversion efficiency. This property makes the present
function extremely straightforward in the optimum analysis.
As shown in Fig. 3, no obvious difference can be seen be-
tween the numerical calculations with (2)–(5) and analytical
results with (8) and (10) for the optimum SHG hmm (B) and
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FIGURE 2 Comparison between the numerical calculations with (5) and
(6) (solid lines) and analytical results with (7) and (8) (dashed lines) for
the function h̄m (B, ξ) of the BK theory, for several values of the walk-off
parameter B

the optimum PG h̄mm (B). Finally, note that, in the absence
of walk-off, the analytical functions in (7) and (9) have the
asymptotic behaviors

hm (0, ξ) = h̄m (0, ξ) → ξ (ξ → 0) . (11)

With this asymptotic behavior, the SHG efficiency and the PG
gain coefficient are given by a plane-wave expression [6].

4 Conclusion

In conclusion, we have constructed simple ana-
lytical expressions for the functions hm (B, ξ) and h̄m (B, ξ)
of the BK theory. Since the optimum focusing parameters

FIGURE 3 Comparison between the numerical calculations with (2)–(6)
(solid lines) and analytical results with (8) and (10) (dashed lines) for the
optimum SHG hmm (B) and the optimum PG h̄mm (B)

ξm (B) and ξ̄m (B) and their corresponding maximum efficien-
cies hmm (B) and h̄mm (B) are explicitly given, the present
analytical functions lead to an extreme simplification of the
evaluation of a given crystal performance.
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