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 1 Introduction Self-assembled quantum dots (QDs) 
have been proposed as potential sources in entangled pho-
ton pairs production. However, a main obstacle to success-
ful generation of entangled photon pairs from QDs is the 
fine structure splitting (FSS) between intermediate one-
exciton (X) spin states [1, 2], a direct consequence of the 
electron–hole (e–h) exchange interaction (EI) intrinsically 
existing in solids [3]. In this work we develop a micro-
scopic theory of electron–hole exchange interactions and 
excitonic fine structure in double quantum dots (DQDs). 
We derive the explicit expressions for the e–h EI between 
the direct-direct (DD), direct-indirect (DI) and indirect-
indirect (II) excitons in DQDs. The developed approach is 
used to evaluate the dependence of FSS for DQD systems 
on the unique tuning parameters such as bias field and the 
interdot distance. With the advantage of extra tuning pa-
rameters, DQD systems are shown to provide a feasible 
way for controlling the FSS of exciton mediating states and 
entanglement in the emitted photons. 
 In the next section, we start with the generalized Ham-
iltonian of interacting e–h pairs in coupled dots, and then 
show an explicit expression for the e–h EI part determined 
by the complete Bloch wave functions. Next to that, we 
use Fock–Darwin (F–D) orbitals as basis for expansion of 
one-exciton spin states and derive the explicit expressions 

for direct and indirect excitonic states. Within the chosen 
basis, we carry out numerical diagonalization for the corre-
sponding Hamiltonian matrix, and analyze the calculated 
energy and polarized photoluminescence (PL) spectrum for 
a typical double dot system. We conclude in the last sec-
tion. 
 
 2 Model Hamiltonian The full interacting e–h 
Hamiltonian for a coupled DQD system can be expressed, 
within the tight binding scheme, as 
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A theory of electron–hole exchange interaction in vertically

stacked double quantum dots is developed. This theory was

built up from the full interacting Hamiltonian of two coupled

dots, taking into account both of the macroscopic and micro-

scopic natures of particle wave functions. In the basis

of S-type Fock–Darwin orbitals, compact formulations for

electron–hole exchange terms responsible for the fine struc-

 ture splitting of spin exciton states as functions of material

parameters, geometric structure of dots, and the strength of

external field are explicitly derived. Significant reduction of

the splitting, down to 50% of the magnitude of such energy in

single dot cases, is observed as the system is switched into

the near-resonance regime. 



838 H. Ramirez et al.: Theory of electron–hole exchange interaction in double QDs 

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  www.pss-b.com 

p
h

ys
ic

ap s sst
at

u
s

so
lid

i b

 

Figure 1 Schemes of the S-like isolated-dot orbitals of double dot systems (a) without bias field and (b) with positive applied bias 

field. (c) Configurations of spin bright X. 

 
describes the particle hopping between adjacent dots in 
terms of the hopping parameters 
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are the conventional e–e, h–h and e–h Coulomb interac-
tions, where symbols j k,  (n m, ) are respectively preserved 
throughout this article for labeling single electron (hole) 
states of an isolated dot as composite indexes containing 
the information about orbitals and position of dot (L or R), 

/σ =≠ Ø  ( χ =› / fl ) denotes electron (hole) spin (pseu-
dospin), and 

†

jc σ
 and jc σ

 (
†

nh χ
 and nh χ

) are the electron 
(hole) creation and annihilation operators, respectively. 
 The Coulomb matrix element defined by 
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describes the two-particle Coulomb scattering process 
from initial states k 〉| ¢  and j 〉| ¢  to some final states k〉|  and 
j〉,|  in which conservation of particle spin is ensured, 

where 
e

k
Φ  (

h

n
Φ ) is the electron (hole) envelope wave func-

tion of the initial (final) state and ε  is the dielectric con-
stant of the dots material [4]. The last term in Eq. ( 1) 
represents the e–h exchange interaction 
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in terms of the matrix elements defined by 
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where 
c

u
σ
(

v
u

χ
) is the periodic part of electron (hole) Bloch 

function at the conduction (valence) band with spin σ (χ ). 
Notable is that the spins of an electron and a hole could  
be simultaneously flipped in the Coulomb scattering via 
the e–h EI, leading to the lifting of the degeneracy of  
spin exciton states and being the main target of this  
work. Since our interest is in bright exciton states, here  
we consider the following four spin configurations  
of bright exciton, 
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typical energy value at the scale 
2

0
10

njkm
δ ∼  µeV is respon-

sible for the splitting of bright and dark excitons, while the 
latter with 

1

1
10

njkm
δ ∼  µeV for the mixing of bright X with 

opposite spins and the corresponding FSS [5]. On the other 
hand, the integral in Eq.( 2) is customarily decomposed 
into two parts (
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the short range (Sr.) part for 
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(Lr.) one for 
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| |r r a- > , where a0 is the lattice constant. It 

is known that the main contribution to 
1

njkm
δ  comes from 

the Lr. part [6]. Then, within the dipole-dipole approxima-
tion this term is finally written as [4] 
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where we have renamed variables 
1

R r∫  and 
1 2

ΔR r r∫ - , 
making easier of noting the Lr. character of the term. We 
limit our study to a single neutral exciton confined in a 
double quantum dot system with interdot distance 

0
z  and 

applied bias field, as depicted in Figs. 1(a) and (b). Focus-
ing on coupled quantum dots under low-power excitation 
conditions and at low temperature, we work on single X 
states involving the main three S-type orbitals of isolated-
dots [7]. Here we adopt this three-orbital model for the cal-
culation of excitonic spectrum of bias-controlled DQD, re-
garding it has been successfully applied to the explanation 
of previous experimental results [8]. 
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 Based on the single particle states shown in Fig. 1(a), 
the four relevant single exciton configurations are built up 
as follows, 

† †

L ( ) e ( )
| ( ) |L ( ) |e ( ) |0a b h c〉 〉 〉 〉 〉 〉
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∫ |fl › |≠ Ø = . (4b) 

 Figure  1(c) shows the chosen single particle orbital 
basis and bright spin-exciton configurations. Configura-
tions |a〉  and |b〉  are related to direct X while |c〉  and |d〉  to 
indirect X. Since our interest is in the fine structure of 
bright excitons, we reduce the terms apparently irrelevant 
to the FSS by despising Coulomb interaction and non spin 
flip e–h EI for indirect states (

ReeR ReeR
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0V δ= = ) and by 

removing the common offset of single particle energy and 
non spin flip e–h EI for direct states to PL spectra of single 
excitons (
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Hamiltonian can be written in a compact form 

DD DI
eh h

DD DI
eh h

DI II
h 0

DI II
h 0

ˆ

V t

V t
H

t eFz

t eFz

δ δ

δ δ

δ δ

δ δ

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

- - - -

- - - -

= ,

- - - -

- - - -

 (5) 

where e is the elementary charge, F  is the bias field, and 
the off-diagonal terms 

DD
δ , 

DI
δ , and 

II
δ  couple the spins of 

DD, DI and II pairs of exciton states, respectively. After 
diagonalization we obtain the energy spectrum of single 
spin exciton in DQDs versus bias field, exhibiting two an-
ticrossed energy branches (denoted by 

1
E  and 

2
E  for the 

lower branch, and 
3

E  and 
4

E  for the upper one) with the 
bias-controlled FSS, as shown in Fig. 2(a). From existing 
experiments [6] and Eq. (3), one deduces that 
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of energy scale differences, we derive the FSSs 
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From these expressions, it is clear that the FSSs approach 
the values 

DD

low 0
( ) 2E F z δD , Æ  and 

II

up 0( ) 2E F z δD , Æ  in 
low field limit 0F Æ , and 
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FSSs are close to the values 
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up 0( ) 2E F z δ δ δD , Æ + -  as 
DQDs are brought by field into the states near resonance 
(

eh 0
F V zÆ / ). This indicates that significant change of FSS 
might be achieved by means of bias control within the ex-
plicit interval 

II DD{2 2 }δ δ, . 

 3 Fock–Darwin orbital basis Now to model the 
single particle states of QD we use the F–D states for the 
3D parabolic potential. These envelope wave functions are 
explicitly given by 

22 2
1

2
e

e e
( ) e ,

x y z

x y z

l l l

kΦ

Ê ˆÊ ˆÊ ˆ Ê ˆÁ ˜- + +Á ˜ Á ˜Á ˜ Ë ¯ÁË ¯ ˜Ë ¯Ë ¯
=R  (7a) 

22 2
1

2
h

L h
( ) e ,

x y z

x y z

l l l

kΦ

Ê ˆÊ ˆÊ ˆ Ê ˆÁ ˜- + +Á ˜ Á ˜Á ˜ Ë ¯ÁË ¯ ˜Ë ¯Ë ¯
=R  (7b) 

22 2

01

2
h

R h
( ) e ,

x y z

x y z z

l l l

kΦ

Ê ˆÊ ˆ -Ê ˆ Ê ˆÁ ˜- + +Á ˜ Á ˜Á ˜ Ë ¯ÁË ¯ ˜Ë ¯Ë ¯
=R  (7c)   

where 
e
k  and 

h
k  are the normalization constant of electron 

and hole wave functions, and l
x 
(l
v 
and 

z
l ) is the characteris-

tic length measuring the electron wave function extension 
along the x  (y and z) direction. Substituting Eq. (7) in  
Eq. (3) and performing the integration, we obtain the fol-
lowing formulation of the e–h exchange interaction terms 
for slightly deformed dots, 

DD (M)
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l
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Figure 2 (online colour at: www.pss-b.com) (a) Energy spectrum 

of first four bright states from a double quantum dot as function 

of the normalized bias field (solid lines). Dashed lines indicate 

uncoupled direct and indirect X energies as reference. Green line: 

1
E , red line: 

2
E , blue line: 

3
E  and gray line: 

4
E . (b) Fine structure 

splitting of the bright exciton states and the intensity of the corre-

sponding polarized PL versus the applied bias fields. (Intensity 

normalized to the corresponding magnitudes of the single dot 

case ISD.) Green line: 
DD

low
2E δD / , red line: 

DD

up 2E δD / , blue line: 

low SD
I I/  and gray line: up SDI I/ . 



840 H. Ramirez et al.: Theory of electron–hole exchange interaction in double QDs 

 

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  www.pss-b.com 

p
h

ys
ic

ap s sst
at

u
s

so
lid

i b

where ( ) 2 2 2

p 0 g 03 /8
M

e E m E aδ ε�=  is a constant associated 
with material properties. From these expressions, it is clear 
that finite value of 

DD
δ  arises from the lateral deformation 

(
x y
l lπ ) of dot shape while that of 

DI
δ  and 

II
δ  involve both, 

the lateral deformation and inter-dot distance. Figure 2(a) 
shows the energy spectrum of single spin exciton in  
a DQD with 

0
10z =  nm. Magnitudes of FSSs of the corre-

sponding energy branches are presented in  Fig. 2(b).  The 

geometrical  parameters  10/ 2
x
l =  nm,  / 0 97

x y
l l = .  and 

1 5/ 2 nm
z
l = . are used here. We calculated for 
In

0 5.
Ga

0 5.
Al/GaAs DQDs with material parameters follow-

ing Refs. [4] and [9]. With such numerical values for the 
system and 

h
0 3t = . meV, we obtain 

DD
54δ = µeV and 

DI II
0δ δª ª . 

 
 4 Polarized photoluminescence spectrum The 
polarized PL spectra from single spin excitons in DQDs 
are calculated using Fermi’s golden rule 

2
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tion transition and 
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Considering single exciton eigenstates from diagonalizing 
the Hamiltonian in Eq. (6) as the transition initial states, 
we obtain the PL intensities according to 

B

( ) L ee ( ( ( ) )

iE

i iK T

x y b a
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I S λ λ

-

,
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2

R e d c
( ( ) )) ( )i i

i
S Eλ λ δ ω�

,
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where 
i

α
λ  is the coefficient of the configuration |α〉  in the 

superposition of the eigenstate |i〉  after diagonilizing the 
Hamiltonian, 

B
K  is the Boltzmann constant, ω  is the fre-

quency of the emitted photon, and n jS
,

 is the overlap be-
tween the electron and hole wave functions of states |n〉  
and |j〉, respectively ( (3) h ed *( ) ( )n j n jS Φ Φ

,

= Ú r r r ). 
 Figure 3 shows the PL spectra versus varied bias fields 
for the same case as Fig. 2, at a temperature of 10  K. For 
the reason of visibility, we use a Gaussian function with 
large standard deviation 18γ = µeV to model the width 
broadening of the spectral lines [10]. The normalized in-
tensities of the polarized PL lines and the corresponding 
FSS’s as functions of bias field are shown in Fig. 2(b). 
There, significant reduction of the splitting, down to 50% 
of the magnitude of such energy in single dot cases, is ob-
served as the double-dot system is electrically switched 
from the regime of off-resonance (

0 eh
1eFz V �/  or 1� ) to 

that of near-resonance (
0 eh

1eFz V ∼/ ) regime. As suggested 
in Ref. [12], such a controllability of the optical FSS’s 
would be a key element in the realization of dot-based en-
tangled photon pair emitters. We also find that in Fig. 2(b) 
the intensities of the emission lines basically follow the 
similar dependence of applied bias as that of FSS. This in- 

 

Figure 3 (online colour at: www.pss-b.com) Polarized photolu-

minescence (PL) spectra from single excitons in double quantum 

dots with an interdot distance of z0 = 10 nm under bias field con-

trol. Blue dashed lines indicate the PL spectra of π
x
 linearized 

polarization and the red solid lines indicate that of π
y
 polarization. 

 
 
dicates that, as a FFS is tuned to be smaller, the oscillator 
strength of the e–h recombination becomes weaker and the 
intrinsic broadening of emission lines becomes also smal-
ler. It turns out that the upper limit of FSS required for 
generating entangled photon-pairs is decreased. Neverthe-
less, the intensity of the polarized PL lines presented here 
might be underestimated because the penetration of elec-
tron wave function into the right dot is disregarded within 
the 3-orbital model. 
  
 5 Summary In summary, we present a theory of e–h 
EI in vertically coupled DQDs and explore the possibility 
of controlling the FSS of X states by utilizing the tuning 
parameters such as inter-dot distance and applied bias  
field. The developed theory was built up from the full in-
teracting Hamiltonian of DQDs, taking into account both 
of the macroscopic and microscopic natures of particle 
wave functions. Compact formulations of e–h EI terms as 
functions of the material properties, geometry structure of 
DQDs and the strength of applied bias field are explicitly 
derived. The feasibility of the FSS control is supported by 
the numerically calculated energy and polarized PL spectra 
of spin Xs in DQDs. Under some determinable conditions, 
the controlled energy splitting could almost reach the upper 
limit of intrinsic radiative linewidth required by the appli- 
cation of polarization-entangled photon pairs source, as  
reported by Hafenbrak and Hudson et al. in Refs. [11] and 
[12]. 
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