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Abstract

The decay rate and renormalized frequency shift of superradiant exciton in a cylindrical quantum wire are studied.

The transition behavior from 1D wire to 2D film is examined through the property of the radiative decay. Similar to the

case in a quantum well, the decay rate of the higher mode exciton is larger than that of the lower mode one. Moreover,

it is also found the decay rate and frequency shift do not show oscillatory dependence on wire radius because of the

conservation of angular momentum.
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Since Dicke [1] pointed out the concept of
superradiance, the coherent effect for spontaneous
radiation of various systems has attracted exten-
sive interest both theoretically and experimentally
[2–5]. In bulk crystal, the excitons will couple with
photons to form polaritons [6]-mixed modes in
which energy oscillates back and forth between the
exciton and the radiation field. What makes
the excitons trapped in the bulk crystal is
the conservation of crystal momentum. If one
considers a thin film [7], the excitons can undergo
radiative decay as a result of the broken crystal
symmetry along the normal direction of the film

plane. The decay rate of excitons in a thin film is
enhanced by a factor of ðl=dÞ2 compared to a lone
exciton in an empty lattice, where l is the wave
length of emitted photon and d is the lattice
constant of the film.
Lots of investigations on the radiative linewidth

of excitons in quantum wells have been performed.
An abnormal increase of excitonic radiative life-
time with the decrease of well width below 5 nm
for InxGa1�xAs=InP quantum well was observed
by Cebulla et al. [8]. Brandt et al. [9] measured the
radiative lifetime of excitons in InAs quantum
sheets and observed the increasing of radiative
lifetime with the decreasing of well thickness.
Hanamura [10] investigated theoretically the ra-
diative decay rate of quantum dot and quantum
well. The obtained results are in agreement with
that of Lee and Liu’s [7] prediction for thin films.
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Knoester [11] studied the radiative dynamics
crossover from the small thickness, superradiant
exciton regime to bulk crystal, polariton regime.
The oscillating dependence of the radiative width
of the exciton-like polaritons with the lowest
energy on the crystal thickness was found.
Recently, Bj .ork et al. [12] examined the relation-
ship between atomic and excitonic superradiance
in thin and thick slab geometries. They demon-
strated that superradiance can be treated by a
unified formalism for atoms, Frenkel excitons, and
Wannier excitons. In Agranovich et al.’s work [13],
a detailed microscopic study of Frenkel exciton-
polariton in crystal slabs of arbitrary thickness was
performed.
For lower dimensional systems, the decay rate

of the exciton is enhanced by a factor of l=d in a
linear chain [14]. First observation of superradiant
short lifetimes of excitons was performed by Ya.
Aaviksoo et al. [15] on surface states of the
anthracene crystal. Ivanov and Haug [16] pre-
dicted the existence of exciton crystal, which
favors coherent emission in the form of super-
radiance, in quantum wires. Manabe et al. [17]
considered the superradiance of interacting Fren-
kel excitons in a linear chain. Recently, we have
also shown the superradiant decay of the quantum
wire exciton is greatly enhanced in a planar
microcavity [18]. In this paper, the exciton is
assumed to be confined in a hollow cylindrical
quantum wire. The crossover of the superradiant
decay rate of the exciton from a wire with small
radius to the 2D limit is explicitly obtained.
Moreover, the crossover of the coherent frequency
shift from narrow wire to thin film is also
investigated by using the method of renormaliza-
tion [19,20].
We consider a free exciton in a hollow

cylindrical quantum wire lying on the z-axis with
simple cubic structure (Fig. 1). For the physical
phenomenon we are interested in, we shall
concentrate on the investigations of semiconductor
quantum wires rather than existing carbon wires
[21,22] since the wavelength of the emitted photon
is much larger than the diameter of the single-wall
carbon tubes. The crossover behavior from 1D
wire to 2D film may not be examined on carbon
systems. However, we hope our model can serve as

a first step toward the understanding of the exciton
decay in carbon nanotubes.
If the difference between the inner radius (ro)

and outer radius ðr>Þ is much smaller than the
effective Bohr radius of the exciton, i.e. DL5aex;
one may approximate that the exciton is confined
on the cylindrical surface with radius
rðEroEr>Þ: This means the exciton is trapped
in an infinite deep and narrow quantum wire. The
radius r is about Nd=2p; where N is the number of
lattice points in the circumference direction and d

is the lattice spacing. If one further assumes the
radius of the wire is much larger than the effective
Bohr radius of the exciton, variations of the wire
radius only cause few changes on the Wannier
exciton wavefunction. In this case, the main
contributions to the superradiant decay rate and
frequency shift still come from the bandgap energy
and the number of the lattice points within a
wavelength of the emitted photon [20]. Therefore,
one can first consider the exciton as a particle with
angular momentum n and longitudinal momentum
kz: After figuring out the decay rate and frequency
shift of a Frenkel exciton, the corresponding ones
of a Wannier exciton can be obtained by replacing
the single-atom dipole matrix element v with the
effective dipole matrix element [7]. Thus, the

Fig. 1. Schematic view of the quantum wire structure and its

defining potential profile.
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Hamiltonian for the exciton is

Hex ¼
X
nkz

Enkz
cwnkz

cnkz
; ð1Þ

where cwnkz
and cnkz

are the creation and destruction
operators of the exciton, respectively. The Hamil-
tonian of free photon is

Hph ¼
X
q0n0k0

z

_cðq02 þ k02
z Þ

1=2bw
q0n0k0

z
bq0n0k0

z
; ð2Þ

where bw
q0n0k0

z
and bq0n0k0

z
are, respectively, the

creation and destruction operators of the photon.
The wave vector k0 of the photon is separated into
two parts: k0

z is the parallel component of k
0 on the

z direction such that k02 ¼ q02 þ k02
z :

The interaction between the exciton and the
photon can be expressed as

H 0 ¼
X

i

X
q0n0k0

z

e

mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p_c

ðq02 þ k02
z Þ

1=2v

s
ðeq0n0k0

z
� piÞ

� ½bw
q0n0k0

z
H

ð1Þ
n0 ðq

0rÞ exp ðin0ji þ ik0
zliÞ þ h:c:
; ð3Þ

where m is the electron mass, (ri;ji; li) is the
position of the electron i in the cylindrical wire, pi

is the corresponding momentum operator of the
electron i; eq0n0k0

z
is the polarization vector of the

photon, and H
ð1Þ
n0 ðq

0rÞ is the Hankel function.
The essential quantity involved is the matrix

element of H 0 between the ground state jGS and
the exciton state jn; kzS: We know that the
interaction matrix elements of H 0 can be written as

/n; kzjH 0jGS

¼
X
l;j

/c; ðl;jÞ; v; ðl;jÞjUn

nkz
ðl;jÞH 0jGS; ð4Þ

because the exciton state can be expressed as

jn; kzS ¼
X
l;j

Un

nkz
ðl;jÞjc; ðl;jÞ; v; ðl;jÞS; ð5Þ

in which the excited state jc; ðl;jÞ; v; ðl;jÞS is
defined as

jc; ðl;jÞ; v; ðl;jÞS ¼ aw
c;ðl;jÞav;ðl;jÞjGS; ð6Þ

where aw
c;ðl;jÞðav;ðl;jÞÞ is the creation (destruction)

operator of an electron in the conduction (valence)
band at lattice site ðl;jÞ: The expansion coefficient

Un
nkz
ðl;jÞ is the exciton wave function in the

cylindrical tubule:

Un

nkz
ðl;jÞ ¼

1ffiffiffiffiffi
N

p 1ffiffiffiffiffiffi
N 0

p einjþikzl ; ð7Þ

where the coefficient 1=
ffiffiffiffiffiffi
N 0

p
is for the normal-

ization of the state jn; kzS:
After summing over l and j in Eq. (4), we have

/n; kzjH 0jGS

¼
X
q0gnn

e

mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p_c

ðq02 þ ðkz þ gÞ2Þ1=2v

s

� ½bq0 ;mþnn;kzþgðeq0;nþnn;kzþg � Anþnn;kzþgÞ

� H
ð1Þ
nþnn ðq

0rÞ þ h:c:
; ð8Þ

where

Anþnn;kzþg

¼
ffiffiffiffiffiffiffiffiffi
NN 0

p Z
d2s exp ðiðkz þ gÞtz þ iðnþ nnÞtjÞ

� wcðsz; tjÞð�i_=Þwvðsz; tjÞ; ð9Þ

wcðsz; tjÞ and wvðsz; tjÞ are, respectively, the
Wannier functions for the conduction band and
the valence band at site 0, and g ðnnÞ is the
reciprocal lattice in kz ðkjÞ direction. Hence the
interaction between the exciton and the photon (in
the resonance approximation) can be written in the
form

H 0 ¼
X
nng

X
q0nkz

Dq0 ;nþnn;kzþgbq0;nþnn;kzþgcwnkz
þ h:c:;

ð10Þ

where

Dq0 ;nþnn;kzþg

¼ H
ð1Þ
nþnn ðq

0rÞeq0;nþnn;kzþg � Anþnn;kzþg

�
e

mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p_c

ðq02 þ ðkz þ gÞ2Þ1=2v

s
: ð11Þ

Now, we assume that at time t ¼ 0 the exciton is
in the mode n; kz: For time t > 0; the state jcðtÞS
can be written as

jcðtÞS ¼ f0ðtÞjn; kz; 0S

þ
X
q0nng

fG;q0;nþnn;kzþgðtÞjG; q0; nþ nn; kz þ gS;

ð12Þ
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where jn; kz; 0S is the state with an exciton in the
mode n; kz in the cylindrical quantum wire,
jG; q0; nþ nn; kz þ gS represents the state in which
the electron-hole pair recombines and a photon in
the mode q0; nþ nn; kz þ g is created, and f0ðtÞ and
fG;q0;nþnn;kzþgðtÞ are, respectively, the probability
amplitudes of the state jn; kz; 0S and jG; q0; nþ
nn; kz þ gS:
In the resonance approximation, the probability

amplitude f0ðtÞ can be expressed as [7]

f0ðtÞ ¼ exp ð�iOnkz
t � 1

2
gnkz

tÞ; ð13Þ

where

gnkz
¼ 2p

X
q0nng

jDq0 ;nþnn; kzþgj2dðoq0;nþnn;kzþgÞ ð14Þ

and

Onkz
¼ P

X
q0nng

jDq0 ;nþnn;kzþgj2

oq0 ;nþnn ;kzþg

ð15Þ

with oq0 ;nþnn ;kzþg ¼ Enþnn ;kzþg=_�

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ ðkz þ gÞ2

q
: Here g

nkz
and Onkz

are, respec-

tively, the decay rate and frequency shift of the
exciton. And P means the principal value of the
integral.
If we neglect the Umklapp process, the exciton

decay rate in the optical region can be calculated
straightforwardly and is given by

gnkz

¼
3
2
p2g0

r
d

1
k0d

jH ð1Þ
n ðr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
n � k2

z

p
Þj2; kzokn;

0; otherwise;

(

ð16Þ

where kn ¼ Ekzn=_ ¼ k0 þ _2n2=2mr2;

g0 ¼
4e2_k0

3m2c2
jvj2; ð17Þ

and

v ¼
Z

d2swcðsz; tjÞð�i_=Þwvðsz; tjÞ: ð18Þ

Here, m is the effective mass of the exciton, vn

represents the single-atom dipole matrix element
for an electron jumping from the excited state in
the conduction band back to the hole state in the
valence band, and g0 is the decay rate of an

isolated atom. We see from Eq. (16) that g
kzn

is
proportional to 1=ðk0dÞ and r=d: This is just the
superradiance factor coming from the coherent
contributions of atoms. If kz is larger than kn; these
excitonic modes (trapped modes) are not capable
of radiative decay. This is simply because the
energy _ckn of that exciton is not sufficient to
produce a photon.
In Fig. 2 we plot the decay rate gnkz

as a function
of wire radius. Our numerical results are obtained
by employing the data of GaAs (band gap is
1:52 eV). For n ¼ 0 mode(solid line), the decay
rate increases with the increasing of wire radius
and approaches 2D limit as r is large comparing to
the wavelength of the emitted photon in a 2D thin
film. For higher modes (n ¼ 1; 2), the results
depend on the kinetic energy _2n2=2mr2: As can
be seen from the figure, the decay rate also
approaches 2D limit for large radius. On the other
hand, the decay rate increases as the wire radius is
decreased until the maximum decay rate is
attained. After that a further reducing of the
radius leads to a sharp decrease of the decay rate.
This is similar to the transition from 2D to 3D: the
higher wave number modes have larger maximum
decay rate [12]. One also notes in small radius
regime, the decay rate of the higher mode is
smaller than that of the lower mode, i.e. gn¼2;kz

>
gn¼1;kz

> gn¼0;kz
: This phenomenon is also found in

the quantum well system, and can be ascribed to

Fig. 2. Decay rate of the superradiant exciton as a function of

the wire radius. The vertical and horizontal units are ps�1 and

nm, respectively. And the solid, dashed, and dot-dashed lines

represent the n ¼ 0; 1; and 2 modes, respectively. In this and

following graph the parameters of a GaAs quantum well are

chosen to obtain the numerical results.
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the effects of interference [20]. Another interesting
result is that the decay rate does not show any
oscillatory dependence on radius while it shows
oscillatory dependence on layer thickness in the
case of the semiconductor thin film [11,20]. The
reason is that the angular momentum of the
exciton is conserved in a cylindrical system, but,
in a semiconductor thin film, the momentum is not
conserved in the direction of broken symmetry. If
we sum over all the sites in Eq. (4), the phase will
run through a circle and thus preserve the same
value.
One might suspect the practical value of our

numerical results because our model is based on
the one-layer assumption and the idealized as-
sumptions, e.g. perfect cylindrical symmetry and
infinite confinement. However, as we mentioned
above, for the superradiant decay rate and
frequency shift one only needs to replace the
dipole matrix element with an effective one. This is
why our result agrees well with that of a realistic
GaAs quantum well in the large radius limit [10].
On the other hand, such an assumption may
slightly deviate from the real case as the radius is
small (e.g. as the radius approaches aex). This is
because the wavefunction of the exciton becomes
more compact in the quantum wire with small
radius limit, and it causes the increasing of the
dipole matrix element v in Eq. (17). Besides, the
quality of the quantum wire also influences
the observation of the crossover, i.e. the thickness
fluctuations should be controlled well, otherwise it
will destroy the coherence in the circular direction.
Now let us turn to the results for the renorma-

lized frequency shift. The frequency shift in
Eq. (15) can be expressed as

Onkz
¼

pe2_

m2c2v
P

X
q0nng

jeq0 ;nþnn;kzþg � Anþnn;kzþgj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q02 þ ðkz þ gÞ2
q

�
jH ð1Þ

nþnn ðq
0rÞj2

Enþnn;kzþg=ð_cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ ðkz þ gÞ2

q : ð19Þ

As seen from above, the frequency shift suffers
from ultraviolet divergence when g and nn are
large, and has infrared divergence when the
denominator approaches zero. Following the
procedure as shown in the work of Lee, Chuu,

and Mei [19], the divergent problem is solved by
renormalization.
In the usual renormalization procedure used in

quantum field theory, the infinite quantities in
Green function is subtracted by some infinite
quantities to make them finite. The subtraction
procedure is possible by substituting some finite
physical quantities, such as renormalized masses,
charges, and wave functions. The finite physical
quantities observed from bare infinite quantities
can be visualized, in the case of bare charge for
example, as the polarization of vacuum. This is
equivalent to say that there is virtual photon and
opposite charged electron cloud surrounding the
bare charge making the charge measured from
outside become finite—a phenomena similar to
that of shielding in dielectric material. But the
renormalization procedure in quantum field theory
is for free electrons. In the case of the condensed
matter, the electrons are confined by periodic
potential and complex interactions. Borrowing
from the concepts of renormalization used in
quantum field theory, we have

Oren
nkz

¼ Onkz
� lim

k0-0;d-N

Onkz
; ð20Þ

where the two limiting processes k0-0 and d-N

reduce the exciton to a free electron. In the limiting
process d-N; the ordinary exciton becomes a
lone exciton standing alone in an empty lattice
with no interaction with other atoms. And the
process k0-0 means that there is no energy
difference between electron and hole.
We will now show that the ultraviolet diver-

gence comes from the inclusion of Umklapp
process. Define

Onkz
ðl;jÞ ¼

X
k2nj

Jnkz
ðk2; njÞ exp ðik2l þ injjÞ ð21Þ

with

Jnkz
ðk2; njÞ ¼

pe2_

m2c2v
P

X
q0

jeq0njk2 � vj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q02 þ k2
2

q

�
jH ð1Þ

nj
ðq0rÞj2

Enjk2=ð_cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ k2

2

q : ð22Þ
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From the above equations, we haveX
l;j

Onkz
ðl;jÞ exp ð�ikzl � injÞ

¼
X
k2nj

Jnkz
ðk2; njÞ

X
lj

eiðk2�kzÞlþiðnj�nÞj

¼ N 0N
X
gnn

Jnkz
ðkz þ g; nþ nnÞ

¼ Onkz
: ð23Þ

And from Eq. (21) we have limd-0 Onkz
¼

Onkz
ðl ¼ 0;j ¼ 0Þ; so we can rewrite the renorma-

lized frequency shift Oren
nkz

as

Oren
nkz

¼ Oren
nkz

ð0; 0Þ þ Ocoh
nkz

ð24Þ

with

Oren
nkz

ð0; 0Þ ¼ Onkz
ð0; 0Þ � lim

k0-0
Onkz

ð0; 0Þ ð25Þ

and

Ocoh
nkz

¼
X
la0
ja0

e�iðkzlþnjÞ Onkz
ðl;jÞ: ð26Þ

As can be seen from Eq. (25), the renormaliza-
tion affects only the part Onkz

ð0; 0Þ—the frequency
shift of the lone exciton in an empty lattice—and
thus nothing to do with the correlation within the
crystals. The coherent part Ocoh

nkz
in Eqs. (24) and

(26) is not touched by renormalization procedure.
The separation of Onkz

into two parts as shown in
Eq. (24) is conceptually equivalent to singling out
of the source term of quantum electrodynamical
divergence in a correlated system.
Now we will investigate the origin of ultraviolet

divergence. From Eq. (19) with the substitutionP
q0 -

R
q0dq0=ð2p=R2Þ and

P
g -

R
dg=ð2p=LzÞ;

we have

Onkz

C
e2_N 0

4pm2c2
P

X
nn

Z
q0dq0

Z
dg

jeq0 ;nþnn;kzþg � vj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ ðkz þ gÞ2

q

�
jH ð1Þ

nþnn ðq
0rÞj2

Enþnn;kzþg=ð_cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ ðkz þ gÞ2

q : ð27Þ

It is noted that the result in Eq. (27) is the same as
Onkz

ð0; 0Þ from Eqs. (21) and (23). Hence we
conclude that the ultraviolet divergence of
Onkz

ð0; 0Þ is really the same as that from Umklapp

process of large g and nn that contribute to the full
Onkz

: Once Onkz
ð0; 0Þ of the lone exciton is rendered

finite by renormalization via Eq. (25), the Umk-
lapp processes of large g and n that arise from the
unrestricted sum over l and j will also be rendered
finite simultaneously. Accordingly, Oren

nkz
can be

written as

Oren
nkz

¼
pe2_N 0

m2c2v
P

X
q0

jeq0nkz
� vj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q02 þ k2
z

p
�

jH ð1Þ
n ðq0rÞj2

Enkz
=ð_cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ k2

z

p : ð28Þ

and thus the ultraviolet divergence problem is
solved.
In the kzB0 and n ¼ 0 mode, the renormalized

result can be reduced as

Oren
nkz

¼
pe2_N 0

m2c2v
P

X
q0

jeq0nkz
� vj2

q0

jH ð1Þ
0 ðq0rÞj2

k0 � q0 : ð29Þ

As seen from above, the frequency shift suffers
from infrared divergence when q0B0 or q0Bk0:
This can be overcome by substituting �i_r by
�imcq0t [19] in Eq. (18) when q0 is small. It is
equivalent to the dipole interaction form, H 0Br �
E: With this treatment, we have

Oren
nkz

B
2pr

d
N 0P

X
q0

Bq0nkz

jH ð1Þ
0 ðq0rÞj2

k0 � q0 ð30Þ

with

Bq0nkz

¼
pe2_

m2c2v
jeq0nkz

� vj2; when q0 is large;

pe2q02

v
jeq0nkz

� dj2; when q0 is small;

(
ð31Þ

where

d ¼
Z

d2swcðsz; tjÞtwvðsz; tjÞ: ð32Þ

Eq. (30) can not be evaluated analytically. But
for large radius, the asymptotic form of Hankel
function is: H

ð1Þ
0 ðq0rÞB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpq0rÞ

p
eiq

0r: And the
renormalized frequency shift reduces to 2D limit
[19]:

O2D ¼ �gsingle
1

k0d


 �2

; ð33Þ
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where

gsingle ¼
2e2

_c

En;kzB0

_
jk0dj2 ð34Þ

is the radiative decay rate of a single isolated
exciton. Analogous to the decay rate, the renor-
malized frequency shift is explicitly seen to be
coherently enhanced by the same factor ð1=k0dÞ

2

as a result of the interaction of the phase-matched
photon amplitude with the delocalized excitonic
amplitude in the plane. In Fig. 3, we numerically
calculated the frequency shift as a function of wire
radius. One can see from the figure the renorma-
lized frequency shift does not show oscillatory
dependence on radius, either. For n ¼ 0 mode,
unlike the behavior of decay rate, the magnitude of
the frequency shift first increases with the decreas-
ing of radius. After reaching a minimum point, the
frequency shift approaches to zero rapidly.
For usual semiconductors, the superradiant

enhanced factor is about 106 for excitons in the
optical range. However, due to the extreme
smallness of gsingle itself, observation of On;kz

is
not expected to be easy. Its dependence on wire
radius may be a useful feature to observe this
quantity. Recently, R .omer and Raikh studied
theoretically the exciton absorption shredded by
a magnetic flux F in a quantum ring [23]. They
found the oscillator strength of the exciton is most
enhanced when F is equal to half of the universal
flux quantum F0 ¼ hc=e: And the oscillation
period is equal to F0: Owing to the similarity in
cylindrical geometry, the decay rate and the

frequency shift may be observed experimentally if
one varies the magnetic flux or the wire radius.
In summary, we have calculated the decay rate

of the superradiant exciton in a hollow cylindrical
quantum wire. Similar to the case in a quantum
well, the higher wave number modes are shown to
have larger maximum decay rate. It is also found
the decay rate does not show any oscillatory
dependence on wire radius because of the con-
servation of the angular momentum in the
cylindrical system. On the other hand, the
frequency shift of the exciton is properly renorma-
lized by removing the ultraviolet and infrared
divergence. It is found the shift does not shown
oscillatory dependence on the radius, either. Some
distinguishing features are pointed out and may be
observed in a suitably designed experiment.
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