
1415 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 I , NO. 9, DECEMBER 1993

Induction and Deduction for Autonomous Networks
Ying-Dar Lin and Mario Gerla

Absfract- The key issues in network management are the
representation and sharing of management information and the
automatic management mechanisms based on the underlying
information infrastructure. In this paper, we propose a frame-
work, which operates on the standard MIB’s and CMIP, for
the network management system with learning and inference
as its management engines. In addition to the general domain
knowledge, patterns related to the managed network are learned
to enhance the understanding of the network and refine the
knowledge base. Facts in object-oriented databases or queries
from management applications trigger the inference process on
logical rules which are either prespecified knowledge or learned
network patterns. Forward inference drives prediction and con-
trol, while backward inference directs diagnosis and supports
view abstraction. A case study on ATM network topology tuning
is presented.

I. INTRODUCTION

T is recognized that patterns exist in the behavior and I interaction of entities in a complex system. A network
is a complex system with various types of traffic sources
where traffic occurs due to the interactions between these
traffic sources. Network patterns are influenced by the way
traffic sources behave locally and interact pairwisely with each
other. In general, a network pattern can exist in client-server
interactions, temporal and geographical traffic distribution,
traffic/performance relationship, performance correlation be-
tween network entities, alarms or faults correlations, and some
hidden causal relationships. In another study [13, the authors
propose a new model for packet arrivals in a short time scale.
Here, we are looking at a longer time scale and assume that
we do not have a model for the behavior of traffic sources.

The importance of understanding and, furthermore, captur-
ing patterns stems from several different reasons. Phenomena
can be explained more precisely, and problems can be diag-
nosed. Knowing the dynamics within the system will enable us
to predict the system behavior and perform adaptive control. In
an adjustable system, we can further tune the system according
to the pattern if some status is foreseen to occur.

To understand the network patterns, we need the historical
information of the network. Three issues arise here. First is
the representation issue: in what format are we going to store
the currenthistorical information and the discovered patterns?
Second is the learning or knowledge acquisition issue: how are
we going to discover the patterns from the stored information
trace? Third is the inference or knowledge use issue: based

was supported in part by grants from Mitsubishi and NSF-INT 9115882.

National Chiao-Tung University, Taiwan.

California, Los Angeles, CA 90024.

Manuscript received May 29, 1992; revised March 7, 1993. This research

Y:Q. Lin is with the Department of Computer and Information Science,

M. Gerla is with the Department of Computer Science, University of

IEEE Log Number 9212155.

on the management information and the captured patterns,
what kind of automatic control/management mechanisms can
be built?

Recent progress in network management is the recognition
of the need to use standardized databases for storing network
management information and a standardized protocol to access
the stored information. This solves the interoperability problem
[2] - [6] . Definition and implementation of MIB (Management
Information Base) and CMIP (Common Management Informa-
tion Protocol) are ongoing efforts [7], [8]. However, little was
done to define the management application schemes based on
this common platform.

In this paper, we propose a framework for a network man-
agement system with learning and inference abilities, where
learning is to capture network patterns and inference is to
reason on the discovered patterns and prespecified knowledge
in order to access virtual global objects, predict network
status, trigger control actions, and diagnose problems. The
proposed scheme is meant to operate on the standard manage-
ment architecture where management information is stored in
object-oriented databases. Management knowledge base which
includes network patterns, abstract view definition, and domain
knowledge is represented as a set of logical rules. These
rules are triggered by the facts in databases and queries from
management applications. The goal is autonomous network
management by expert systems with learning capability.

Section I1 highlights the network management issues and
their recent progress. The induction/deduction approach is
proposed in Section 111. In Section IV, network patterns are
classified and the pattern discovery process is described. The
backward deduction for diagnosis and abstraction, and the
forward deduction for prediction and control are illustrated.
The architectural aspects of the proposed scheme and its
operation on the standard management model are described in
Section V. The techniques to build management information
infrastructure and management applications are detailed. Sec-
tion VI presents an example on ATM network performance
management.

11. NETWORK MANAGEMENT PROBLEMS
Unlike real-time control, management is not an essential

component to simply make the system work. That is, a system
can continue to function, at least for a period of time, without
the management subsystem. However, what were once highly
tuned systems may gradually degenerate to an inefficient state.
Not only a softwarebardware failure but also performance
degradation can be a system problem. Thus, the task of
the management subsystem is to keep track of the system
status, which includes both configuration and performance,

0733-8716/93$03.00 0 1993 IEEE

1416 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

and trigger control actions when necessary. We can divide
the management process into the monitoring process and the
control process. The monitoring process involves collecting
information about the system’s short-term/long-term behavior
and low-levelhigh-level status, filtering out unimportant in-
formation to reduce stored data volume, and interpreting the
semantics of the collected information. The control process
affects the state of the system according to the interpreted
information to achieve a desired outcome. In this processes, we
find that there are two major issues in network management:
management information infrastructure and automatic/adaptive
management schemes.

A . Management Information Infrastructure

Any network management system must be constructed on
top of the underlying management information model on
which the representation schemes and operations are based.
Given that a network is a distributed, and maybe hetero-
geneous, environment, several issues are confronted when
designing the infrastructure of the network management in-
formation.

e Management information representation: In what form
can the information be stored in network entities and ex-
changed between network entities? What kind of management
information needs to be supported? Do the format and the
content have to be standardized for information sharing?

How can machines
with different protocols interoperate to share management
information?

e Information distribution strategy: What is the mechanism
for information sharing between network entities and the
management system? Should the management system keep a
global view of the network at all time or reconstruct it, when
needed, from local views of network entities?

Here we are facing problems similar to information sharing
problems in a traditional file system, with multiple applica-
tions, where an application must know the structure of the
files it is operating with. If one particular application needs
to modify the structure of a file, all the other applications
using that file have to be changed. The solution to avoid this
led to the evolution of database systems which contain the
files, the file structures, and the primitives to access them.
The separation between data and applications provides data
independence for applications [9]. By the same philosophy,
data independence for network protocol stacks and man-
agement applications can be supported by the management
information databases and their access protocol. The database
primitives and the access protocol form the information access
primitives for protocol stacks and management applications.
As information may be shared by distributed heterogeneous
network entities, management databases and access protocol
must be standardized.

The open networking community has settled on a man-
agement model that places a MIB on each network node
and manages these MIB ’ s remotely with application-level
protocols [51, [6], [101. The widely accepted OS1 management
model is illustrated in Fig. 1. An MIB, an abstract image of

e Heterogeneity of protocol stacks:

Fig. 1. OS1 management model.

the local management objects, is supported by each seven-
layer OS1 node. Objects are manipulated by the application-
layer management protocol CMIP, which uses RPC (Remote
Procedure Call) protocol. Changing the attribute values in a
MlB will result in changing the status of the physical network
entities. For example, setting the status attribute of link 537
to off can disable that link.

Because of the hierarchical nature of network entities and
their subentities, both IS0 and Internet models organize net-
work management information into a hierarchical structure.
IS0 even encapsulates this hierarchical model into object-
oriented databases in order to hide the heterogeneity of net-
work entities away from the protocol stacks and management
applications. In object-oriented databases, the following con-
cepts are supported: i) subtype hierarchy (by record formation
and set formation) and method inheritance; ii) encapsulation;
and iii) object identity [9]. An object class is associated with a
set of methods operating on the object instances of this object
class. An object subclass inherits the set of methods from its
parent object class. The encapsulation of the heterogeneity of
network entities is achieved by the sets of methods.

The adopted architecture solves the problems of information
representation and heterogeneity of protocol stacks , but the
problem of information distribution strategy remains. Given
the standard platform, we still need a mechanism to construct
the global views for the management applications. This is one
of the problems we want to solve in this paper.

B . Automatic and Adaptive Management

Although the infrastructure of network management is
agreed upon regarding the standard MIB’s and CMIP, little
was done to define how to use this platform in specific
network management problems: performance, configuration,
fault, accounting, security, etc. Several researchers have
adopted expert systems with domain knowledge represented
as a set of logical rules capturing network management model
to cope with fault localization and correction [111-[13]. In
these systems, network messages containing “trouble tickets”
are sent to the expert system. This expert system then reasons
on the trouble tickets and network configuration to find the
possible fault locations and the recovery procedures. The
effectiveness of these systems depends heavily on encoding
the problem-solving knowledge in the network domain. The
goal of these expert systems is an automatic fault management
system to enhance or even replace human intervention.

Other network management problems also need automation.
The maintenance of a large number of objects in MIB’s
needs to be done automatically to keep the status information

1417 LIN AND GERLA: INDUCTION AND DEDUCTION

Fig. 2. Information infrastructure: Global views and local MIB’s.

up-to-date. Configuration management applications can then
easily identify and update objects. This, in turn, changes the
configuration of network entities. Either remedial or preventive
performance management schemes need to be triggered auto-
matically by performance alarms or traffic forecasting, which
again depend on automatic interpretation of performance and
traffic measurements. This measurement interpretation implies
that the system needs to keep track of the network patterns
and perform adaptive control. The ultimate goal for network
management should be a self-managed and self-adjustable
network.

111. APPROACH
Our approach to solve these two network management prob-

lems: information distribution strategy and automatic/adaptive
management is to incorporate learning and inference abilities
into network management systems to automate the process of
global view construction, measurement interpretation, prob-
lem forecasting, problem diagnosis, and decision making. TO
build the information infrastructure, a set of global views is
constructed. A global view is a virtual object class defined
from all local MIB’s via logical rules. These global views
serve as windows through which management applications
can access physical network entities. Fig. 2 shows a set
of global views constructed from local MIB’s. To equip
the system with automatic and adaptive abilities, network
patterns are learned from a historical database which con-
tains a chronological measurement trace. These discovered
patterns, represented in the form of logical rules, describe the
correlation between network objects. Based on these network
patterns and prespecified domain knowledge, forward and
backward inference can be triggered to access global views,
predict network status, fire control actions, and diagnose
reported problems. Fig. 3 illustrates the general approach using
learning and inference in network management. Unlike an
expert system with only prespecified domain knowledge, the
proposed management system has, in addition, learning ability
to augment its knowledge regarding the specific managed
network.

Fig. 4 is an abstract information flow model of our man-
agement systems. EDB’s (Extensional Databases) are actually
the standard object-oriented MIB’s. They represent the basic
facts about configuration, traffic/performance measurements,
and events/alarms of local nodes. Each network node has an
associated EDB which is its local view about the network.
IDB (Intensional Database), located at a management site, is
defined as the deductive closure of EDB’s with logical rules.

Fig. 3. Induction/deduction in network management.

I-=-I

Fig. 4. Abstract model of information flow.

That is, IDB contains virtual objects defined on the physical
objects in EDB’s. Access to IDB will be transformed into
access to EDB’s. This is the same concept as in relational
databases, where views are virtual relations defined on physical
relation tables. EDB and IDB are both deductive database
terminologies [9]. The difference is that now IDB is defined
on distributed EDB ’s. IDB, including overall configuration
and interobject relationships, embodies the global views of the
network. Extracted from IDB, HDB (Historical Database) is
the temporal historical database which encodes time in the net-
work trace. Network patterns are learned from HDB and stored
in PKB (Pattern Knowledge Base). DKB (Domain Knowledge
Base) is prespecified problem solving and general relationship
knowledge. Note that only EDB’s are standardized; all the
others are management application dependent.

A logical rule in IDBPKBJDKB has the generic form: IF
X THEN Y, where X is its body part and Y is its head part. A
body or head part has one, or more than one, formula which
can represent the status of a network object or an action to
update an object’s status. A detailed definition of logical rules
in IDB/F’KB/DKB is given in the next section.

Each network pattern, represented as a logical rule in PKB,
describes a correlation between the attributes of network
objects. These correlations are extracted from HDB, where
selected attributes are logged according to the specific manage-
ment application. Since this extraction is a statistical process,
a probability is associated with each logical rule to show how
strong this pattern is.

1418 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

If the status of network objects satisfies the body part in the
rule, the pattern tells us, from past experience, that it is very
llkely that the status of the network object also satisfies the
head part with some probability. This logical rule is, thus, fired
as a forward inference. Forward inference is very suitable for
status prediction. If some undesired status of a network object
is foreseen to occur, it can further fire some logical rules in
DKE3 and then mgger preventive control actions. On the other
hand, if trouble is reported to the management system (e.g,
blocking probability of connection 839 is larger than 5%), this
object associated with the trouble is matched against the object
in the head of rules. If the head is satisfied, the rule is fired as a
backward inference and a series of inferences on the formulas
in the body can carry on. Finally, the set of residual formulas
which cannot be further deduced are the possible causes to that
trouble. Again, using forward inference on the logical rules in
DKB, the remedial control actions can be triggered.

Why Rule-Based Systems for Network Management?
After presenting this methodology, let us examine the

reasons to adopt rule-based systems for autonomous network
management. The following characteristics of network man-
agement problems make the rule-based solution desirable:

0 Evolving problem-solving knowledge and changing net-
work patterns

0 Complex condition matching
0 Solution and pattern naturally expressed in IF-THEN

rules.
New services or solutions are introduced from time to time,

which result in updating problem-solving knowledge. More-
over, different network patterns exist in different networks
and they may change over time. Since rules are modular
pieces of information that are not explicitly directed by control
statements in the program, it is possible to add or remove rules
without changing the overall structure of the program or the
control flow. In the procedural systems, on the other hand,
these changes in problem-solving knowledge may result in
modification, recompilation, and reinstallation of the program
code. In addition, rule-based systems are powerful in symbolic
manipulation by pattern matching between data and rules. A
complex situation encoded by many pieces of data can be
matched with a set of rules, which is then fired to trigger
control actions. It is also more common and natural for net-
work domain experts to express their expertise as declarative
IF-THEN rules, rather than as procedural algorithms. Besides,
the network patterns which represent cause-effect correlations
are naturally expressed as logical rules.

Iv. INDUCTION AND DEDUCTION IN NETWORK MANAGEMENT

A . Terminologies for Logical Rules

As mentioned previously, a rule has the generic form: IF
X THEN Y. However, the actual formats and meanings of
rules in IDB, PKB, and DKB are different. Here, we give the
definition of our IDB rule, PKB rule, and DKB rule.

An IDB rule is written in the form of Horn clauses, which
are statements of the form: “if AI, A2, . . % , and An are true,

then B is true. “Following the Prolog [141 syntax, it is written
as:

B:-A1,A2,. . .An

where the formulas B and Ai are predicates with a list
of arguments, e.g. p(X1, . . . , Xh). Predicates produce true
or false as a result; i.e., they are Boolean-valued functions.
A predicate can represent a physical object class stored in
EDB’s, which is called EDB predicate, or a virtual object
class defined by IDB rules, which is called ZDB predicate .
IDB rules are used in a backward-chaining fashion to support
view abstraction. That is, a query expressed as the predicate
B will be transformed into a set of queriedpredicates { A i }
according to the IDB rule.

The format of a PKB rule is in Horn clauses, with certainty
factors, like

Confidence Factor = P% B +- AI, Az,. . . A,

which reads “if AI, Az, . . . , and A, are true, B is concluded to
be true with probability P.” A formula Ai or B is a condition
that represents the status of a network object (e.g., connection
status = “closing,” 40% 5 link utilization 5 60%). PKB
rules are triggered in a forward-chaining fashion for status
prediction. A transformation from PKB rules to DKB rules is
required when PKB rules are to be included in the production
system for inference.

A DKB rule is actually a production rule. It is written in the
OPS5 (Offical Production System, version 5) [15] syntax as:

which reads “if AI, Az, . . . , and A, are true, B1, Bz, . . . , and
B, will be executed.” Here, A; is a condition and Bj is an
action. DKB rules can be used to invoke control actions by
forward inference. They can also emulate backward inference
to diagnose problems [161.

B. Induction for Pattern Discovery

Learning is a process of knowledge acquisition. Knowledge
can be acquired through taking advice, (Le., inputting new
knowledge directly), problem-solving experience (i.e., remem-
bering the structure of the problem and the methods used
to solve it), learning from examples (constructing concept
definition from examples), etc. [171. Network measurements
are themselves examples containing many implicit, network-
dependent patterns to be discovered. The inductive learning
constructs decision trees from a large number of examples.
Each decision tree represents a concept with the following
definition [181.

Definition: A concept i includes the function f i to be ap-
proximated, the set of approximators A;, the domain Di (Di C
HDB), on which f i and the members of Aij are defined,
and the confidence factors, CF;, which is the percentage of
examples in Di that satisfy the following rule:

.fi(Di) E [l i j , 4.3 + Aij(Di) E [L j , uij]

for all attributej

where i is the concept index and j is the attribute index. 0

LIN AND GERLA: INDUCTION AND DEDUCTION 1419

As there may be many sets of l’,u’,Z, and U (lower and
upper bounds) for a particular set of examples, a set of
such rules can be generated from a concept (decision tree).
Computational complexities for these learning algorithms are
usually exponential in the number of attributes. However, there
are steps to reduce complexity by using domain knowledge to
restrict the set of attributes and relational structures considered.
As learning algorithms are not the main theme of this paper,
readers are referred to the literature [17]-[22].

In our approach, induction is performed on the management
application dependent HDB to generate PKB. The logical rules
in PKB model and represent the correlations between attributes
in HDB. Reference [23] reports an experiment on intercon-
nected LAN’s where traffic patterns are learned by a machine
learning tool from traffic measurements stored in a HDB
implemented as a relational database. The discovered rules
can describe traffic patterns in terms of locality, long-term
burstiness, correlation, cyclic repetition, and predictability.
These patterns can be used for medium-term and long-term
performance management.

In addition to traffic patterns, there are many other interest-
ing network patterns. In general, patterns describe interobject
and intraobject relationships. Here, an object instance is an
example. We classify the network patterns into the following
categories with examples.

0 Temporal and geographical traffic distribution

Confidence Factor = 85%
20M 5 Traffic 5 30M

l l :30AM 5 Time 5 12:30PM,
Source = “~ahu”,
Destination = “maui”;

t

0 Traffic/performance relationships

Confidence Factor = 90%
Delay Violation 2 5%

CPU Utilization 2 60%,
Network Application Weight 2 40%;

t

0 Performance correlation between network entities

Confidence Factor = 80%
40% 5 Node B Utilization 5 50%

50% 5 Link 1 Utilization 5 60%,
35% 5 Link 2 Utilization 5 50%;

t

0 Hidden causal relationships

Confidence Factor = 84%
Node 3 Fails

Number of Performance Alarms from Link I 2 10,
Link 1 Utilization 5 20%;

c

C. Deduction: Forward and Backward Inferencing

Both preventive and remedial control actions can be taken
by network management applications. Preventive control is
triggered by problem forecasting based on previous patterns,
while remedial control is triggered by network events (perfor-
mance alarms and device failures). As the manager receives
results of the queries to IDB, it passes the configuration status
variables to configuration submanager, performance status
variables to performance submanager, and event variables to
fault submanager. If any match between the variable values
and the body of a rule occurs, the rule is fired and the head
part executed. A rule in IDB/DKB/PKB can be fired for four
possible purposes:

0 Prediction: The forward inference on a PKB rule, given
that the rule body is true, forecasts that the rule head will be
true.

Control: The forward inference on a DKB rule triggers
the control actions to take when some network phenomena
are detected.

0 Diagnosis: The backward inference on a DKB or PKB
rule can discover the root causes of network events, even when
these events are not yet detected.

The backward inference on an IDB rule
transforms an IDB query to EDB query/queries and, hence,
provides view abstraction.

Here are two example inference processes: i) a process that
predicts traffic demands between node X and Y, forecasts per-
formance alarms for link L, and takes actions to reroute some
traffic from link L; ii) a process that diagnoses the received
performance alarms, concludes that node 2 is malfunctioning,
reroutes traffic that passes node 2, and disables node 2.

Backward inference is triggered by events (i.e., only when
there are network problems: performance alarms and device
failures) and queries (from manager to IDB). However, for-
ward inference is triggered by a set of state variables. The
workload on forward inference process can be very high since
each state variable will match against each formula in the
rule bodies to see if some rules can be fired. Thus, keeping
the number of state variables for triggering forward inference
small is critical in designing management applications.

0 Abstraction:

V. ARCHITECTURE

This section describes how the proposed learning and infer-
ence schemes work on the standard OS1 management platform,
the organization of object classes in EDB and rule classes in
IDB/PKB/DKB, and the rule-based learning expert system.

A . Distributed Management Architecture
Fig. 5 shows a management system with a manager and

several remote agents. An agent resides on each OS1 node and
manages its MIB (EDB in our terminology). The manager has
submanagers (configuration, performance, and fault inference
modules in this case) for specific management functions.
Periodically, the manager issues a query to IDB, which in turn
is forwarded and translated to the EDB’s to get management

1420 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

Mmrgemnt Site
Fig. 5 . Manager, submanagers, and agents.

W = C + N W

I I
PkB PKB PKB

Fig. 6. Induction and query periods.

information, and stores it in the HDB. The results of the query
are also passed to submanagers to trigger the inference process
on PKB and DKB, if any match occurs. If control actions are
to be fired as a result of the inference, the manager updates
the corresponding views in IDB, in turn objects in EDB's,
through the sets of methods associated with the objects. These
updates on EDB's then propagate to the network entities as
control actions. Note that a query via CMIP can be a read as
collecting management information or a write (create, delete,
modify) as taking control actions.

Induction on HDB is also carried out periodically, but much
less often, to renew PKB. A sliding window mechanism is
used to maintain the consistency between HDB and PKB.
That is, HDB only contains records in the most recent W
(window size) query periods. An induction is triggered if
PKB was generated W query periods ago. Fig. 6 illustrates
the relationship between induction period and query period.
If C is the number of query periods in a cycle and N is the
number of cycles in the window of HDB, W = C * N . If
there is a temporal repetition in network behavior, cycles exist
as network patterns.

Conceptually, management information and knowledge are
spread in the layer structure and contained in various databases
and knowledge bases, as shown in Table I.

This is similar to the hierarchical blackboard architecture
used in signal-processing expert systems [24]. The control
strategy, which is implemented as the manager, decides when
to execute the rule sets, which are implemented as the sub-
managers, in configuration, performance, and fault domains.
Usually, this is triggered by either status variables or queries.
An inference process on DKB and PKB then accesses the
objects of a view in IDB, which in turn accesses the remote
objects in EDBs over the network. The hierarchy is organized
as Fig. 7. The following two subsections describe how to build
the views, namely the construction of IDB from the underlying
EDB 's, and the rule-based management applications based on
this infrastructure.

TABLE I
TRAFFIC FOR AN EIGHT-NODE NETWORK

(a) Traffic Matrix

Capture Ratio(%) I 26 I 50 I 73 I 88 I 91 1 93 I 95
Promotion Ratio(%) I 3.5 I 7 I 11 I 14 I 18 I 22 I 25

(b) Traffic Locality

/ - \
@ @ @
Fig. 7. The blackboard architecture.

Fig. 8. Inheritance hierarchy

B. Building Information Infrastructure

Modeling network management information is to map net-
work configuration, performance, and events to objects in
EDB's. The inheritance hierarchy in Fig. 8 represents a simple
classification of network object classes, where the elements
class has three subclasses: configurations, performances, and
events. Physical entities class has two subclasses: nodes and
links.

A node's EDB contains only its local management infor-
mation. Fig. 9 shows an EDB organized in a containment
hierarchy and its type declaration. An EDB is an object
instance of nodes. In addition to its own variable attributes, this
nodes instance contains a set of links instances (for links that
are connected to this node), a set of connections instances (for

LIN AND GERLA: INDUCTION AND DEDUCTION 1421

connections that pass through this node), and a set of events
instances (for events in which this node is involved). Again, a
links instance also contains a set of connections instances (for
connections that pass through this link).

At the management site, what the management applications
see is a set of views, i.e., a set of IDB predicates. Different sets
of views can be defined for different management applications.
Each IDB predicate is defined on EDB predicates. The schema
at the management site for IDB/EDB predicates and the Prolog
implementation to define these IDB predicates are given in
Fig. 10. Prolog Logic Programming techniques used here
can be found in [14]. Prolog’s recursive programming style,
which is not supported in relational query languages, provides
us a powerful query interface to unify distributed network
management information. Prolog emerges as an attractive
query language for relational databases 191. However, with
simple extensions, Prolog can also interface with object-
oriented databases [25].

To see how an IDB predicate can be constructed by com-
bining EDB predicates, let us take predicate connections as
an example:

coMections(connid, Type, Capacity, Perfid, Status, Clientid,

: - 1-connections(Clientid, Connid, Type, Capacity, Perfid,

path(Connid, Clientid, Serverid, Nodes, Links).

path(Connid, End, End, [End], [I) : - !.
path(Connid, Start, End, [Start I Noderest], [Linkid 1 Linkrest])
: - 1-connections(Start, Connid, -, -, -, -, -, _, Nextid, Linkid),
path(Connid, Nextid, End, Noderest, Linkrest).

Serverid, Nodes, Links)

Status, Clientid, Serverid, -, -),

For every “Nodeid,” predicate 1-connections (Nodeid, Con-
nid, Type, Capacity, Perfid, Status, Clientid, Serverid, Nextid,
Linkid) contains all connections that pass node “Nodeid.” (1
stands for local.) For every such connection, 1-connections
contains “Nextid” and “Linkid” for its next hop (node and
link), but does not know the whole path. connections , con-
structed from 1-connections, contains the link lists “Nodes”
(all nodes on this connection) and “Links” (all links on
this connection). “Nodes” and “Links” are constructed by
predicate path , which takes “Nextid” and “Linkid,” starting
from the node “Clientid,” and inserts them into the link lists
“Nodes” and “Links.” Note that, in the rule for connections,
“Nodeid” in 1-connections is an existential quantifier, which
means all nodes can be queried to match with the attributes
of Connections. Similar view construction techniques are used
in predicates links and events. Instead of using recursive
predicate path , “set-of’ constructs are used to construct the
link list whose elements satisfy the specified condition. links
contains “Nodes” (for all nodes connected to this link) and
“Events” (for all events involving this link), while event
contains “Nodes” (for all nodes involved in this event) and
“Links” (for all links involved in this event).

*connections

*,,des/ *nodes *nodes *links/

NodeType = RECORDOF(id int, capaci1y:ht. perfommee: P a y p e ,
S ~ ~ N S : int, linlrs: SETOF(LinkType). connections:SETDF(ConnactionType),
events: SETQF(EventType));

LinkType = RECORDOF(id int pmtoml:F’rokxdType, capacity: int,
performance: PexfType. status: ins passby: SETOF(Connection Type));

ConwtionType = RECORDOF(id: int. type: int, Capacity: inf
performance: PerfType, status: int, client NodeType, m e r : NodeType.
next: Node’Ilpe, link: LinkType);

Even- = RECORWF(id: int, type.: int, time: ins action: ActType.
involved: SETOF(Liiype));

Peflype = RECORDOF(id in& traffic: inf delay: int loss: int hten’dint);

Fig. 9. EDB: A local MIB.

Manager’s Schema for EDBs:

l-nodes(Nodeid, Capacity. Perfid, Status, Links, Conns, Events)
l-links(Nodeid, Linkid, Rotocol, Capacity, Perfid, S~~~US,COMS)
l-wnnections(Nodeid. Connid Type, Capacity, F’ertid, Status, Clientid

I-events(Nodeid, Eventid, Type, Time. Action, Links)
Igerformance(?4odeid. Perfid. Traffic, Delay, Loss. Interval)

serverid, Nextid Linkid)

Views in IDB:

nodesWdeid, Capacity, Perfd, Status. Links, Conns, Events)
links(Linkid, htocol, Capacity, Pertid, Status, Nodes, Conns, Evenrs)
coMections(Connid. Type, Capacity, Perfid Status, Clientid, Serverid,

evenrs@ventid, Type, Time, Action, Nodes, Links)
perfomancesperfid Traffic. Delay, Loss, Interval)

Nodes, Links)

View Definitions:

nodesWodeid. Capacity, Perfid, Status, Links, Conns, Events) :-
I-nodes(Ncdeid. Capacity, Pefid, Status, Links, Conns, Events).

links(linkid, Protocol. Capacity, Perfid, Status. Nodes, Conns, Evenu) :-
I-linksNdeid, Linkid. F’rorocOl, Capacity, Perfid. Status, Conns),
set-of(N, (mernber(Linkid N-links), I-nodes(N. -, -, -, N l i s , -, 3). Nodes),
set-of(E, (memter(L.inkid, E-links). I-events(_, E, ~ -, -, E-links)), Events).

connectims(Connid, Type, Capacity, Pertid, Status, Clientid Serverid, Nodes, Links) :-
I-wnnections(Clientid Connid, Type. Capacity, Perfid Status, Clientid, Serverid, -, J,
path(Connid Clientid Serverid, Nodes, Links).

path(Connid End, End, [End], [I) :- !.
path(Connid, Stan. End IStanlNoderest], [LinkidLinkrestl) :.
I-connections(Stan. Connid, _, -, -, -, -, -, Nextid, Linkid),
path(Connid Nextid, End, Noderest, Linkrest).

events(Eventid. Type, Time, Action. Nodes, Links) :-
set-of(Nodeid. I-evenl(Nodeid, Eventid. Type. Time, Action, 3, Nodes).
stxof(Linkid, (member(L.inkid. E-links). I-evenu(Ncdeid, Eventid Type, Time, Action,

E-links)), Links).

performances(€‘erfd Traffic, Delay, Loss, Interval) :-
I-perfomances(Nodeid, Perfid, Traffic, Delay, Loss. Interval).

Fig. 10. Views in IDB.

All the predicates mentioned are the schema definitions at
the management site. An access to a predicate of IDB will
be converted, by backward chaining, to access to predicate(s)
of the manager’s EDB’s, and then transferred, by CMIP

queries, to the Physical EDB’s On network Thus*
a mapping between access to Predicates of the manager’s
EDB’s and CMIP queries to physical EDB’s must be done
at the management site. The attribute “Nodeid’ in each EDB

1422 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

I Rule Interpreter I

.
Fig. 11. The rule-based production system.

predicate is used to identify the network node that contains
the object instances.

C . Building Management Applications

Based on the constructed IDB, management applications
can perform inference on IDB using their knowledge base
in DKB and PKB. Data in IDB is matched with the rules
in DKB and PKB. Rules can be applied in either direction:
forward and backward. The direction corresponds to the type
of reasoning and problem-solving strategy. Forward inference
is data-driven and bottom-up processing, while backward
inference is goal-driven and top-down processing. Prediction
and control operations are data-driven, hence forward rea-
soning. Diagnosis problems are goal-driven, hence backward
reasoning.

As shown in Fig. 11, there are four components in the rule-
based system: working memory, rule base, rule interpreter,
and external routines. The rule-based programming language
OPS5 is used to describe how to build the management
applications. Although OPS5’s inference engine is inherently
forward, backward inference can be emulated by treating
goals as data and using three sets of rules: a set to split
goals into subgoals, a set to recognize and solve achievable
subgoals, and a set to fuse the results of subgoals. All these
rule-based programming techniques can be found in 1151,
1161. The following paragraphs describe the functionalities and
operations of these components in our framework.

A . Working Memory: Periodically, a set of rules is trig-
gered to retrieve data from IDB into working memory. A
working memory element (WME) is a view in IDB. Event
WMEs are treated as goals to trigger diagnosis process, while
nonevent WME’s are data-to-trigger prediction and control
process.

B . Rule Base: In Fig. 7, we have three management appli-
cations: configuration, performance, and fault. Each manage-
ment application is associated with a rule cluster. Rule clusters
are in either DKB or PKB. A rule cluster is conceptually
equivalent to a procedure. These rule clusters are scheduled
by the control rules, which are at the top level of blackboard
architecture.

Rule clusters and control rules together perform the period-
ical management tasks. A period, a management cycle, starts
with retrieving data from IDB into working memory and ends
when no more data can trigger the rules. In addition to this
synchronous management cycle, there are a set of demon rules
to perform asynchronous management. Demon rules are not

scheduled by the control rules. They can fire any time when
an event WME is detected in working memory. An urgent
event, like device failure or performance alarm, can be handled
immediately by demon rules.

C . Rule Interpreter: Basically, the rule interpreter performs
a match-select-act cycle to process WME’s. It first matches all
WME’s with condition elements in all rules, selects one rule
with matching WME’s, performs actions on the right-hand-
side of the chosen rule, and then repeats the cycle.

An event WME is taken as a goal to trigger backward rules
to diagnose the root causes of this event. An event WME can
be further split into several event WME’s until those event
WME’s are root causes. All other WMe’s may trigger forward
reasoning if a set of WME’s matches the body of a rule.
D. External Routines: The rule-based management appli-

cations need to communicate with other management subsys-
tems to access management information and invoke algorith-
mic routines. To retrieve management information or issue
control actions on network entities, queries will be issued to
IDB. This is done via external calls to a Prolog program that
supports the virtual IDB. Many of the numerical algorithms,
like bandwidth allocation and path routing, are not suitable
to be implemented in the rule-based language. They are also
implemented as external routines.

VI. ATM NETWORK TOPOLOGY TUNING: AN EXAMPLE
Most of the congestion and flow control procedures for

conventional networks cannot be applied to ATM networks,
where nodes tend to become the bottlenecks and propagation
delay dominates other delays. Congestion (e.g., call blocking,
cell loss) is inevitable if there is a mismatch between offered
traffic pattern and network topology. This problem can be
alleviated by dynamically tuning the topology to traffic pattern.
With the technology of digital cross-connect systems (DCS), a
broadband packet-switched ATM network can be dynamically
reconfigured 1261. The embedded logical topology can be
derived from the original physical topology by establishing
express pipes between distant nodes. Express pipes and circuit-
switched pipes for packet-switched traffic reduce store and
forward delay and nodal processing overhead which, in turn,
reduces blocking and loss probabilities. In an ATM network
without express pipes, all traffic has to be stored and switched
at each intermediate node. With express pipes, traffic going
through the pipes can “bypass” the intermediate switches.
Given the traffic demand matrix, the routing of express pipes
and the allocation of bandwidth to such pipes, i.e., embedded
topology, can be determined to optimize the GOS (Grade of
Service) [27].

In this case study, we will demonstrate how to learn traffic
patterns and tune the topology to the discovered patterns, and
will show the performance improvement with this scheme. Fig.
12 illustrates the case study. Traffic is generated according to
our model, which incorporates the parameters for adjusting
locality, burstiness, correlation, cyclic repetition, and pre-
dictability. The simulated traffic is fed into a simplified ATM
network simulator, and the performance results are evaluated
by an analysis module. The management system LEN (Learn-

1423 LIN AND GERLA: INDUCTION AND DEDUCTION

enerator

Fig. 12. Case study on ATM networks.

ing Expert for Networks) performs the management tasks by
monitoring the network simulator, learning traffic patterns, and
triggering actions to tune the topology. A comparison is made
between the performance results for systems with and without
LEN. As LEN is still under development, the inference process
on the rule base is now done manually.

A. ATM Network Model: Configuration, Trafslc, and Operation

1) Configuration: Each node has a switching capacity. Each
link between two nodes has a transmission capacity. Similarly,
each express pipe between two nodes has a transmission
capacity. The schema of nodes, links, and express pipes are
the same as those in Fig. 10. Express pipes are represented as
the view connections in that schema. In LEN, three types of
configuration WME's are created: node, link, and pipe. Their
attributes are again the same as the ones in Fig. 10.

2) Trafslc: To generate a relational traffic table HDB, a
base matrix describing bandwidth requirement is generated
first, and then N cycles of traffic matrix are generated. A
filtering process is imposed on the traffic table to capture
only significant traffic components and reduce the stored
information volume. i) and ii) are the specifications for traffic
generation and filtering.

i) Base matrix generation:

Input: percentages of heavy, medium, and light traffic pairs
H%, M % , L%

Output: Mean level matrix of bandwidth requirement
M E A N (i , j) , variance level matrix of bandwidth requirement
VAR(i , j)

ii) Traffic database generation:

Input: M E A N (i , j) , VAR(i, j) , discrete usage habit curve
U (t) , maximum promotion ratio p%, maximum capture ratio
c%: number of cycles generated N

Output: Relational Traffic Table HDB (hour, source, dest,
bandwidth).

HDB will be the input to our machine learning tool IXL
(Induction on extremely Large databases) [28]. The learning
result is a set of PKB rules.

The defined traffic model reflects the following charac-
teristics: locality, correlation, burstiness, and predictability.
Conceptually, MEAN(Z , j) , VAR(i , j) , and U (t) are used to
randomly generate a 3D bandwidth requirement matrix F i j (t) ,
where i is source, j is destination, and t is time slot. In the

mean time, p% and c%, defined as p% of communicating
pairs contributing c% of total traffic, are used as criteria for
the promotion process to capture the most significant part of
the collected traffic measurements [23]. N cycles of traffic
measurements, HDB, will serve as a basis for predicting the
traffic distribution of the next cycle.

iii) Induction for traffic patterns:
The inducted PKB rule

Confidence Factor = P%
LF 5 bandwidth 5 UF
t

START 5 slot 5 END,
sourcenode = SRC,
destnode = DST;

means the bandwidth requirement of a particular node pair
during several continuous slots is between two values with
probability P%. The function of IXL is to find out when and
how much traffic is flowing from Src to Dest, where time and
volume are expressed in terms of ranges. The establishment,
at Start, and release, at End, of pipes are discrete events.

PKB is an abstraction of HDB. It represents the patterns
in the past N cycles. According to these inducted patterns,
the topology of the ATM network will be tuned with some
express pipes established. Each such inducted rule will be
automatically transformed into the following two rules and
then included into the OPS5 rule base:
(p performance!predict-and-create-traffic-WME

(subtask "name performance)
(time "slot START)
(node "name SRC)
(node "name DST)

--f

(make traffic "predicted-rate (compute-rate PLF UF)
"from START "until END
"source SRC "dest DST))

(p performance!delete-traffic-WME
(subtask "name performance)
(time "slot END)
{ < demand >
(traffic "until END)}

--t

(remove < demand >))

3) Operation: LEN is responsible for tuning the topology
according to PKB. A management cycle in LEN includes the
following steps.

0 Retrieve data into WM: call external Prolog program to
issue queries to IDB

0 Predict traffic demand: create traffic WME'S
0 Handle traffic WME's: create pipe WME's
e Reconfigure topology: call external Prolog program to

write pipe views to IDB.
At the beginning of a time slot, LEN checks if the current

slot matches any "START" or "END" entry PKB. If any
match occurs, four possible actions can be taken: establish
new pipes, augment existing pipes, shrink existing pipes, and
release existing pipes. In these four cases, LEN can create new

1424 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

traffic WME's, or modify/delete existing traffic WME's. These
traffic WME's will match with a set of rules to create, modify,
or delete pipe WME's. Another set of rules then match these
pipe WME's to call external routines to physically access the
express pipes. The algorithm for pipe bandwidth allocation and
pipe routing is described in [27]. The following is an example
rule to create a pipe WME from a new traffic WME.

(p performance!create-pipe-WME-from-traffic-WME
(subtask "name performance)
{ < demand >
(traffic "processed? nil

"predicted-rate <flow> "source <src>
A dest < dst > " delay-requirement <delay >) }

(status "congestion-level <system-load>)

(modify <demand> "processed? YES)
(make pipe "bandwidth (compute-bandwidth

<flow > <delay> <system-load>)
"source <src> "dest <dst>))

+

B. Performance Gain by Learning Trafslc Patterns

We now report preliminary results which demonstrate the
application and effectiveness of induction and deduction to
performance management. While tuning the ATM network in
each time slot according to PKB of the previous N cycles, the
traffic for the next cycle is generated and applied to the tuned
network to compute the connection blocking probability. In
the mean time, this probability for the nontuned network is
also computed for comparison.

The simulated traffic has a base traffic matrix MEAN(Z, j)
of Table I(a). The traffic locality is about 14/88 (14% com-
municating pairs contributing 88% of total traffic) as shown in
Table l(b). The cycle in one day which is divided into 48 time
slots. During the period of five cycles, a total of 675 traffic
pairs are promoted (with capture ratio set to 90%) and logged
into HDB. The induction process takes 2 hours, 29 minutes on
a 386 personal computer and generates a PKB containing 74
rules. The example ATM network in Fig. 13 contains 8 nodes,
12 links, and 5 express pipes (three large pipes: C-B-A-D-F,
C-E-H-G, E-D-G, and two small ones: B-E-D, B-E-H). In the
ATM network simulation, we manually change the topology
for each time slot according to PKB and then apply another
cycle of traffic. After completion of the LEN implementation,
this will be done automatically.

The resulting connection blocking probabilities for nontuned
and tuned networks are compared in Fig. 14. The averaged
connection blocking probabilities (in percentage) (weighted
by traffic volume) under the given load are 6.54% and 1.7 1 %
for the ATM network without and with tuning, respectively.
The peak blocking probabilities are 11.81% for the nontuned
network and 3.57% for the tuned network. The improvement
is significant, especially when the network is heavily loaded.

VII. CONCLUSIONS AND FUTURE WORK

Inference, as a thinking process on given facts by logical
rules, is to find the facts that are not explicitly stated in the
knowledge base. That is, the deductive closure K+ can be

Fig. 13. Connection blocking probability: Non-tuned and tuned.

A Cycle: 48 Time Slots
chncuion B W i Fmhbility

nm-uuled
DIIlcd 11.00

1050

10.00

950

9.00

850

8.00

750

7.00

6.50

6.00

5.50

5.00

450

4.00

350

3.00
250

200

1.50

I .00
050

0.00

4.50 Time Slot
o m l0.W zom worn 4000

Fig. 14.

derived from the fixed knowledge base K but no more than
that. Learning, on the other hand, can expand K+ by adding
facts or rules to K . In our proposed framework, knowledge
related to the underlying network is learned to capture network
patterns and refine the prespecified domain knowledge. The
learning systems have more advanced abilities than nonlearn-
ing systems in performance and fault management, which
require understanding of traffic patterns and knowledge of
causality.

The proposed scheme is designed to operate on the standard
platform of MIB's and CMIP. Two main contributions are the
global view abstraction, and the integration of learning and
inference for autonomous management applications. The case
study of ATM logical topology tuning shows significant im-
provement when dynamic traffic patterns are captured to drive
the tuning process. The implementation of LEN (Learning
Expert for Networks) is now in progress. Other performance
and fault management applications will be built in LEN.

Still, there are several open issues deserving further studies.
First of all, the key to success of this approach is to iden-
tify the patterns, PKB, to be approximated for the specific

1425 LIN AND GERLA: lNDUCTION AND DEDUCTION

management applications. There seems to be no easy way
for this, just like domain knowledge of the other expert
management systems. Second, fault management systems built
on this framework have to rely on DKB if the types of faults
have never occurred before. Third, the tradeoff between the
extra complexity introduced and the amount of improvement
also needs to be evaluated. Finally, this framework has to
incorporate probabilistic reasoning techniques [29] since our
PKB rules are statistical results.

ACKNOWLEDGMENT

The authors would like to acknowledge their colleagues,
S.-T. Huang and C. Zaniolo at U.C.L.A., for the fruitful discus-
sions on issues in deductive databases and logic programming.
Thanks to J. Carlyle at U.C.L.A. and J. Monteiro at UFPE in
Brazil for their helpful comments during the preparation of

manuscript.

REFERENCES

Y . D. Lin, T. C. Tsai, and M. Gerla, “HAP: A new model for packet
arrivals, with implications for broadband network control,” im Proc.
ACM SIGCOMM, San Francisco, CA, Sept. 1993.
1. D. Case, J. R. Davinm, M. S. Fedor, and M. L. Schoffstall, “A simple
network management protocol,” RFC 1067, SRI Int., Aug. 1988.
K. McCloghrie and M. Rose, “Management information base for net-
work management of TCPm-based internets,” Internet Stand. RFC
1156, May 1990.
M. Rose, “Management information base for network management of
TCPflP-based internets-MIB 11,” Internet Stand. RFC 1158, May 1990.
ISOflEC DIS 10165- 1. “Information technology4pen systems inter-
connection-Structure of management information-Part 1 : Manage-
ment information model,” in Proc. ISO, Geneva, Switzerland, June
1990.
I S 0 9596, “Information technology4pen systems interconnec-
t i o n 4 o m m o n management information protocol specification,” in
Proc. ISO. Geneva, Switzerland, May 1990.
J. R. Haritsa, M. 0. Ball, N. Roussopoulous, and A. Datta, “Design of
the MANDATE MIB,” in Proc. Int. Symp. Integrat. Netw. Manage., San
Francisco, CA, Apr. 1993.
S. Mazumdar, S. Brady, and D. W. Levine, “Design of protocol
independent management agent to support SNMP and CMIP queries,”
in Proc. Int. Symp. Integrat. Netw. Manage., San Francisco, CA, Apr.
1993.
1. D. Ullman, Principles of Database and Knowledge-Base Systems, b l .
I . Computer Science Press, 1988, pp. 11-12, pp. 82-87, pp. 100-101.
L. N. Cassel, C. Partridge, and J. Westcott, “Network management
architectures and protocols: Problems and approaches,” IEEE J . Select.
Areas Commun.. vol. 7, no. 7, Sept. 1989.
E. C. Ericson, L. T. Ericson, and D. Minoli, Ed., Expert Systems
Applications in Integrated Network Management. New York: Artech
House, 1989.
S. Goyal, “Knowledge technologies for evolving networks,” in Proc.
IFIP TC6NG6.6 Second Int. Symp. Integrat. Netw. Manage., Jan. 1991.
L. Lewis, “A Case-based reasoning approach to the resolution of faults in
communications networks,” in Proc. Int. Symp. Integrar. N e w . Manage.,
San Francisco, CA, Apr. 1993.
L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming
Techniques.
T. A. Cooper and N. Wogrin, Rule-Based Programming with OPSS.
New York: Morgan Kaufmann, 1988.
L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming ,Expert
Systems in OPS5- An Introduction to Rule-Based Programming. New
York: Addison-Wesley, 1985.

Cambridge, MA: M.I.T. Press, 1986.

[I71 E. Rich and K. Knight, Artificial InteNigence, Second Edition. New
York: McGraw-Hill, 1991, pp. 447484.

[I81 J. R. Quinlan, “Induction of decision, trees,” Mach. Learn., vol. 1, pp.
81-106, 1986.

[I91 P. H. Winston, “Learning structural descriptions from examples,” in
Psychology of Computer Vision.

[20] J. R. Quinlan, “Generating Production Rules from Decision Trees,’’ in
Proc. 10th Int. Joint Con5 Art. Intell., 1987, pp. 304-307.

[21] G. M. Pagallo, “Adaptive decision tree algorithms for learning from
examples,” Ph.D. thesis, UCSC-CRL-90-27, Univ. of California at Santa
Cruz, 1990.

[22] D. Sleeman and P. Edwards, Eds., Machine Learning: Proceedings of the
Ninth International Workshop.

1231 M. Gerla and Y. D. Lin, “Network management using database discov-
ery tools,” in Proc. IEEE 16th Conf. Local Comput. Netw., Minneapolis,
MN, Oct. 1991.

[24] B. Hayes-Roth, “A blackboard architecture for control,” Art. lnrell., vol.
26, pp. 255-321, 1985.

[25] C. Zaniolo, “Prolog: A database query language for all seasons,” in
Proc. First Int. Workshop, 1986.

[26] R. G. Addie and R. W. Warfield, “Bandwidth switching and new network
architectures,” in Proc. 12th Int. Teletruff. Cong., Torino, Italy, June
1988.

[27] M. Gerla, J. S. Monteiro, and R. Pazos, “T0p010gy design and bandwidth
allocation in ATM nets,” IEEE J . Select. Areas Commun., vol. 7, no. 8,
Oct. 1989.

[28] IXL: The Machine Learning System, User’s Manual. XXX Intelligence
Ware Inc., 1988.

[29] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.

New York: McGraw-Hill, 1975.

New York: Morgan Kaufmann, 1992.

New York: Morgan Kaufmann, 1988.

Ying-Dar Lin was born in Taiwan in 1965. He
received the Bachelor’s degree in computer science
and information engineering from National Taiwan
University in 1988, and the Master’s degree in
computer science, from the University of California,
Los Angeles, in 1990, where he is completing the
Ph.D. degree in computer science.

His thesis work focuses on traffic pattern studies
in high-speed networks. At U.C.L.A. Computer Sci-
ence Department, he works as a Research Assistant
and worked as a Teaching Assistant from 1991 to

1992. He is currently Assistant Professor in the Department of Computer and
Information Science, National Chiao-Tung University, Taiwan. His current
research interests include packet traffic modeling, autonomous network mm-
agement, connectionless support in ATM networks, and multimedia protocols.

Mario Gerla received the graduate degree in elec-
trical engineering from the Politecnico di Milano,
Milano, Italy, in 1966, and the M.S. and Ph.D.
degrees in computer science from University of
California, Los Angeles, in 1970 and 1973, respec-
tively.

From 1973 to 1976, he was a Network Planning
Manager at the Network Analysis Corporation and
led several computer network design projects for
both government and industry. From 1976 to 1977,
he was with Tran Telecommunications, Los Ange-

les, CA, where he participated in the development of an integrated packet
and circuit network. In 1977, he joined the University of California, Los
Angeles, and is now a Professor in the Department of Computer Science.
His research interests include the design and control of distributed computer
communication systems and networks, and the development of protocols for
high-speed LAN’s, MAN’S, and WAN’S.

