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Induction and Deduction for Autonomous Networks 
Ying-Dar Lin and Mario Gerla 

Absfract- The key issues in network management are the 
representation and sharing of management information and the 
automatic management mechanisms based on the underlying 
information infrastructure. In this paper, we propose a frame- 
work, which operates on the standard MIB’s and CMIP, for 
the network management system with learning and inference 
as its management engines. In addition to the general domain 
knowledge, patterns related to the managed network are learned 
to enhance the understanding of the network and refine the 
knowledge base. Facts in object-oriented databases or queries 
from management applications trigger the inference process on 
logical rules which are either prespecified knowledge or learned 
network patterns. Forward inference drives prediction and con- 
trol, while backward inference directs diagnosis and supports 
view abstraction. A case study on ATM network topology tuning 
is presented. 

I. INTRODUCTION 

T is recognized that patterns exist in the behavior and I interaction of entities in a complex system. A network 
is a complex system with various types of traffic sources 
where traffic occurs due to the interactions between these 
traffic sources. Network patterns are influenced by the way 
traffic sources behave locally and interact pairwisely with each 
other. In general, a network pattern can exist in client-server 
interactions, temporal and geographical traffic distribution, 
traffic/performance relationship, performance correlation be- 
tween network entities, alarms or faults correlations, and some 
hidden causal relationships. In another study [ 13, the authors 
propose a new model for packet arrivals in a short time scale. 
Here, we are looking at a longer time scale and assume that 
we do not have a model for the behavior of traffic sources. 

The importance of understanding and, furthermore, captur- 
ing patterns stems from several different reasons. Phenomena 
can be explained more precisely, and problems can be diag- 
nosed. Knowing the dynamics within the system will enable us 
to predict the system behavior and perform adaptive control. In 
an adjustable system, we can further tune the system according 
to the pattern if some status is foreseen to occur. 

To understand the network patterns, we need the historical 
information of the network. Three issues arise here. First is 
the representation issue: in what format are we going to store 
the currenthistorical information and the discovered patterns? 
Second is the learning or knowledge acquisition issue: how are 
we going to discover the patterns from the stored information 
trace? Third is the inference or knowledge use issue: based 
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on the management information and the captured patterns, 
what kind of automatic control/management mechanisms can 
be built? 

Recent progress in network management is the recognition 
of the need to use standardized databases for storing network 
management information and a standardized protocol to access 
the stored information. This solves the interoperability problem 
[2] - [6] .  Definition and implementation of MIB (Management 
Information Base) and CMIP (Common Management Informa- 
tion Protocol) are ongoing efforts [7],  [8]. However, little was 
done to define the management application schemes based on 
this common platform. 

In this paper, we propose a framework for a network man- 
agement system with learning and inference abilities, where 
learning is to capture network patterns and inference is to 
reason on the discovered patterns and prespecified knowledge 
in order to access virtual global objects, predict network 
status, trigger control actions, and diagnose problems. The 
proposed scheme is meant to operate on the standard manage- 
ment architecture where management information is stored in 
object-oriented databases. Management knowledge base which 
includes network patterns, abstract view definition, and domain 
knowledge is represented as a set of logical rules. These 
rules are triggered by the facts in databases and queries from 
management applications. The goal is autonomous network 
management by expert systems with learning capability. 

Section I1 highlights the network management issues and 
their recent progress. The induction/deduction approach is 
proposed in Section 111. In Section IV, network patterns are 
classified and the pattern discovery process is described. The 
backward deduction for diagnosis and abstraction, and the 
forward deduction for prediction and control are illustrated. 
The architectural aspects of the proposed scheme and its 
operation on the standard management model are described in 
Section V. The techniques to build management information 
infrastructure and management applications are detailed. Sec- 
tion VI presents an example on ATM network performance 
management. 

11. NETWORK MANAGEMENT PROBLEMS 
Unlike real-time control, management is not an essential 

component to simply make the system work. That is, a system 
can continue to function, at least for a period of time, without 
the management subsystem. However, what were once highly 
tuned systems may gradually degenerate to an inefficient state. 
Not only a softwarebardware failure but also performance 
degradation can be a system problem. Thus, the task of 
the management subsystem is to keep track of the system 
status, which includes both configuration and performance, 
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and trigger control actions when necessary. We can divide 
the management process into the monitoring process and the 
control process. The monitoring process involves collecting 
information about the system’s short-term/long-term behavior 
and low-levelhigh-level status, filtering out unimportant in- 
formation to reduce stored data volume, and interpreting the 
semantics of the collected information. The control process 
affects the state of the system according to the interpreted 
information to achieve a desired outcome. In this processes, we 
find that there are two major issues in network management: 
management information infrastructure and automatic/adaptive 
management schemes. 

A .  Management Information Infrastructure 

Any network management system must be constructed on 
top of the underlying management information model on 
which the representation schemes and operations are based. 
Given that a network is a distributed, and maybe hetero- 
geneous, environment, several issues are confronted when 
designing the infrastructure of the network management in- 
formation. 

e Management information representation: In what form 
can the information be stored in network entities and ex- 
changed between network entities? What kind of management 
information needs to be supported? Do the format and the 
content have to be standardized for information sharing? 

How can machines 
with different protocols interoperate to share management 
information? 

e Information distribution strategy: What is the mechanism 
for information sharing between network entities and the 
management system? Should the management system keep a 
global view of the network at all time or reconstruct it, when 
needed, from local views of network entities? 

Here we are facing problems similar to information sharing 
problems in a traditional file system, with multiple applica- 
tions, where an application must know the structure of the 
files it is operating with. If one particular application needs 
to modify the structure of a file, all the other applications 
using that file have to be changed. The solution to avoid this 
led to the evolution of database systems which contain the 
files, the file structures, and the primitives to access them. 
The separation between data and applications provides data 
independence for applications [9]. By the same philosophy, 
data independence for network protocol stacks and man- 
agement applications can be supported by the management 
information databases and their access protocol. The database 
primitives and the access protocol form the information access 
primitives for protocol stacks and management applications. 
As information may be shared by distributed heterogeneous 
network entities, management databases and access protocol 
must be standardized. 

The open networking community has settled on a man- 
agement model that places a MIB on each network node 
and manages these MIB ’ s  remotely with application-level 
protocols [51, [6], [ 101. The widely accepted OS1 management 
model is illustrated in Fig. 1. An MIB, an abstract image of 

e Heterogeneity of protocol stacks: 

Fig. 1. OS1 management model. 

the local management objects, is supported by each seven- 
layer OS1 node. Objects are manipulated by the application- 
layer management protocol CMIP, which uses RPC (Remote 
Procedure Call) protocol. Changing the attribute values in a 
MlB will result in changing the status of the physical network 
entities. For example, setting the status attribute of link 537 
to off can disable that link. 

Because of the hierarchical nature of network entities and 
their subentities, both IS0 and Internet models organize net- 
work management information into a hierarchical structure. 
IS0  even encapsulates this hierarchical model into object- 
oriented databases in order to hide the heterogeneity of net- 
work entities away from the protocol stacks and management 
applications. In object-oriented databases, the following con- 
cepts are supported: i) subtype hierarchy (by record formation 
and set formation) and method inheritance; ii) encapsulation; 
and iii) object identity [9]. An object class is associated with a 
set of methods operating on the object instances of this object 
class. An object subclass inherits the set of methods from its 
parent object class. The encapsulation of the heterogeneity of 
network entities is achieved by the sets of methods. 

The adopted architecture solves the problems of information 
representation and heterogeneity of protocol stacks , but the 
problem of information distribution strategy remains. Given 
the standard platform, we still need a mechanism to construct 
the global views for the management applications. This is one 
of the problems we want to solve in this paper. 

B .  Automatic and Adaptive Management 

Although the infrastructure of network management is 
agreed upon regarding the standard MIB’s and CMIP, little 
was done to define how to use this platform in specific 
network management problems: performance, configuration, 
fault, accounting, security, etc. Several researchers have 
adopted expert systems with domain knowledge represented 
as a set of logical rules capturing network management model 
to cope with fault localization and correction [111-[13]. In 
these systems, network messages containing “trouble tickets” 
are sent to the expert system. This expert system then reasons 
on the trouble tickets and network configuration to find the 
possible fault locations and the recovery procedures. The 
effectiveness of these systems depends heavily on encoding 
the problem-solving knowledge in the network domain. The 
goal of these expert systems is an automatic fault management 
system to enhance or even replace human intervention. 

Other network management problems also need automation. 
The maintenance of a large number of objects in MIB’s 
needs to be done automatically to keep the status information 
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Fig. 2. Information infrastructure: Global views and local MIB’s. 

up-to-date. Configuration management applications can then 
easily identify and update objects. This, in turn, changes the 
configuration of network entities. Either remedial or preventive 
performance management schemes need to be triggered auto- 
matically by performance alarms or traffic forecasting, which 
again depend on automatic interpretation of performance and 
traffic measurements. This measurement interpretation implies 
that the system needs to keep track of the network patterns 
and perform adaptive control. The ultimate goal for network 
management should be a self-managed and self-adjustable 
network. 

111. APPROACH 
Our approach to solve these two network management prob- 

lems: information distribution strategy and automatic/adaptive 
management is to incorporate learning and inference abilities 
into network management systems to automate the process of 
global view construction, measurement interpretation, prob- 
lem forecasting, problem diagnosis, and decision making. TO 
build the information infrastructure, a set of global views is 
constructed. A global view is a virtual object class defined 
from all local MIB’s via logical rules. These global views 
serve as windows through which management applications 
can access physical network entities. Fig. 2 shows a set 
of global views constructed from local MIB’s. To equip 
the system with automatic and adaptive abilities, network 
patterns are learned from a historical database which con- 
tains a chronological measurement trace. These discovered 
patterns, represented in the form of logical rules, describe the 
correlation between network objects. Based on these network 
patterns and prespecified domain knowledge, forward and 
backward inference can be triggered to access global views, 
predict network status, fire control actions, and diagnose 
reported problems. Fig. 3 illustrates the general approach using 
learning and inference in network management. Unlike an 
expert system with only prespecified domain knowledge, the 
proposed management system has, in addition, learning ability 
to augment its knowledge regarding the specific managed 
network. 

Fig. 4 is an abstract information flow model of our man- 
agement systems. EDB’s (Extensional Databases) are actually 
the standard object-oriented MIB’s. They represent the basic 
facts about configuration, traffic/performance measurements, 
and events/alarms of local nodes. Each network node has an 
associated EDB which is its local view about the network. 
IDB (Intensional Database), located at a management site, is 
defined as the deductive closure of EDB’s with logical rules. 

Fig. 3. Induction/deduction in network management. 

I-=-I 

Fig. 4. Abstract model of information flow. 

That is, IDB contains virtual objects defined on the physical 
objects in EDB’s. Access to IDB will be transformed into 
access to EDB’s. This is the same concept as in relational 
databases, where views are virtual relations defined on physical 
relation tables. EDB and IDB are both deductive database 
terminologies [9]. The difference is that now IDB is defined 
on distributed EDB ’s. IDB, including overall configuration 
and interobject relationships, embodies the global views of the 
network. Extracted from IDB, HDB (Historical Database) is 
the temporal historical database which encodes time in the net- 
work trace. Network patterns are learned from HDB and stored 
in PKB (Pattern Knowledge Base). DKB (Domain Knowledge 
Base) is prespecified problem solving and general relationship 
knowledge. Note that only EDB’s are standardized; all the 
others are management application dependent. 

A logical rule in IDBPKBJDKB has the generic form: IF 
X THEN Y, where X is its body part and Y is its head part. A 
body or head part has one, or more than one, formula which 
can represent the status of a network object or an action to 
update an object’s status. A detailed definition of logical rules 
in IDB/F’KB/DKB is given in the next section. 

Each network pattern, represented as a logical rule in PKB, 
describes a correlation between the attributes of network 
objects. These correlations are extracted from HDB, where 
selected attributes are logged according to the specific manage- 
ment application. Since this extraction is a statistical process, 
a probability is associated with each logical rule to show how 
strong this pattern is. 
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If the status of network objects satisfies the body part in the 
rule, the pattern tells us, from past experience, that it is very 
llkely that the status of the network object also satisfies the 
head part with some probability. This logical rule is, thus, fired 
as a forward inference. Forward inference is very suitable for 
status prediction. If some undesired status of a network object 
is foreseen to occur, it can further fire some logical rules in 
DKE3 and then mgger preventive control actions. On the other 
hand, if trouble is reported to the management system (e.g, 
blocking probability of connection 839 is larger than 5%), this 
object associated with the trouble is matched against the object 
in the head of rules. If the head is satisfied, the rule is fired as a 
backward inference and a series of inferences on the formulas 
in the body can carry on. Finally, the set of residual formulas 
which cannot be further deduced are the possible causes to that 
trouble. Again, using forward inference on the logical rules in 
DKB, the remedial control actions can be triggered. 

Why Rule-Based Systems for Network Management? 
After presenting this methodology, let us examine the 

reasons to adopt rule-based systems for autonomous network 
management. The following characteristics of network man- 
agement problems make the rule-based solution desirable: 

0 Evolving problem-solving knowledge and changing net- 
work patterns 

0 Complex condition matching 
0 Solution and pattern naturally expressed in IF-THEN 

rules. 
New services or solutions are introduced from time to time, 

which result in updating problem-solving knowledge. More- 
over, different network patterns exist in different networks 
and they may change over time. Since rules are modular 
pieces of information that are not explicitly directed by control 
statements in the program, it is possible to add or remove rules 
without changing the overall structure of the program or the 
control flow. In the procedural systems, on the other hand, 
these changes in problem-solving knowledge may result in 
modification, recompilation, and reinstallation of the program 
code. In addition, rule-based systems are powerful in symbolic 
manipulation by pattern matching between data and rules. A 
complex situation encoded by many pieces of data can be 
matched with a set of rules, which is then fired to trigger 
control actions. It is also more common and natural for net- 
work domain experts to express their expertise as declarative 
IF-THEN rules, rather than as procedural algorithms. Besides, 
the network patterns which represent cause-effect correlations 
are naturally expressed as logical rules. 

Iv. INDUCTION AND DEDUCTION IN NETWORK MANAGEMENT 

A .  Terminologies for Logical Rules 

As mentioned previously, a rule has the generic form: IF 
X THEN Y. However, the actual formats and meanings of 
rules in IDB, PKB, and DKB are different. Here, we give the 
definition of our IDB rule, PKB rule, and DKB rule. 

An IDB rule is written in the form of Horn clauses, which 
are statements of the form: “if AI, A2, . . %  , and An are true, 

then B is true. “Following the Prolog [ 141 syntax, it is written 
as: 

B:-A1,A2,. . .An 

where the formulas B and Ai are predicates with a list 
of arguments, e.g. p(X1,  . . . , Xh). Predicates produce true 
or false as a result; i.e., they are Boolean-valued functions. 
A predicate can represent a physical object class stored in 
EDB’s, which is called EDB predicate, or a virtual object 
class defined by IDB rules, which is called ZDB predicate . 
IDB rules are used in a backward-chaining fashion to support 
view abstraction. That is, a query expressed as the predicate 
B will be transformed into a set of queriedpredicates { A i }  
according to the IDB rule. 

The format of a PKB rule is in Horn clauses, with certainty 
factors, like 

Confidence Factor = P% B +- AI, Az,. . . A, 

which reads “if AI, Az, . . . , and A, are true, B is concluded to 
be true with probability P.” A formula Ai or B is a condition 
that represents the status of a network object (e.g., connection 
status = “closing,” 40% 5 link utilization 5 60%). PKB 
rules are triggered in a forward-chaining fashion for status 
prediction. A transformation from PKB rules to DKB rules is 
required when PKB rules are to be included in the production 
system for inference. 

A DKB rule is actually a production rule. It is written in the 
OPS5 (Offical Production System, version 5) [15] syntax as: 

which reads “if AI,  Az, . . . , and A, are true, B1, Bz, . . . , and 
B, will be executed.” Here, A; is a condition and Bj is an 
action. DKB rules can be used to invoke control actions by 
forward inference. They can also emulate backward inference 
to diagnose problems [ 161. 

B.  Induction for Pattern Discovery 

Learning is a process of knowledge acquisition. Knowledge 
can be acquired through taking advice, (Le., inputting new 
knowledge directly), problem-solving experience (i.e., remem- 
bering the structure of the problem and the methods used 
to solve it), learning from examples (constructing concept 
definition from examples), etc. [ 171. Network measurements 
are themselves examples containing many implicit, network- 
dependent patterns to be discovered. The inductive learning 
constructs decision trees from a large number of examples. 
Each decision tree represents a concept with the following 
definition [ 181. 

Definition: A concept i includes the function f i  to be ap- 
proximated, the set of approximators A;, the domain Di (Di C 
HDB), on which f i  and the members of Aij are defined, 
and the confidence factors, CF;, which is the percentage of 
examples in Di that satisfy the following rule: 

.fi(Di) E [ l i j ,  4.3 + Aij(Di) E [ L j ,  uij] 

for all attributej 

where i is the concept index and j is the attribute index. 0 
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As there may be many sets of l’,u’,Z, and U (lower and 
upper bounds) for a particular set of examples, a set of 
such rules can be generated from a concept (decision tree). 
Computational complexities for these learning algorithms are 
usually exponential in the number of attributes. However, there 
are steps to reduce complexity by using domain knowledge to 
restrict the set of attributes and relational structures considered. 
As learning algorithms are not the main theme of this paper, 
readers are referred to the literature [17]-[22]. 

In our approach, induction is performed on the management 
application dependent HDB to generate PKB. The logical rules 
in PKB model and represent the correlations between attributes 
in HDB. Reference [23] reports an experiment on intercon- 
nected LAN’s where traffic patterns are learned by a machine 
learning tool from traffic measurements stored in a HDB 
implemented as a relational database. The discovered rules 
can describe traffic patterns in terms of locality, long-term 
burstiness, correlation, cyclic repetition, and predictability. 
These patterns can be used for medium-term and long-term 
performance management. 

In addition to traffic patterns, there are many other interest- 
ing network patterns. In general, patterns describe interobject 
and intraobject relationships. Here, an object instance is an 
example. We classify the network patterns into the following 
categories with examples. 

0 Temporal and geographical traffic distribution 

Confidence Factor = 85% 
20M 5 Traffic 5 30M 

l l :30AM 5 Time 5 12:30PM, 
Source = “~ahu”,  
Destination = “maui”; 

t 

0 Traffic/performance relationships 

Confidence Factor = 90% 
Delay Violation 2 5% 

CPU Utilization 2 60%, 
Network Application Weight 2 40%; 

t 

0 Performance correlation between network entities 

Confidence Factor = 80% 
40% 5 Node B Utilization 5 50% 

50% 5 Link 1 Utilization 5 60%, 
35% 5 Link 2 Utilization 5 50%; 

t 

0 Hidden causal relationships 

Confidence Factor = 84% 
Node 3 Fails 

Number of Performance Alarms from Link I 2 10, 
Link 1 Utilization 5 20%; 

c 

C. Deduction: Forward and Backward Inferencing 

Both preventive and remedial control actions can be taken 
by network management applications. Preventive control is 
triggered by problem forecasting based on previous patterns, 
while remedial control is triggered by network events (perfor- 
mance alarms and device failures). As the manager receives 
results of the queries to IDB, it passes the configuration status 
variables to configuration submanager, performance status 
variables to performance submanager, and event variables to 
fault submanager. If any match between the variable values 
and the body of a rule occurs, the rule is fired and the head 
part executed. A rule in IDB/DKB/PKB can be fired for four 
possible purposes: 

0 Prediction: The forward inference on a PKB rule, given 
that the rule body is true, forecasts that the rule head will be 
true. 

Control: The forward inference on a DKB rule triggers 
the control actions to take when some network phenomena 
are detected. 

0 Diagnosis: The backward inference on a DKB or PKB 
rule can discover the root causes of network events, even when 
these events are not yet detected. 

The backward inference on an IDB rule 
transforms an IDB query to EDB query/queries and, hence, 
provides view abstraction. 

Here are two example inference processes: i) a process that 
predicts traffic demands between node X and Y, forecasts per- 
formance alarms for link L,  and takes actions to reroute some 
traffic from link L; ii) a process that diagnoses the received 
performance alarms, concludes that node 2 is malfunctioning, 
reroutes traffic that passes node 2, and disables node 2. 

Backward inference is triggered by events (i.e., only when 
there are network problems: performance alarms and device 
failures) and queries (from manager to IDB). However, for- 
ward inference is triggered by a set of state variables. The 
workload on forward inference process can be very high since 
each state variable will match against each formula in the 
rule bodies to see if some rules can be fired. Thus, keeping 
the number of state variables for triggering forward inference 
small is critical in designing management applications. 

0 Abstraction: 

V. ARCHITECTURE 

This section describes how the proposed learning and infer- 
ence schemes work on the standard OS1 management platform, 
the organization of object classes in EDB and rule classes in 
IDB/PKB/DKB, and the rule-based learning expert system. 

A .  Distributed Management Architecture 
Fig. 5 shows a management system with a manager and 

several remote agents. An agent resides on each OS1 node and 
manages its MIB (EDB in our terminology). The manager has 
submanagers (configuration, performance, and fault inference 
modules in this case) for specific management functions. 
Periodically, the manager issues a query to IDB, which in turn 
is forwarded and translated to the EDB’s to get management 
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Mmrgemnt Site 
Fig. 5 .  Manager, submanagers, and agents. 

W = C + N  W 

I I 
PkB PKB PKB 

Fig. 6. Induction and query periods. 

information, and stores it in the HDB. The results of the query 
are also passed to submanagers to trigger the inference process 
on PKB and DKB, if any match occurs. If control actions are 
to be fired as a result of the inference, the manager updates 
the corresponding views in IDB, in turn objects in EDB's, 
through the sets of methods associated with the objects. These 
updates on EDB's then propagate to the network entities as 
control actions. Note that a query via CMIP can be a read as 
collecting management information or a write (create, delete, 
modify) as taking control actions. 

Induction on HDB is also carried out periodically, but much 
less often, to renew PKB. A sliding window mechanism is 
used to maintain the consistency between HDB and PKB. 
That is, HDB only contains records in the most recent W 
(window size) query periods. An induction is triggered if 
PKB was generated W query periods ago. Fig. 6 illustrates 
the relationship between induction period and query period. 
If C is the number of query periods in a cycle and N is the 
number of cycles in the window of HDB, W = C * N .  If 
there is a temporal repetition in network behavior, cycles exist 
as network patterns. 

Conceptually, management information and knowledge are 
spread in the layer structure and contained in various databases 
and knowledge bases, as shown in Table I. 

This is similar to the hierarchical blackboard architecture 
used in signal-processing expert systems [24]. The control 
strategy, which is implemented as the manager, decides when 
to execute the rule sets, which are implemented as the sub- 
managers, in configuration, performance, and fault domains. 
Usually, this is triggered by either status variables or queries. 
An inference process on DKB and PKB then accesses the 
objects of a view in IDB, which in turn accesses the remote 
objects in EDBs over the network. The hierarchy is organized 
as Fig. 7. The following two subsections describe how to build 
the views, namely the construction of IDB from the underlying 
EDB 's, and the rule-based management applications based on 
this infrastructure. 

TABLE I 
TRAFFIC FOR AN EIGHT-NODE NETWORK 

(a) Traffic Matrix 

Capture Ratio(%) I 26 I 50 I 73 I 88 I 91 1 93 I 95 
Promotion Ratio(%) I 3.5 I 7 I 11 I 14 I 18 I 22 I 25 

(b) Traffic Locality 

/ -  \ 
@ @ ... .  @ 
Fig. 7. The blackboard architecture. 

Fig. 8. Inheritance hierarchy 

B. Building Information Infrastructure 

Modeling network management information is to map net- 
work configuration, performance, and events to objects in 
EDB's. The inheritance hierarchy in Fig. 8 represents a simple 
classification of network object classes, where the elements 
class has three subclasses: configurations, performances, and 
events. Physical entities class has two subclasses: nodes and 
links. 

A node's EDB contains only its local management infor- 
mation. Fig. 9 shows an EDB organized in a containment 
hierarchy and its type declaration. An EDB is an object 
instance of nodes. In addition to its own variable attributes, this 
nodes instance contains a set of links instances (for links that 
are connected to this node), a set of connections instances (for 
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connections that pass through this node), and a set of events 
instances (for events in which this node is involved). Again, a 
links instance also contains a set of connections instances (for 
connections that pass through this link). 

At the management site, what the management applications 
see is a set of views, i.e., a set of IDB predicates. Different sets 
of views can be defined for different management applications. 
Each IDB predicate is defined on EDB predicates. The schema 
at the management site for IDB/EDB predicates and the Prolog 
implementation to define these IDB predicates are given in 
Fig. 10. Prolog Logic Programming techniques used here 
can be found in [14]. Prolog’s recursive programming style, 
which is not supported in relational query languages, provides 
us a powerful query interface to unify distributed network 
management information. Prolog emerges as an attractive 
query language for relational databases 191. However, with 
simple extensions, Prolog can also interface with object- 
oriented databases [25]. 

To see how an IDB predicate can be constructed by com- 
bining EDB predicates, let us take predicate connections as 
an example: 

coMections(connid, Type, Capacity, Perfid, Status, Clientid, 

: - 1-connections(Clientid, Connid, Type, Capacity, Perfid, 

path(Connid, Clientid, Serverid, Nodes, Links). 

path(Connid, End, End, [End], [I) : - !. 
path(Connid, Start, End, [Start I Noderest], [Linkid 1 Linkrest]) 
: - 1-connections(Start, Connid, -, -, -, -, -, _, Nextid, Linkid), 
path(Connid, Nextid, End, Noderest, Linkrest). 

Serverid, Nodes, Links) 

Status, Clientid, Serverid, -, -), 

For every “Nodeid,” predicate 1-connections (Nodeid, Con- 
nid, Type, Capacity, Perfid, Status, Clientid, Serverid, Nextid, 
Linkid) contains all connections that pass node “Nodeid.” (1 
stands for local.) For every such connection, 1-connections 
contains “Nextid” and “Linkid” for its next hop (node and 
link), but does not know the whole path. connections , con- 
structed from 1-connections, contains the link lists “Nodes” 
(all nodes on this connection) and “Links” (all links on 
this connection). “Nodes” and “Links” are constructed by 
predicate path , which takes “Nextid” and “Linkid,” starting 
from the node “Clientid,” and inserts them into the link lists 
“Nodes” and “Links.” Note that, in the rule for connections, 
“Nodeid” in 1-connections is an existential quantifier, which 
means all nodes can be queried to match with the attributes 
of Connections. Similar view construction techniques are used 
in predicates links and events. Instead of using recursive 
predicate path , “set-of’ constructs are used to construct the 
link list whose elements satisfy the specified condition. links 
contains “Nodes” (for all nodes connected to this link) and 
“Events” (for all events involving this link), while event 
contains “Nodes” (for all nodes involved in this event) and 
“Links” (for all links involved in this event). 

*connections 

*,,des/ *nodes *nodes *links/ 

NodeType = RECORDOF(id int, capaci1y:ht. perfommee: P a y p e ,  
S ~ ~ N S :  int, linlrs: SETOF(LinkType). connections:SETDF(ConnactionType), 
events: SETQF(EventType)); 

LinkType = RECORDOF(id int pmtoml:F’rokxdType, capacity: int, 
performance: PexfType. status: ins passby: SETOF(Connection Type)); 

ConwtionType = RECORDOF(id: int. type: int, Capacity: inf 
performance: PerfType, status: int, client NodeType, m e r :  NodeType. 
next: Node’Ilpe, link: LinkType); 

Even- = RECORWF(id: int, type.: int, time: ins action: ActType. 
involved: SETOF(Liiype)); 

Peflype = RECORDOF(id in& traffic: inf delay: int loss: int  hten’dint); 

Fig. 9. EDB: A local MIB. 

Manager’s Schema for EDBs: 

l-nodes(Nodeid, Capacity. Perfid, Status, Links, Conns, Events) 
l-links(Nodeid, Linkid, Rotocol, Capacity, Perfid, S~~~US,COMS) 
l-wnnections(Nodeid. Connid Type, Capacity, F’ertid, Status, Clientid 

I-events(Nodeid, Eventid, Type, Time. Action, Links) 
Igerformance(?4odeid. Perfid. Traffic, Delay, Loss. Interval) 

serverid, Nextid Linkid) 

Views in IDB: 

nodesWdeid, Capacity, Perfd, Status. Links, Conns, Events) 
links(Linkid, htocol, Capacity, Pertid, Status, Nodes, Conns, Evenrs) 
coMections(Connid. Type, Capacity, Perfid Status, Clientid, Serverid, 

evenrs@ventid, Type, Time, Action, Nodes, Links) 
perfomancesperfid Traffic. Delay, Loss, Interval) 

Nodes, Links) 

View Definitions: 

nodesWodeid. Capacity, Perfid, Status, Links, Conns, Events) :- 
I-nodes(Ncdeid. Capacity, Pefid, Status, Links, Conns, Events). 

links(linkid, Protocol. Capacity, Perfid, Status. Nodes, Conns, Evenu) :- 
I-linksNdeid, Linkid. F’rorocOl, Capacity, Perfid. Status, Conns), 
set-of(N, (mernber(Linkid N-links), I-nodes(N. -, -, -, N l i s ,  -, 3). Nodes), 
set-of(E, (memter(L.inkid, E-links). I-events(_, E, ~ -, -, E-links)), Events). 

connectims(Connid, Type, Capacity, Pertid, Status, Clientid Serverid, Nodes, Links) :- 
I-wnnections(Clientid Connid, Type. Capacity, Perfid Status, Clientid, Serverid, -, J, 
path(Connid Clientid Serverid, Nodes, Links). 

path(Connid End, End, [End], [I) :- !. 
path(Connid, Stan. End IStanlNoderest], [LinkidLinkrestl) :. 
I-connections(Stan. Connid, _, -, -, -, -, -, Nextid, Linkid), 
path(Connid Nextid, End, Noderest, Linkrest). 

events(Eventid. Type, Time, Action. Nodes, Links) :- 
set-of(Nodeid. I-evenl(Nodeid, Eventid. Type. Time, Action, 3, Nodes). 
stxof(Linkid, (member(L.inkid. E-links). I-evenu(Ncdeid, Eventid Type, Time, Action, 

E-links)), Links). 

performances(€‘erfd Traffic, Delay, Loss, Interval) :- 
I-perfomances(Nodeid, Perfid, Traffic, Delay, Loss. Interval). 

Fig. 10. Views in IDB. 

All the predicates mentioned are the schema definitions at 
the management site. An access to a predicate of IDB will 
be converted, by backward chaining, to access to predicate(s) 
of the manager’s EDB’s, and then transferred, by CMIP 

queries, to the Physical EDB’s On network Thus* 
a mapping between access to Predicates of the manager’s 
EDB’s and CMIP queries to physical EDB’s must be done 
at the management site. The attribute “Nodeid’ in each EDB 



1422 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 ,  NO. 9, DECEMBER 1993 

I Rule Interpreter I 

. 
Fig. 11. The rule-based production system. 

predicate is used to identify the network node that contains 
the object instances. 

C .  Building Management Applications 

Based on the constructed IDB, management applications 
can perform inference on IDB using their knowledge base 
in DKB and PKB. Data in IDB is matched with the rules 
in DKB and PKB. Rules can be applied in either direction: 
forward and backward. The direction corresponds to the type 
of reasoning and problem-solving strategy. Forward inference 
is data-driven and bottom-up processing, while backward 
inference is goal-driven and top-down processing. Prediction 
and control operations are data-driven, hence forward rea- 
soning. Diagnosis problems are goal-driven, hence backward 
reasoning. 

As shown in Fig. 11, there are four components in the rule- 
based system: working memory, rule base, rule interpreter, 
and external routines. The rule-based programming language 
OPS5 is used to describe how to build the management 
applications. Although OPS5’s inference engine is inherently 
forward, backward inference can be emulated by treating 
goals as data and using three sets of rules: a set to split 
goals into subgoals, a set to recognize and solve achievable 
subgoals, and a set to fuse the results of subgoals. All these 
rule-based programming techniques can be found in 1151, 
1161. The following paragraphs describe the functionalities and 
operations of these components in our framework. 

A .  Working Memory: Periodically, a set of rules is trig- 
gered to retrieve data from IDB into working memory. A 
working memory element (WME) is a view in IDB. Event 
WMEs are treated as goals to trigger diagnosis process, while 
nonevent WME’s are data-to-trigger prediction and control 
process. 

B .  Rule Base: In Fig. 7, we have three management appli- 
cations: configuration, performance, and fault. Each manage- 
ment application is associated with a rule cluster. Rule clusters 
are in either DKB or PKB. A rule cluster is conceptually 
equivalent to a procedure. These rule clusters are scheduled 
by the control rules, which are at the top level of blackboard 
architecture. 

Rule clusters and control rules together perform the period- 
ical management tasks. A period, a management cycle, starts 
with retrieving data from IDB into working memory and ends 
when no more data can trigger the rules. In addition to this 
synchronous management cycle, there are a set of demon rules 
to perform asynchronous management. Demon rules are not 

scheduled by the control rules. They can fire any time when 
an event WME is detected in working memory. An urgent 
event, like device failure or performance alarm, can be handled 
immediately by demon rules. 

C .  Rule Interpreter: Basically, the rule interpreter performs 
a match-select-act cycle to process WME’s. It first matches all 
WME’s with condition elements in all rules, selects one rule 
with matching WME’s, performs actions on the right-hand- 
side of the chosen rule, and then repeats the cycle. 

An event WME is taken as a goal to trigger backward rules 
to diagnose the root causes of this event. An event WME can 
be further split into several event WME’s until those event 
WME’s are root causes. All other WMe’s may trigger forward 
reasoning if a set of WME’s matches the body of a rule. 
D. External Routines: The rule-based management appli- 

cations need to communicate with other management subsys- 
tems to access management information and invoke algorith- 
mic routines. To retrieve management information or issue 
control actions on network entities, queries will be issued to 
IDB. This is done via external calls to a Prolog program that 
supports the virtual IDB. Many of the numerical algorithms, 
like bandwidth allocation and path routing, are not suitable 
to be implemented in the rule-based language. They are also 
implemented as external routines. 

VI. ATM NETWORK TOPOLOGY TUNING: AN EXAMPLE 
Most of the congestion and flow control procedures for 

conventional networks cannot be applied to ATM networks, 
where nodes tend to become the bottlenecks and propagation 
delay dominates other delays. Congestion (e.g., call blocking, 
cell loss) is inevitable if there is a mismatch between offered 
traffic pattern and network topology. This problem can be 
alleviated by dynamically tuning the topology to traffic pattern. 
With the technology of digital cross-connect systems (DCS), a 
broadband packet-switched ATM network can be dynamically 
reconfigured 1261. The embedded logical topology can be 
derived from the original physical topology by establishing 
express pipes between distant nodes. Express pipes and circuit- 
switched pipes for packet-switched traffic reduce store and 
forward delay and nodal processing overhead which, in turn, 
reduces blocking and loss probabilities. In an ATM network 
without express pipes, all traffic has to be stored and switched 
at each intermediate node. With express pipes, traffic going 
through the pipes can “bypass” the intermediate switches. 
Given the traffic demand matrix, the routing of express pipes 
and the allocation of bandwidth to such pipes, i.e., embedded 
topology, can be determined to optimize the GOS (Grade of 
Service) [27]. 

In this case study, we will demonstrate how to learn traffic 
patterns and tune the topology to the discovered patterns, and 
will show the performance improvement with this scheme. Fig. 
12 illustrates the case study. Traffic is generated according to 
our model, which incorporates the parameters for adjusting 
locality, burstiness, correlation, cyclic repetition, and pre- 
dictability. The simulated traffic is fed into a simplified ATM 
network simulator, and the performance results are evaluated 
by an analysis module. The management system LEN (Learn- 
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enerator 

Fig. 12. Case study on ATM networks. 

ing Expert for Networks) performs the management tasks by 
monitoring the network simulator, learning traffic patterns, and 
triggering actions to tune the topology. A comparison is made 
between the performance results for systems with and without 
LEN. As LEN is still under development, the inference process 
on the rule base is now done manually. 

A. ATM Network Model: Configuration, Trafslc, and Operation 

1 )  Configuration: Each node has a switching capacity. Each 
link between two nodes has a transmission capacity. Similarly, 
each express pipe between two nodes has a transmission 
capacity. The schema of nodes, links, and express pipes are 
the same as those in Fig. 10. Express pipes are represented as 
the view connections in that schema. In LEN, three types of 
configuration WME's are created: node, link, and pipe. Their 
attributes are again the same as the ones in Fig. 10. 

2 )  Trafslc: To generate a relational traffic table HDB, a 
base matrix describing bandwidth requirement is generated 
first, and then N cycles of traffic matrix are generated. A 
filtering process is imposed on the traffic table to capture 
only significant traffic components and reduce the stored 
information volume. i) and ii) are the specifications for traffic 
generation and filtering. 

i )  Base matrix generation: 

Input: percentages of heavy, medium, and light traffic pairs 
H%, M % ,  L% 

Output: Mean level matrix of bandwidth requirement 
M E A N ( i ,  j ) ,  variance level matrix of bandwidth requirement 
VAR( i , j )  

ii) Traffic database generation: 

Input: M E A N ( i ,  j ) ,  VAR(i, j ) ,  discrete usage habit curve 
U ( t ) ,  maximum promotion ratio p%, maximum capture ratio 
c%: number of cycles generated N 

Output: Relational Traffic Table HDB (hour, source, dest, 
bandwidth). 

HDB will be the input to our machine learning tool IXL 
(Induction on extremely Large databases) [28]. The learning 
result is a set of PKB rules. 

The defined traffic model reflects the following charac- 
teristics: locality, correlation, burstiness, and predictability. 
Conceptually, MEAN(Z , j ) ,  VAR( i , j ) ,  and U ( t )  are used to 
randomly generate a 3D bandwidth requirement matrix F i j ( t ) ,  
where i is source, j is destination, and t is time slot. In the 

mean time, p% and c%, defined as p% of communicating 
pairs contributing c% of total traffic, are used as criteria for 
the promotion process to capture the most significant part of 
the collected traffic measurements [23]. N cycles of traffic 
measurements, HDB, will serve as a basis for predicting the 
traffic distribution of the next cycle. 

iii) Induction for traffic patterns: 
The inducted PKB rule 

Confidence Factor = P% 
LF 5 bandwidth 5 UF 
t 

START 5 slot 5 END, 
sourcenode = SRC, 
destnode = DST; 

means the bandwidth requirement of a particular node pair 
during several continuous slots is between two values with 
probability P%. The function of IXL is to find out when and 
how much traffic is flowing from Src to Dest, where time and 
volume are expressed in terms of ranges. The establishment, 
at Start, and release, at End, of pipes are discrete events. 

PKB is an abstraction of HDB. It represents the patterns 
in the past N cycles. According to these inducted patterns, 
the topology of the ATM network will be tuned with some 
express pipes established. Each such inducted rule will be 
automatically transformed into the following two rules and 
then included into the OPS5 rule base: 
(p performance!predict-and-create-traffic-WME 

(subtask "name performance) 
(time "slot START) 
(node "name SRC) 
(node "name DST) 

--f 

(make traffic "predicted-rate (compute-rate PLF UF) 
"from START "until END 
"source SRC "dest DST)) 

(p performance!delete-traffic-WME 
(subtask "name performance) 
(time "slot END) 
{ < demand > 
(traffic "until END)} 

--t 

(remove < demand >)) 

3 )  Operation: LEN is responsible for tuning the topology 
according to PKB. A management cycle in LEN includes the 
following steps. 

0 Retrieve data into WM: call external Prolog program to 
issue queries to IDB 

0 Predict traffic demand: create traffic WME'S 
0 Handle traffic WME's: create pipe WME's 
e Reconfigure topology: call external Prolog program to 

write pipe views to IDB. 
At the beginning of a time slot, LEN checks if the current 

slot matches any "START" or "END" entry PKB. If any 
match occurs, four possible actions can be taken: establish 
new pipes, augment existing pipes, shrink existing pipes, and 
release existing pipes. In these four cases, LEN can create new 
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traffic WME's, or modify/delete existing traffic WME's. These 
traffic WME's will match with a set of rules to create, modify, 
or delete pipe WME's. Another set of rules then match these 
pipe WME's to call external routines to physically access the 
express pipes. The algorithm for pipe bandwidth allocation and 
pipe routing is described in [27]. The following is an example 
rule to create a pipe WME from a new traffic WME. 

(p performance!create-pipe-WME-from-traffic-WME 
(subtask "name performance) 
{ < demand > 
(traffic "processed? nil 

"predicted-rate <flow> "source <src> 
A dest < dst > " delay-requirement <delay > ) } 

(status "congestion-level <system-load>) 

(modify <demand> "processed? YES) 
(make pipe "bandwidth (compute-bandwidth 

<flow > <delay> <system-load> ) 
"source <src> "dest <dst>)) 

+ 

B.  Performance Gain by Learning Trafslc Patterns 

We now report preliminary results which demonstrate the 
application and effectiveness of induction and deduction to 
performance management. While tuning the ATM network in 
each time slot according to PKB of the previous N cycles, the 
traffic for the next cycle is generated and applied to the tuned 
network to compute the connection blocking probability. In 
the mean time, this probability for the nontuned network is 
also computed for comparison. 

The simulated traffic has a base traffic matrix MEAN(Z, j )  
of Table I(a). The traffic locality is about 14/88 (14% com- 
municating pairs contributing 88% of total traffic) as shown in 
Table l(b). The cycle in one day which is divided into 48 time 
slots. During the period of five cycles, a total of 675 traffic 
pairs are promoted (with capture ratio set to 90%) and logged 
into HDB. The induction process takes 2 hours, 29 minutes on 
a 386 personal computer and generates a PKB containing 74 
rules. The example ATM network in Fig. 13 contains 8 nodes, 
12 links, and 5 express pipes (three large pipes: C-B-A-D-F, 
C-E-H-G, E-D-G, and two small ones: B-E-D, B-E-H). In the 
ATM network simulation, we manually change the topology 
for each time slot according to PKB and then apply another 
cycle of traffic. After completion of the LEN implementation, 
this will be done automatically. 

The resulting connection blocking probabilities for nontuned 
and tuned networks are compared in Fig. 14. The averaged 
connection blocking probabilities (in percentage) (weighted 
by traffic volume) under the given load are 6.54% and 1.7 1 % 
for the ATM network without and with tuning, respectively. 
The peak blocking probabilities are 11.81% for the nontuned 
network and 3.57% for the tuned network. The improvement 
is significant, especially when the network is heavily loaded. 

VII. CONCLUSIONS AND FUTURE WORK 

Inference, as a thinking process on given facts by logical 
rules, is to find the facts that are not explicitly stated in the 
knowledge base. That is, the deductive closure K+ can be 

Fig. 13. Connection blocking probability: Non-tuned and tuned. 
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derived from the fixed knowledge base K but no more than 
that. Learning, on the other hand, can expand K+ by adding 
facts or rules to K .  In our proposed framework, knowledge 
related to the underlying network is learned to capture network 
patterns and refine the prespecified domain knowledge. The 
learning systems have more advanced abilities than nonlearn- 
ing systems in performance and fault management, which 
require understanding of traffic patterns and knowledge of 
causality. 

The proposed scheme is designed to operate on the standard 
platform of MIB's and CMIP. Two main contributions are the 
global view abstraction, and the integration of learning and 
inference for autonomous management applications. The case 
study of ATM logical topology tuning shows significant im- 
provement when dynamic traffic patterns are captured to drive 
the tuning process. The implementation of LEN (Learning 
Expert for Networks) is now in progress. Other performance 
and fault management applications will be built in LEN. 

Still, there are several open issues deserving further studies. 
First of all, the key to success of this approach is to iden- 
tify the patterns, PKB, to be approximated for the specific 
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management applications. There seems to be no easy way 
for this, just like domain knowledge of the other expert 
management systems. Second, fault management systems built 
on this framework have to rely on DKB if the types of faults 
have never occurred before. Third, the tradeoff between the 
extra complexity introduced and the amount of improvement 
also needs to be evaluated. Finally, this framework has to 
incorporate probabilistic reasoning techniques [29] since our 
PKB rules are statistical results. 
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