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Microstructure and Mechanical Properties of Surfactant
Templated Nanoporous Silica Thin Films:
Effect of Methylsilylation
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Microstructural and mechanical properties of organic surfactant templated nanoporous thin silica films have been studied by X-ray
diffraction, Fourier transform infrared spectroscopy, and nanoindentation. Compared with many other porous low-k dielectrics, the
self-assembled molecularly templated nanoporous silica films demonstrate better mechanical properties. This is ascribed to the
presence of a well-ordered pore channel structure in the nanoporous silica thin films. Hardness and elastic modulus are strongly
dependent on film preparation and modification methods. Trimethylsilylation by hexamethylsilazane vapor treatment effectively
enhances the mechanical strength of the nanoporous silica films. When the sol precursor solution is mixed with trimethylchlo-
rosilane~TMCS!, the resulting nanoporous films have a weaker mechanical strength. The pore channel structure of the nanoporous
silica film becomes less ordered for the TMCS derivatized nanoporous films. In addition, the chemical structure in the silica solid
matrix of the TMCS derivatized films is more disordered than those without TMCS modification. The nanoindentation measure-
ment results are discussed in terms of the pore microstructure of the nanoporous silica network and the springback effect due to
the presence of trimethylsilyl groups in the nanopores.
© 2003 The Electrochemical Society.@DOI: 10.1149/1.1573200# All rights reserved.
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Miniaturization of integrated circuits~ICs! generally results in
problems with interconnect RC delay, signal cross talk, and po
consumption. In addition to the replacement of aluminum by cop
to reduce interconnect resistance, interlayer dielectric~ILD! materi-
als with an ultralow dielectric constant (k) are inevitably required to
substitute for conventional interlayer dielectrics for sub-100
technology nodes. Various organic polymers,1 silica sol,2-10 and or-
ganic siloxanes11-13 have been developed for this purpose. Amo
them, supported nanoporous silica thin films are considered to b
most promising materials for the sub-100 nm technology nodes
cause they are chemically compatible with contemporary IC p
cesses and ak , 2.0 can be easily obtained owing to a high poro
ity. The nanoporous silica films are synthesized by either aero
xerogel process2-4 or self-assembly molecular template method.5-10

Due to the controllable porosity~45-75%! and uniform pore size
distribution in the range of 2-10 nm, molecularly templated nano
rous silica films have been known to provide better mechanical
dielectric properties than aerogel/xerogel silica films. However,
mechanical strength and dielectric stability of molecularly templa
nanoporous films are far inferior to that of conventional silicon o
ide ILD and liable to water uptake. Before being implemented
sub-100 nm technology nodes, the nanoporous silica dielectrics
to overcome many integration challenges, such as chemical
chanical polishing~CMP! and etching.

The as-calcined nanoporous silica films are usually rich in
sidual silanol groups, which do not participate in the condensa
reaction, and thus adsorb water molecules easily. To keep a s
dielectric property, the hydrophilic nanoporous silica films must
functionalized to achieve an acceptable hydrophobicity. Gener
this is accomplished by trimethylsilylation treatments. We ha
demonstrated that the hydrophobicity of a calcined silica film can
effectively improved byin situ trimethylchlorosilane~TMCS! sily-
lation in the sol precursor solution, and/or a hexamethyldisilaz
~HMDS! vapor post-treatment, and, with further plasma treatme
a dielectric constant less than 1.6 can be obtained.7,8 However, the
addition of TMCS in the sol solution may disturb the self-assem
of template molecules and hamper the condensation reaction,
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ing to the formation of nanoporous silica films with a less ordered
pore structure and random micropores in the silica solid matrix. This
makes the TMCS derivatized nanoporous films mechanically
weaker.

In this work, the relation between microstructure and mechanica
properties of the nanoporous silica films was studied by Fourie
transform infrared spectroscopy~FTIR!, X-ray diffraction spectros-
copy ~XRD!, and nanoindentation test. Hardness and elastic modu
lus are strongly dependent on film preparation and modification
methods. Trimethylsilylation effectively enhances the mechanica
strength of the nanoporous silica films.

Experimental

The preparation scheme for the molecularly templated silica
films is shown in Fig. 1. Two sets of the nanoporous silica thin films
were prepared. Both sets of nanoporous films were made from a s
solution of a mixture of tetraethyl orthosilicate~TEOS!, H2O, HCl,
ethanol, and a nonionic surfactant. The only difference in the prepa
ration scheme between these two sample sets is that TMCS wa
added in the aged sol solution of the sample set composed o
samples C and D. The template surfactant is a triblock copolyme
Pluronic P-123~P123!. The mesoporous silica films were deposited
by spin coating on precleaned 4 in. p-type silicon~100!wafers. The
precursor solution was prepared by adding an ethanol solution o
P123 to the silica sol-gel, which was made by refluxing a mixture of
TEOS, H2O, HCl, and ethanol at 70°C for 90 min. The molar ratios
of reactants were 1 TEOS:0.008-0.03 P123:3.5-5 H2O:0.003-0.03
HCl:10-34 ethanol. The precursor solution was aged at room tem
perature for 3-6 h under ambient condition. For preparation of the
TMCS derivatized nanoporous silica films, the aged sol solution wa
mixed with TMCS~molar ratio to TEOS 0.02-0.2! by vigorous stir-
ring. The precursor solution was spin-coated on silicon wafers a
1600 rpm for 30 s. After spin-coating, the film was baked at 80-
110°C for 1 h, followed by calcination at 350°C for 30 min in a
furnace with an air flow. The resulting silica films were treated with
HMDS vapor at 120°C after calcination to improve the hydropho-
bicity of the nanoporous films. FTIR was used to study the chemica
structure of the nanoporous silica film. Surface morphology of the
nanoporous films was characterized by atomic force microscop
~AFM! and scanning electron microscopy~SEM!. XRD is used to
study the pore microstructure of the nanoporous films. The hardnes
) unless CC License in place (see abstract).  ecsdl.org/site/terms_usems of use (see 
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and elastic modulus of the nanoporous silica thin films were me
sured by a Nano Indenter XP~MTS Corp.!with a diamond tip in a
Berkovich geometry. This technique allows the determination
hardness and elastic modulus depth profiles for depth down to a f
tens of nanometers by progressively increasing the applied load
0.5 to 20 mN.

Results and Discussion

The thickness of the thin mesoporous silica films prepared
described above can be well controlled within the range of 250-4
nm, as measured by cross-sectional SEM. Figure 2 shows the cro
sectional SEM image of an as-calcined nanoporous silica thin fi
with no film modification. The SEM image clearly shows that th
nanoporous silica thin film has a smooth surface and a unifor

Figure 1. Sample preparation scheme for nanoporous silica thin films.

Figure 2. Cross-sectional SEM image of as-calcined nanoporous silica th
film. The film thickness is estimated to be 300 nm.
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thickness. The average surface roughness was estimated to be
than 10 Å by AFM. A smooth surface and a uniform thickness ar
essential to an accurate nanoindentation measurement for thin-fi
samples. According to the krypton adsorption/desorption isotherm
the total porosity of calcined silica thin films ranges from 53 to 72%
with an adjustable pore size from 43 to 80 Å, depending on th
preparation of the precursor solution. Self-assembled nanoporo
silica thin films templated with P123 are known to have a hexagon
pore structure.14 According to the XRD spectra shown in Fig. 3, the
strong^100& diffraction signal reflects that the spin-coated nanopo
rous silica film without TMCS derivatization has an ordered pore
to-pore spacing of 61 Å after calcination. The single^100& peak
without any other discernible diffraction signal reveals that the por
channel array is lying parallel to the silicon substrate surface. Com
pared with the sample set without TMCS modification, the TMCS
derivatized nanoporous silica films have a weaker and broader^100&
diffraction peak indicating a less ordered packing of the mesopor
in the TMCS derivatized silica film. This suggests that the additio
of TMCS in the sol solution significantly degrades the hexagon
pore structure of the nanoporous films. The^100& diffraction peak
shifts to lower diffraction angles as the TMCS concentration in th
sol precursor solution increases. When the TMCS molar ratio i
creases from 5 to 10%, the diffraction angle 2u shifts from 1.42 to
1.29, corresponding to an increase in the pore-to-pore spacing fro
64 to 70 Å. While the pore space increases with the TMCS conce
tration, there is no significant difference in the intensity and the fu
width at half-maximum~fwhm! of the ^100& diffraction peaks be-
tween the 5 and 10% TMCS derivatized nanoporous films. The d
fraction peak of nanoporous silica films with a TMCS molar ratio
over 15%, has a 2uangle close to that of the film with 10% TMCS,
but becomes very broad and almost vanishes. The presence
TMCS in the sol precursor not only hampers condensation reactio
but also perturbs self-assembly of the surfactant micelles, and th
leads to the formation of nanoporous silica thin films with a les
ordered microstructure for the pore network and the silica matrix.
seems that, under the film preparation condition used in the stud
there is a critical TMCS concentration in the sol precursor solutio
above which the formation of an ordered self-assembled pore cha
nel array is seriously retarded.

in

Figure 3. XRD spectra of the as-calcined nanoporous silica thin films;~a!
without TMCS derivatization,~b! with 10% molar ratio TMCS,~c! with 15%
TMCS, and ~d! with 25% TMCS. For clarity, the XRD spectrum of the
nanoporous film with 5% TMCS is not shown. The^100&diffraction peak of
the silica film with 5% TMCS is situated at 2u 5 1.42, and has an intensity
and a fwhm comparable to the nanoporous film with 10% TMCS.
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FTIR was used to study the chemical structure of the nanopor
films. Figure 4 shows the FTIR spectra of the as-deposited, HM
treated, and TMCS derivatized nanoporous silica thin films. Co
pared with as-calcined nanoporous film~sample B!, as-calcined
TMCS derivatized sample~sample C!has a less extent of OH ab-
sorption (;3600 cm21). After treatment with HMDS vapor, both
nanoporous silica thin films with and without TMCS modificatio
are effectively trimethylsilylated as indicated by the two strong a
sorption peaks at 1258 and 2965 cm21, which are due to Si-CH3 and
C-H3 stretching vibration modes, respectively. The broad absorpt
band in the range of 1080-1280 cm21 is due to asymmetric stretch-
ing of the intertetrahedral oxygen in the SiO2 network, and is usu-
ally assigned to an overlap of two asymmetric stretching~AS!
modes. The absorption band has been widely studied for vari
silica materials, and, generally, is assigned to be the overlap of
pairs of transverse optical~TO! and longitudinal optical~LO!
modes.15-17 Figure 5 shows that the absorption band of the a
calcined nanoporous silica film without TMCS modification can b
well resolved into four peaks by curve fitting, assuming a Gauss
shape for the absorption peaks. The low wavenumber peak
;1069 cm21 is assigned to be a transverse optical mode (TO3), and
is due to the stretching motion of oxygen atoms moving back a
forth with respect to the adjacent silicon atoms and in phase w
neighboring oxygen atoms. Paired with the TO3 absorption is the
longitudinal optical mode (LO3) centered at;1223 cm21. Accord-
ing to previous studies, another pair of TO-LO vibration mod
~denoted by TO4-LO4 in the following text! is responsible for the
overlapping absorption signal between the TO3 and LO3 peaks.15

The TO4-LO4 pair mode is due to the vibration in which oxygen
atoms execute AS motion 180° out of phase with neighboring ox
gen atoms. The TO4 peak is estimated to center around 1177 cm21

and the LO4 is around 1125 cm21 from Fig. 5. Compared with the
as-calcined samples without TMCS modification, the TMCS deriv
tized nanoporous films have a higher absorbance for LO4 and TO4
vibration peaks as shown in Fig. 5.

Increasing TMCS concentration in the sol precursor results in
signal increase of the LO4-TO4 pair. Kirk has shown that disorder-
induced mode coupling may result in enhancement of absorption
the TO4 and LO4 modes.16 The absorption strength of the TO4 mode
of bulk silica was estimated to be three to five times that of the sa

Figure 4. FTIR spectra of nanoporous silica thin films;~a! as-calcined film,
~b! as-calcined film after HMDS treatment for 30 min,~c! as-calcined TMCS
~10% molar ratio!derivatized film,~d! TMCS derivatized film after HMDS
treatment for 30 min.
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mode in quartz, indicating that microstructure disorder may effe
tively enhance the absorption strength of the out-of-phase A
mode.17 Therefore, the observation of a larger absorbance of t
TO4-LO4 pair for TMCS derivatized nanoporous silica films sug
gests that the addition of TMCS in the sol solution results in a le
ordered microstructure in the silica matrix of the nanoporous n
work. In addition, the TO3 peak becomes broader and shows le
symmetry at the low wavenumber side for the TMCS derivatize
samples. This may be ascribed to a poorly ordered microstruct
and stress effects due to the presence of terminal methyl gro
inside the silica matrix.18 Besides the two pairs of TO-LO modes
one more peak at the low wavenumber side (;1030 cm21) is
needed to obtain a rational curve fit for the TMCS derivatized film
It is possible that random and small cyclic structures in the sili
backbone, which are created due to incomplete condensation re
tions and may be associated with cyclosiloxane like rings,19 are
responsible for the broader and asymmetric absorption band.
analyzing the intensity variation of the absorption band of the S
O-Si stretching modes, one can determine the relative orderlines
microstructure of the silica matrix in different nanoporous silic
films. The FTIR spectra in the range of 975-1300 cm21 for the
nanoporous silica thin films with and without TMCS derivatizatio
are shown in Fig. 6. Comparison of curves c and d in Fig. 6 sho
that nanoporous film with 10% TMCS has a slightly highe
TO4-LO4 absorption signal than the film with 5% TMCS indicating
a less ordered microstructure for the former. Also shown in Fig. 6
the absorption band of the HMDS treated nanoporous silica fi
~curve b!. Compared with the as-calcined film~curve a!, curve b
shows little difference in peak shape and position except an ad
tional peak at 1258 cm21 due to the Si-CH3 stretching. This sug-
gests that trimethylsilylation by the HMDS vapor treatment mak
little change in the chemical structure of the silica matrix of th
nanoporous films except the increase in the surface density of
minal methyl groups.

Elastic modulus is an important property characterizing the ab
ity of porous materials to withstand stress-induced deformation
The elastic modulus and hardness of the nanoporous silica thin fi
are shown in Fig. 7. The TMCS derivatized nanoporous thin film
have a much smaller elastic modulus and a slightly lower hardn

Figure 5. Curve fitting for the absorption band of the Si-O-Si asymmetri
stretching modes of as-calcined nanoporous silica film without TMCS mo
fication, assuming a Gaussian shape for the resolved peaks. For compar
the absorption band of the TMCS~5%! derivatized film is also shown in the
figure ~dashed line!. A broader and asymmetric absorption feature at the l
wavenumber side can be clearly seen for the TMCS derivatized film. T
broader feature is ascribed to the presence of cyclosiloxane like rings
explained in the discussion.
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than nanoporous films without TMCS modification. This is expec
from a microstructural view point for the nanoporous thin films wi
an ordered pore structure. The introduction of TMCS in the prec
sor solution decreases the degree of the cross-linkage of the s
network and suppresses the amount of silanol groups on the s
species.9 The less ordered hexagonal pore structure and a broad
size distribution, as revealed by the XRD results, deteriorate
mechanical strength of the nanoporous films. In addition, m
cropores were also present in the silica matrix of the TMCS deri
tized nanoporous films according to our previous study.8 For porous
materials, while thek value decreases linearly with increasing p
rosity, the mechanical properties change as a power law with den
of porosity.20 The presence of micropores in the silica matrix n
only supplies an additional porosity to the nanoporous film lead
to a lowerk value, but also deceases the density of the silica mat
The molecularly templated nanoporous silica thin films prepared
this work can be considered as cellular material with a thick c

Figure 6. FTIR spectra of nanoporous silica thin films in the range of S
O-Si asymmetric stretching modes;~a! as-calcined film,~b! as-calcined film
after HMDS treatment for 30 min,~c! as-calcined film with 5% TMCS,~d!
as-calcined film with 10% TMCS. The small peak at 1258 cm21 is due to the
Si-CH3 stretching mode.

Figure 7. Young’s modulus and hardness of nanoporous silica thin films;~a!
as-calcined film,~b! as-calcined film after HMDS treatment for 30 min,~c!
as-calcined TMCS~5% molar ratio!derivatized film,~d! TMCS ~5% molar
ratio! derivatized film after HMDS treatment for 30 min,~e! as-calcined
TMCS ~10% molar ratio!derivatized film, ~f! TMCS ~10% molar ratio!
derivatized film after HMDS treatment for 30 min.
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wall. For cellular materials, a reduction in the density of the cell
wall certainly decreases the elastic modulus and other mechanic
properties.21

Nanoindentation measurements show that the mechanica
strength of the nanoporous films can be greatly improved by trim-
ethylsilylation. As shown in Fig. 7, the nanoporous silica films, both
with and without TMCS derivatization, gain an increase in hardness
by a factor of more than 75% after HMDS vapor treatment for 30
min. An increase of,20% in Young’s modulus was observed. The
improvement of mechanical strength can be attributed to the pres
ence of trimethylsilyl groups on the pore surfaces. The mechanica
strength of the 5% TMCS derivatized nanoporous film is somewha
weaker than that of the 10% TMCS derivatized film. As discussed
previously, a higher TMCS content in the sol-gel precursor solution
leads to the formation of a less ordered nanoporous silica network
resulting in weaker mechanical strength. The observation of the op
posite trend is ascribed to that more terminal trimethylsilyl groups in
the 10% TMCS derivatized film may enhance the mechanica
strength due to a springback effect, and thereby compensate for th
loss of the mechanical strength caused by the less ordered structur
Prakashet al.22 and Smithet al.20 have reported a ‘‘springback’’
feature for aerogel and xerogel films during the drying stage. The
thickness of the xerogel film or the volume of the silica gel which
receives methylation treatments can recover to a certain extent afte
the gel reaches its greatest compaction. On the contrary, shrinkag
of the gel is completely irreversible for those nonmodified nanopo-
rous silica thin films. The springback feature is attributed to the
presence of terminal organosilane groups that cannot participate i
condensation reactions. The electrostatic repulsion interaction be
tween the crowded and bulky trimethylsilane groups on pore sur
faces may effectively increase the resistance of the silica network t
deformation under an applied load.

Conclusion

Microstructural and mechanical properties of organic surfactan
templated nanoporous thin silica films have been studied by XRD
FTIR, and nanoindentation. Compared with many other porous low
k dielectrics, the self-assembled molecularly templated nanoporou
silica films demonstrate better mechanical properties. This is as
cribed to the presence of a well-ordered pore channel structure in th
nanoporous silica films. When the sol precursor solution is mixed
with TMCS, the resulting nanoporous films have a weaker mechani
cal strength. The pore channel structure of the nanoporous silica film
becomes less ordered for the TMCS derivatized nanoporous films
In addition, FTIR analysis reveals that the chemical structure in the
solid matrix of the porous network of the TMCS derivatized films is
more disordered than those without TMCS modification. Trimethyl-
silylation by the HMDS vapor treatment can significantly improve
the mechanical strength of the nanoporous silica thin films. The
nanoindentation measurement results can be explained in terms
the pore microstructure of the nanoporous silica network and the
springback effect due to the presence of trimethylsilyl groups in the
nanopores.
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