
approximate surface impedance Z ,  of the nth patch is obtained 
by applying eqn. 4 and normalising to the width of the original 
region tl2N: 

This expression is the desired approximation for the surface 
impedance as a function of position on the comers of the conduc- 
tor. 

Results and conclusions: In actual experiment, it is the total inter- 
nal impedance per unit length of the conductor Z,,,, rather than 
the surface impedance, that can be measured. The total internal 
impedance is the parallel sum of the surface impedances of the 
various regions, given by 

To check the validity of our approximation, we consider the total 
internal impedance of a square conductor, which should be the 
most severe test of our technique. Fig. 3 shows a comparison 
between eqn. 6 and the experimental results of Haefner [6], for 
square conductors. These data have also been used as a test case 
in [?'I. As shown, even for a very small number of segments, the 
agreement is excellent. Using only one segment, the error is not 
worse than 5% at any frequency, and for four segments the error 
is never more than 0.2%. 

3 n~ 

I O 2  lo3 IO4 I os 
frequency. Hz 

Fig. 3 Comparison of calculated and measured total internal resist- 
ance of square metal bar 

~ eqn. 6 
0 measured data from [6] 

In summary, we have developed a new approximation for the 
frequency-dependent surface impedance of thick rectangular bars. 
The expressions are easily used, and are numerically efficient. 
These results should be useful in the calculation of conductor loss 
in planar transmission l i e s  and interconnects, providing an accu- 
rate transition from DC-like behaviour to skin-depth limited 
behaviour. 
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Design of Hopfield-type associative memory 
with maximal basin of attraction 

J.-Y. Chang and C.-C. Wu 

Indexing terms: Associative memories, Neural networks 

A method is described for enlarging as much as possible the basin 
of attraction of a Hopfield-type associative memory. The 
proposed learning rule, a minimum-overlap learning algorithm 
that includes a threshold parameter, enables a Hopfield-type 
associative memory to he designed so that the memory will have a 
maximal basin of attraction. A technique that diminishes the 
effect of the threshold on the minimum-overlap learning 
algorithm is devised. Simulation results show that the basin of 
attraction constructed by the proposed method is indeed larger 
than that constructed by several well known methods. 

Introduction: The Hopfield associative memory (AM) [l] provides 
an associative search for storing stimulus-response pair (X", P). 
The AM is now a favoured research subject, for it can play a key 
role in intelligent systems and pattern recognition applications [2, 
31. Assume that we have a set of M associated pairs of patterns, 
{(P, P)),,,=,M, where Xm E {-l,l} is the key vector and P E {- 
1.1) is the recollection vector. We need to form a memory weight 
matrix W that produces P as its output when the distorted ver- 
sion of X" is its input; i.e. 

~ ' m  = sgn [Pw] (1) 

where sgn (a) = I for a 2 0 and sgn (a) = -1 otherwise. Based on 
column-wise decomposition, the task of designing an AM becomes 
that of designing P twocategory classification weight vectors W, 
such that 

sgn [ X - W ~ ]  = y~ m = 1,2, . . . , hi i = I, 2, . . . , P 

(2) 
That is, y,"X"W, > 0, for m = 1, 2 ,  ._., P. With the normalisation 
Z," = y,"Xm, we can look for a weight vector W, such that Z:W, z 
O , m =  1,2 ,..., M,i= 1 , 2  ,.... P. 

Many algorithms can be used to find the parameters of the clas- 
sifier, such as the perceptron [4], pseudoinverse (PI) [2], least mean 
square [SI, and the Ho-Kashyap (HK) rules [6]. Most of these 
algorithms are tuned to generate a discriminant surface that is 
optimal in the mean square error sense, but not tuned to minimise 
the classification error rate. These methods are therefore not opti- 
mal for designing an AM with maximal basin of attraction. 

The equation g(Z:) = Z-W, = 0 defines the hyperplane decision 
surface that separates the y,"s of 1s from y:s of -Is. Instead of 
merely requiring that the sign of P W ,  be positive, we will produce 
a more reliable AM if we require that the function value AZ") be 
larger than some margin. The quantity D(W,) = min,,,ZmW,/ll Wjll 
can be called stability, for it represents the smallest distance of all 
the Z" from the plane perpendicular to W, [3, 7. Thus MU',) will 
be a measure of how well the hyperplane is selected, for it repre- 
sents the tolerable noise margin of the AM. A maximal D(WJ 
design for each output neuron of an AM would lead to the opri- 
mal stubiliry solution [q. Recently, Krauth and Mkzard pro- 
posed the minimum-overlap (MO) learning rule for fmding the 
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optimal stability design of AMs. This is a perceptron-type algo- 
rithm given by 

maximise A > O  
such that Z" . W, - A 2 0 m = 1 , 2 , .  ' ,  M (3) 

II w* II = 1 
The minimal-overlap learning procedure is summarised as follows: 

Step 1: Initialise W, = 0 and select a fixed positive number c 

Step 2: Determine a pattern 2 that has minimum overlap with 
W,: 

(4) Z".  W, = m i n Z m .  W, 
m 

Step 3: If 2 W, > c, then go to Step 4. Otherwise, update W, by 

( 5 )  
1 W, = W" + ,(zp)= 

Go to Step 2 

Step 4: Normalise W, to unity 

and stop. 

The stability determined by this algorithm is 

D(W,) = m? Zm . W, (7) 

It bas been proved [I that this algorithm will converge in a finite 
number of time steps and that for c - m the stability will be max- 
imised, i.e. 

D(W,) + mwaD(W,) as c --t CO (8)  

The above learning rule maximises the stability so that the basin 
of attraction of the AM is as large as possible. However, this 
design rule leaves the valuable parameter threshold unused, and 
thus leaves room to further improve the performance of AMs. 
(The inclusion of the threshold parameter does not introduce any 
overhead to the neural system, for the threshold is an intrinsic 
parameter of each neuron.) To this end, this Letter will modify the 
MO algorithm to include the threshold parameter. 

Mod>ed method: Let Xf = [P, -I] and W,' = [WT, $ , I r ,  where s, 
denotes the threshold. In analogy with eqn. 8, the minimum-over- 
lap rule is employed to find the solution that maximises the value 

This value is not the stability, because the stability considers only 
the n o m  of the weight vector, 1) WJ. Rather, eqn. 9 considers both 
the norm of the weight vector and the threshold, IIW,, s,II. To 
obtain a better assessment of stability, a scheme that will reduce 
the effect of the threshold in eqn. 9 has to be devised. 

We now modify the augmented representation to X"" = [P,- 
a] ,  where a is a large number, so the augmented weight vector 
should become { W,"} = { W,, stla}. In this way, the inaccuracy of 
the stability assessment induced by the threshold will be lessened. 
The minimum-overlap algorithm can then be applied to maximise 
the quantity 

(10) 
Comparing eqns. 9 and 10, we see that the effect of the thresh- 

old in eqn. IO is less than that in eqn. 9. Moreover the larger the 
parameter a is, the less significant the effect of the threshold 
becomes. Ideally, if a + m, then 

(11) 

The quantity in eqn. 10 will approximate the stability, i.e. 

as a - m. Thus, we can approximate the optimal stability solution 
by using this modified method. After learning with the minimum- 
overlap rule, the optimal weight vector W ,  and threshold s? are 
given by 

W,* Y [Wl,  w 2 , .  ' ' , W,]T 
(13) s* E a .  w,+1 

Fig. 1 Stored patterm (digits) 

Computer simulation: We stored 10 digits [8] with 35 (7 x 5) bipo- 
lar neurons, as shown in Fig. 1. In this simulation, the initial 
weights were all set equal to zero. Parameters are fxed at a = 20 
and c = IOs. The performance of the recall rate against the Ham- 
ming distance is plotted in Fig. 2. The results obtained by the PI, 
NH, and MO methods are also shown for comparison. Note that 
the solution found by the NH algorithm (with margin vector set to 
vector 1) is the same as that by the PI method. For the 35 output 
neurons, each neuron's stability by the proposed scheme was, as 
expected, the largest and was, on average, 7 and 10% greater than 
that by the MO and PI methods, respectively. The m d i e d  
method thus leads to a significant improvement in the perform- 
ance of the AM. 

0 2 A 6 8 10 12 1 4 - 1 6  

lrrnrl Hamming distance 

Fig. 1 Recall rate against Hamming distance 

- modified method 
minimum-overlap _ _ _  --____ pseudo inverse, HK 

In another example, alphabet patterns A-J were stored and the 
performance showed a similar trend. 

Conclusions: To design a Hopfield-type associative memory, we 
have proposed modifying the minimum-overlap algorithm to 
include a threshold parameter. A technique that diminishes the 
effect of the threshold on the minimum-overlap learning algorithm 
is presented. Using the modified learning rule, we have designed 
an AM with maximal basin of attraction. The simulation results 
show that the modified method constructs a larger basin of attrac- 
tion than do other well-known methods. 
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Enhanced kernel estimation technique for 
pattern classification 

K.P. Lam and E. Home 

Indexing terms: 

The Letter reports the application of a nonparametric density 
estimation technique, the generalised K-nearest-neighbour (K- 

.method, to a novel pattern classifier for binary images. In 
additlon to offering an improved error rate performance over the 
fmed kernel method previously adopted, the method can be used 
to measure the inherent difficulty of a pattern classification 
problem hecause the nearest-neighbour error rate bounds the 
Bayes rate. 

Introduction: Nonparametric density estimators employing the 
fixed kernel approach offer simplicity in design and have been 
shown to provide good results in a unified BWS-FWS pattern 
classifier [I]. However, the choice of the smoothing parameter, 
defined as h in the density estimator, 

*(X) = - 1 ‘ = N  C K  ( 9) (1) 
Nhd E=l 

[2] has a decisive effect on the performance of such a technique, 
especially in classification problems where the reduction of error 
rates relies on an accurate estimation of the density functions 
p(Xly) of individual pattern classes. From a statistical standpoint, 
the ’optimum’ h value will always be some kind of a compromise. 
In regions of high density h will be too large and will produce an 
’out-of-focus’ estimate with poor resolution, whereas in regions of 
low density h will be too small, resulting in an estimate which is 
subjected to excessive statistical variability. 

The nearest-neighhour technique [2] represents an attempt to 
overcome these problems by adapting the amount of smoothing to 
the ’local‘ density of data. In essence, given a class and its associ- 
ated variables, rather than applying the same h everywhere in the 
feature space of X, the Euclidean distances of some predefined 
neighbourhood of X within the data samples are adopted as a 
metric for controlling the amount of smoothing. 

A study of the characteristics of K-NN applied to the BWS- 
FWS classifier architecture is presented in this Letter. 

Generalised K-NN density estimator: Given a set of N data samples 
of xi  in the feature space from which the density function I)( V), 

defined above, is to be determined, the K-NN estimator has the 
general form 

where dk(t) represents the distance from t to its kth nearest neigh- 
bour points of the samples and K(x) is a kernel function integrat- 
ing to unity. To allow useful comparison with previous work [I], 
the same kernel is chosen and is given here for reference. 

K ( z )  = KC(z )KD(z )  

It is worth noting that ~ ( t )  in eqn. 2 is precisely the kernel esti- 
mate evaluated at t with window width dk(t). Clearly, the amount 
of smoothing at any particular point depends on the density of 
observations near that point, with the overall effect governed by 
the choice of the integer k. 

class 2 

m 
Fig. 1 Example of merged profile functions Y, showing discrimina- 
tion analysis of two-class case (classes I and 2)  

F e  unknown patterns are taken from class 2 
. 1. density’ 
0 ‘2. density’ 

The example in Fig. 1 demonstrates the generalised K-NN 
approach for class discrimination. 

Implementation and performance evaluation: A 10 way BWS-FWS 
classifier network was constructed and used for classifying 
machine-printed postcode numerals [3]. A rotation error estimator 
[4] was used to obtain the overall performance. The results are 
presented in conjunction with the error rates obtained from the 
fixed kernel approach in Table I. 

Table 1: Results in [I] and error rates and values of 
optimal distance k 
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