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Abstract

Stojmenovic introduced three different honeycomb tori by adding wraparound edges on honeycomb meshes, namely
honeycomb rectangular torus, honeycomb rhombic torus, and honeycomb hexagonal torus. These honeycomb tori have beel
recognized as an attractive alternative to existing torus interconnection networks in parallel and distributed applications. In this
paper, we propose generalized honeycomb tori. The three different honeycomb tori proposed by Stojmenovic are proved to
be special cases of our proposed generalized honeycomb tori. We also discuss the Hamiltonian property of some generalizec
honeycomb tori.
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1. Introduction and is connected by a communication link to its neigh-
bors in up to four directions.
It is well known that there are three possible tessel-

nection network as it determines the performance of 1ations of a plane with regular polygons of the same
the network. Many interconnection network topolo- Kind: square, triangular, and hexagonal, correspond-
gies have been proposed before for the purpose of con-INg 0 dividing a plane into regular squares, trian-
necting a large number of processing elements. Net- gles, and hexagons, respectively. Based on this obser-
work topology is always represented by a graph, where Vation, some computer and communication netwgrks
nodes represent processors and edges represent linkgave been built. The square tessellation is the basis for
between processors. One of the most popular archi- mesh-connected computers. The triangle tessellation
tectures is the mesh connected computers [4]. Eachis the basis to define hexagonal mesh multiprocessors,

processor is placed in a square or a rectangular grid studied in [3,9]. The hexagonal tessellation is the basis
to define the honeycomb meshes, studied in [2,8].
Tori are meshes with wraparound connections to
EdD This fe;eg“éh WZS Pg”ia”yESUnggeFi 0%y4tze N('jinli\?tr}’ Ofl achieve node and edge symmetry. Meshes and tori
ucation, .0.C. under Grant Ex-91-E- -4-4 an ational .
Science Council, R.O.C. under Grant NSC 89-2211-E-009-075. are .among the most frequent.multlprpcesspr networks
available on the market. Stojmenovic [8] introduced
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E-mail address: hjcho@cc.nctu.edu.tw (H.-J. Cho). three different honeycomb tori by adding wraparound

Network topology is a crucial factor for intercon-
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edges on honeycomb meshes, namely honeycombrec{1) i =k andj =+ 1 (modn); and

tangular torus, honeycomb rhombic torus, and honey- (2) j =/ andk =i — 1 (modm) if i + j is even.

comb hexagonal torus. Recently, these honeycomb tori

have been recognized as an attractive alternative to ex- Assume thatz andn are positive integers where

isting torus interconnection networks in parallel and is even. Théwoneycomb rhombic torus HRoT(mz, n) is

distributed applications [5-8]. the graph with the node s¢ti, j) |0<i <m, 0<

In this paper, we propose a generalized honeycomb j — i < n} such that(i, j) and (k,[) are adjacent if

torus. We will prove that all the honeycomb tori men- they satisfy one of the following conditions:

tioned above are special cases of the generalized hon-

eycomb torus. In the following section, we give some (1) i =k andj =141 (modn);

graph terms that are used in this paper and the formal (2) j =/ andk =i —1if i + j is even; and

definition of various honeycomb tori. Then we present (3) i =0,k=m —1,andl = j +m if j is even.

our generalized honeycomb torus. In Section 3, we

prove that our generalized honeycomb tori cover all  Assume that is a positive integer. Thisoneycomb

honeycomb tori mentioned above. The Hamiltonian hexagonal mesh HM(n) is the graph with the node set

property of some generalized tori are discussed in Sec-{(x1, x2,x3) | —n + 1 < x1,x2,x3 <n and 1< x1 +

tion 4. Finally, we give a discussion in the final sec- x, + x3 < 2}. Two nodes(x}, x3, x3) and(x2, x3, x2)

tion. are adjacent if and onlyc} — x2| + |x3 — x2| + |x3 —
x§| = 1. Thehoneycomb hexagonal torusHT(n) is the

o graph with the same node set as B The edge set
2. Definitions is the union ofE(HM(n)) and the wraparound edge

set
For the graph definition and notation we follow

[1]. G = (V,E) is agraph if V is a finite set and  {((i,n—i+1,1—n), (i —n,1—i,n))|1<i<n}
E is a subset of(a, b) | (a, b) is an unordered pair

of V}. We say thatV is the node set and E is the U{(A=nin—i+D),(ni-n1-0)]

edge set of G. Two nodesa and b are adjacent 1<i<n}
if (a,b) € E. A path is a sequence of nodes such

that two consecutive nodes are adjacent. A pAth U{(G,1=nn—i+1),G—n,n1-10)|

is delimited by(xo, x1, x2, ..., x,—1). We useP~1 to 1<i<nl.
denote the pathx,—1, ..., x2, x1, xo) if P is the path

(x0, x1, x2, ..., xy—1). A path is called aamiltonian Assume thatn andn are positive integers where
path if its nodes are distinct and spa. A cycle is even. Letd be any integer such tha@t: — d) is an

is a path of at least three nodes such that the first even number. Thgeneralized honeycomb rectangular
node is the same as the last node. A cycle is called torus GHT(m, n,d) is the graph with the node set
aHamiltonian cycleif its nodes are distinct exceptfor  {(i, j) | 0<i <m, 0< j < n} such that(, j) and
the first node and the last node and if they span (k,1) are adjacent if they satisfy one of the following
GraphG is isomorphic to graphGs, if there exists a  conditions:
one-to-one mapping, called anisomorphism, from
V(G1) onto V(G2) such thatp preserves adjacency (1) i =kandj=1[+1(modn);
and nonadjacency. (2) j=landk=i—1if i + jiseven;and

We use the brick drawing, proposed in [7,8],t0 (3) i=0,k=m —1,andl =j +d (modn) if j is
define the honeycomb rectangular torus. Assume that  even.
m andn are positive even integers. Tlneneycomb
rectangular torus HReT(m, n) is the graph with the See Fig. 1 for various honeycomb tori. Obviously,
node set{(i, j) | 0 <i <m, 0< j < n} such that any GHT(m, n,d) is a 3-regular bipartite graph. We
(i, j) and(k, 1) are adjacent if they satisfy one of the can label those nod€s j) white wheni + j is even
following conditions: or black if otherwise.
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3. Isomorphisms

By definition, we can easily prove that the hon-
eycomb rectangular torus HRe#t, n) is isomorphic
to GHT(m,n,0) and the honeycomb rhombic torus
HROT(m, n) is isomorphic to GHTn, n, m (modn)).
With the following theorem, the honeycomb hexago-
nal torus HTn) is isomorphic to GHTxn, 6n, 3n).

Theorem 1. HT (n) isisomorphic to GHT(n, 6n, 3n).
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Fig. 1. (a) HReT6, 6), (b) HROT(4, 6), (c) HT(3), and (d) GHT3, 18,9).

Proof. Let & be the function from the node set of
HT (n) into the node set of GHF, 6n, 3n) by setting
h(x1,x2,x3) = (x3,x1 — x2 + 2n) if 0 < x3 < n,
h(x1, x2,x3) = (0, x1 — x2 + 51 (Mod &)) if x3=n,
andh(xy, x2, x3) = (x3+n, x1 — x2+ 51 (Mod &)) if
otherwise.

For any 1— n < ¢ < n, we useX, to denote the
set of those nodeéxy, x2, x3) in HT(n) with x3 =
c. We useY, to denote the set of nodes, j) in
GHT(n, 6n, 3n) where
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QD i=c+nandjefk|dn—c—3<k<bn}U{k|
O<k<n+c}ifc<0,

(2) i=0andj e{1<j<4n}if c=0,

B)i=cand{j|c<j<dn—c}if0O<c<n,and

(4) i=0andj € {k|4n <k <6rn}U{0}if c=n.

Let k. denote the function ok induced byX.. It is
easy to check thdt, is a one-to-one function frork
ontoY.. Thus,k is one-to-one and onto.

To proveh is an isomorphism, we need to check

that 1 preserves the adjacency. Suppose that
((x1, x2, x3), (x1, x5, x3)) be an edge of H{z). With-
out loss of generality, we assume that+ xo +x3 =2
andx) +x; +x5=1.

Suppose that is an edge of H\lz). Then either
x3=Xx50rx3—xj==1.

Case 1: x3 = x3. Obviously, either(x], x5, x3) =
(x1—1, x2, x3) OF (x7, X3, x3) = (x1, x2— 1, x3) holds.

Suppose that & x3 < n. Then h(xy, x2, x3) =
(x3, x1—x2+42n). Moreoverji(xy, x5, x3) = (x3, x1—
x2 — 1+ 2n) if (x3,x5,x5) = (x1 — 1,x2,x3) and
h(xq, x5, x53) = (x3, x1 — x2+ 1+ 2n) if (x], x5, x3) =
(x1, x2 — 1, x3). Suppose thatz = n. Thenh(x1, x2,
x3) = (0, x1 — x2 + 51 (mod 61)). Moreover,h(x],
x5, x5) = (x3,x1 — x2 — 14 5n (mod 62)) if (x1, x5,
x3) = (x1 — 1, x2,x3) and h(xy, x5, x3) = (x3,x1 —
x2 + 14 51 (mod 61)) if (x7,x5,x3) = (x1,x2 —
1, x3). Suppose thattz < 0. Then h(x1, x2,x3) =
(x3 + n,x1 — x2 + 51 (mod 61)). Moreover,i(xy,
x5, x5) = (x3,x1 — x2 — 14 5n (mod 62)) if (x7, x5,
x5) = (x1 — 1,x2,x3) and h(xy, x5, x3) = (x3,x1 —
x2+145n (Mod 62)) if (x7, x5, x3) = (x1, x2—1, x3).
Hence s (x1, x2, x3) andh(xy, x5, x3) are adjacent.

Case 2: x3 — x5 = £1. Sincex; + x2 + x3 =2 and
Xy + x5 +x5=1, (x], x5, x3) = (x1, x2, x3 — 1).

Suppose that X x3 < n. Then h(xy, x2,x3) =
(x3,x1 — x2 + 2n) andh(x], x5, xg) = (x3 — 1, x1 —
x2 + 2n). Suppose thatz = 0. Thenh(x1, x2, x3) =
(0,x1 — x2 4+ 2n) and h(xy, x5, x3) = (n — 1, x1 —
x2 + 5n (mod 61)). Suppose thattz = n. Then
h(x1, x2, x3) = (0, x1 — x2 + 5n (Mod 61)) andh(x],
x5, x5) = (n — 1, x1 — x2+ 2n). Suppose that 2 n <
x3 < —1. Thenh(x1,x2,x3) = (x3 +n,x1 — x2 +
5n (mod 61)) andh(x], x5, x5) = (x3+n — 1, x1 —
x2+ 5n (mod 61)). Hence/i(x1, x2, x3) andh(xy, x5,
x3) are adjacent.

Suppose that is an wraparound edge of Hd).
Then, we have the following three cases.

Case3:ec{(i,n—i+1,1—n),(i—n,1—i,n))|
1<i<n}.Then(xy, x2,x3) = (i,n—i+1,1—n)and
(x1, X5, x3) = (i —n, 1—i, n). Obviouslyi(x1, x2, x3)
is (1, 4n +2i — 1) andh(x], x5, x3) is (0, 4n+ 2i — 1).
Hencei(x1, x2, x3) andh(xy, x5, x3) are adjacent.

Cased:ec{(Ql—n,i,n—i+1),(n,i—n1-—
i) | 1<i<n}. Hence(xy,x2,x3) = 1 — n,i,n —
i +1) and(x3, x5, xg) = (n,i —n,1—i). Obviously,
h(x1,x2,x3)is(0,4n)ifi=1and(n —i+1,n—i+
1) if 1 <i <n. Similarly, h(x], x5, x3) is (0,4n — 1)
fi=land(n —i+1,n—1i)if 1l <i <n. Thus,
h(x1, x2, x3) andh(xy, x5, x3) are adjacent.

Casebiec {(((,1—n,n—i+1),(i—n,n,1—i0))|
1<i<n}. Thus(x1,x2,x3)=(i,1—n,n—i+1)and
(x1, X5, x3) = (i —n,n, 1—i). Obviously/i(x1, x2, x3)
is00ifi=landn—i+1,3n+i—-1)if1l <
i < n. Similarly, h(x3, x5, x3) is (0,1) if i =1 and
m—i+13n+1i)ifl <i <n. Again, h(x1, x2, x3)
andh(x], x5, x3) are adjacent.

Thus, the theorem is provedn

For example, the honeycomb torus shown in
Fig. 1(c) is actually isomorphic to the generalized hon-
eycomb torus shown in Fig. 1(d).

4. Hamiltonian propertiesof some generalized
honeycomb tori

It is easy to prove that any honeycomb rectangular
torus and any honeycomb rhombic torus are Hamil-
tonian. In [5], it is proved that any honeycomb hexag-
onal torus is Hamiltonian. We reprove this result with
the following theorem.

Theorem 2. Any generalized honeycomb torus
GHT(m, 2k, k) is Hamiltonian.

Proof. In GHT(m, 2k, k), let P(i, j,s) denote the
path(G, j), (i, j + 1 (mod %)), (i, j + 2 (mod %)),
..., (i,s)) and Q(, s, j) denote the pat®~1(, j, s).

Assume thatm is even. By the definition of
GHT(m, 2k, k), k is even. Thug = 2r for some posi-
tive integerr.

Let R denote the path frong0,0) to (m — 1,0)
defined by:
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P(0,0,2r—1) 0.2r — 1),

0(1,2r-1,0)
-

(0,0

1,2r-1) 1,0),...,

(m—3,2r—1,0)
=

m—32r—1)2 (m —3.0),

P(m—2,0,2r—1)
—_ 5

(m—2,0) m—-22r—1),

m—1,2r — 1) L2220 (4 _1,0)),

Let S denote the path fron0, 2r) to (m — 1, 2r)
defined by:

(0, 2r) 222220 0, 4 — 1),

@ ar—1) 282220 2
(m—3,4r — 1) LU2ETN ) 3 9,
(m—2,2r) L2224 — 1),
(m—1,4r — 1) LB 6 12,

Obviously,((0, 0) 55 (m —1,0), (0,2r) > (m —1,
2r), (0,0)) forms a Hamiltonian cycle for GH{x,
2k, k). See Fig. 2(a) for illustration.

Assume thaiz is odd. By the definition of GH{mn,
2k, k), k is odd. Suppose thatn = 1. Obviously,

(1?4;.1) Qdr-1) (m34r1) ; (m—2\§4r-1) %(m-1,4r-l)

©2 | ‘n e

0"\,‘.% ......... L] G ooorene Q“"" B
n\“ % ""- _e
LN e
0,2r-1) ?- -:gr-l) %&-‘1) (m—3,.z;m“ | (m.zi::) |(m-l,2r-1)
| i '\Nf {
|1 . |
R ‘.p % "\,nl‘ ' I
. S “~_|
I _1"" l S l
% \t‘“
o’ o= den i b
00 1,0 (20

(m-3,0) (mn-2,0) (m-1,0)

@
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((0,0) 2O22 5 2k — 1), (0,0)) forms a Hamil-

tonian cycle for GHTm, 2k, k). Thus, we assume that
m > 1 andk = 2r + 1 for some nonnegative integer

Let X denote the path fronim — 1,2r + 1) to
(1, 2r + 1) defined by:

Q(m—1,2r+1,0)
=

((m—1,2r+1) (m—1,0),

(m—2,00 22202 (5 or 1),
3,00 2802 (3 5, 1 1),
@ 2r +1) 2229 5 ),
(1, 0) 2222 (4 2 4 1)),

Let Y denote the path froni0, 2r + 2) to (m — 1,
4r + 1) defined by:

((0 2+ 2) P(0,2r+2,4r+1)

1,4 +1

0,4r +1),

1,4r+1,2r+2
QAVHLEHY 1. 2r +2). ...,

P(m—3,2r+2,4r+1)
L LY

(m—3,2r+2) (m—3,4r + 1),

Q(m—2,4r+1,2r+2)
= =

(m—2,4r+1) (m—2,2r + 2),
(m—1,2r +2) L0222V (g 4 4 1)),
"] Qe 4
(04r+1) 1(14r+])  (m-3.4r+1) (m-zj4r+'}j { (m-1,4r+1)
P
-
(©02642) 1202 @32y @222 @122
o & . / Q & Q
I'.
(0.2r+1) '2"} ¢ w-120+1)
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. A
S -
s I
P
[
b
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Fig. 2. lllustrations for Theorem 2.
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