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Abstract

Stojmenovic introduced three different honeycomb tori by adding wraparound edges on honeycomb meshes
honeycomb rectangular torus, honeycomb rhombic torus, and honeycomb hexagonal torus. These honeycomb tori
recognized as an attractive alternative to existing torus interconnection networks in parallel and distributed application
paper, we propose generalized honeycomb tori. The three different honeycomb tori proposed by Stojmenovic are
be special cases of our proposed generalized honeycomb tori. We also discuss the Hamiltonian property of some g
honeycomb tori.
 2003 Published by Elsevier Science B.V.
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Network topology is a crucial factor for intercon
nection network as it determines the performance
the network. Many interconnection network topo
gies have been proposed before for the purpose of
necting a large number of processing elements. N
work topology is always represented by a graph, wh
nodes represent processors and edges represent
between processors. One of the most popular ar
tectures is the mesh connected computers [4]. E
processor is placed in a square or a rectangular
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It is well known that there are three possible tess
lations of a plane with regular polygons of the sa
kind: square, triangular, and hexagonal, correspo
ing to dividing a plane into regular squares, tria
gles, and hexagons, respectively. Based on this ob
vation, some computer and communication netwo
have been built. The square tessellation is the basi
mesh-connected computers. The triangle tessella
is the basis to define hexagonal mesh multiprocess
studied in [3,9]. The hexagonal tessellation is the b
to define the honeycomb meshes, studied in [2,8].

Tori are meshes with wraparound connections
achieve node and edge symmetry. Meshes and
are among the most frequent multiprocessor netwo
available on the market. Stojmenovic [8] introduc
three different honeycomb tori by adding wraparou

ce B.V.
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edges on honeycomb meshes, namely honeycomb rec-
tangular torus, honeycomb rhombic torus, and honey-
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(1) i = k andj = l ± 1 (modn); and
(2) j = l andk = i − 1 (modm) if i + j is even.
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comb hexagonal torus. Recently, these honeycomb
have been recognized as an attractive alternative to
isting torus interconnection networks in parallel a
distributed applications [5–8].

In this paper, we propose a generalized honeyco
torus. We will prove that all the honeycomb tori me
tioned above are special cases of the generalized
eycomb torus. In the following section, we give som
graph terms that are used in this paper and the for
definition of various honeycomb tori. Then we pres
our generalized honeycomb torus. In Section 3,
prove that our generalized honeycomb tori cover
honeycomb tori mentioned above. The Hamilton
property of some generalized tori are discussed in S
tion 4. Finally, we give a discussion in the final se
tion.

2. Definitions

For the graph definition and notation we follo
[1]. G = (V ,E) is a graph if V is a finite set and
E is a subset of{(a, b) | (a, b) is an unordered pai
of V }. We say thatV is the node set and E is the
edge set of G. Two nodesa and b are adjacent
if (a, b) ∈ E. A path is a sequence of nodes su
that two consecutive nodes are adjacent. A pathP

is delimited by〈x0, x1, x2, . . . , xn−1〉. We useP−1 to
denote the path〈xn−1, . . . , x2, x1, x0〉 if P is the path
〈x0, x1, x2, . . . , xn−1〉. A path is called aHamiltonian
path if its nodes are distinct and spanV . A cycle
is a path of at least three nodes such that the
node is the same as the last node. A cycle is ca
a Hamiltonian cycle if its nodes are distinct except fo
the first node and the last node and if they spanV .
GraphG1 is isomorphic to graphG2 if there exists a
one-to-one mappingφ, called anisomorphism, from
V (G1) onto V (G2) such thatφ preserves adjacenc
and nonadjacency.

We use the brick drawing, proposed in [7,8],
define the honeycomb rectangular torus. Assume
m and n are positive even integers. Thehoneycomb
rectangular torus HReT(m,n) is the graph with the
node set{(i, j) | 0 � i < m, 0 � j < n} such that
(i, j) and(k, l) are adjacent if they satisfy one of th
following conditions:
-

Assume thatm andn are positive integers wheren
is even. Thehoneycomb rhombic torus HRoT(m,n) is
the graph with the node set{(i, j) | 0 � i < m, 0 �
j − i < n} such that(i, j) and (k, l) are adjacent if
they satisfy one of the following conditions:

(1) i = k andj = l ± 1 (modn);
(2) j = l andk = i − 1 if i + j is even; and
(3) i = 0, k = m − 1, andl = j + m if j is even.

Assume thatn is a positive integer. Thehoneycomb
hexagonal mesh HM(n) is the graph with the node s
{(x1, x2, x3) | −n + 1 � x1, x2, x3 � n and 1� x1 +
x2 + x3 � 2}. Two nodes(x1

1, x1
2, x1

3) and(x2
1, x2

2, x2
3)

are adjacent if and only|x1
1 − x2

1| + |x1
2 − x2

2| + |x1
3 −

x2
3| = 1. Thehoneycomb hexagonal torus HT(n) is the

graph with the same node set as HM(n). The edge se
is the union ofE(HM(n)) and the wraparound edg
set
{(

(i, n − i + 1,1− n), (i − n,1− i, n)
) | 1 � i � n

}

∪{(
(1− n, i, n − i + 1), (n, i − n,1− i)

) |
1� i � n

}

∪{(
(i,1− n,n − i + 1), (i − n,n,1 − i)

) |
1 � i � n

}
.

Assume thatm andn are positive integers wheren
is even. Letd be any integer such that(m − d) is an
even number. Thegeneralized honeycomb rectangular
torus GHT(m,n, d) is the graph with the node s
{(i, j) | 0 � i < m, 0 � j < n} such that(i, j) and
(k, l) are adjacent if they satisfy one of the followin
conditions:

(1) i = k andj = l ± 1 (modn);
(2) j = l andk = i − 1 if i + j is even; and
(3) i = 0, k = m − 1, andl = j + d (modn) if j is

even.

See Fig. 1 for various honeycomb tori. Obvious
any GHT(m,n, d) is a 3-regular bipartite graph. W
can label those nodes(i, j) white wheni + j is even
or black if otherwise.



H.-J. Cho, L.-Y. Hsu / Information Processing Letters 86 (2003) 185–190 187

of
(a) (b)

(c) (d)

Fig. 1. (a) HReT(6,6), (b) HRoT(4,6), (c) HT(3), and (d) GHT(3,18,9).

3. Isomorphisms Proof. Let h be the function from the node set
n-

s

o-

HT(n) into the node set of GHT(n,6n,3n) by setting
By definition, we can easily prove that the ho
eycomb rectangular torus HReT(m,n) is isomorphic
to GHT(m,n,0) and the honeycomb rhombic toru
HRoT(m,n) is isomorphic to GHT(m,n,m (modn)).
With the following theorem, the honeycomb hexag
nal torus HT(n) is isomorphic to GHT(n,6n,3n).

Theorem 1. HT(n) is isomorphic to GHT(n,6n,3n).
h(x1, x2, x3) = (x3, x1 − x2 + 2n) if 0 � x3 < n,
h(x1, x2, x3) = (0, x1 − x2 + 5n (mod 6n)) if x3 = n,
andh(x1, x2, x3) = (x3 +n,x1 −x2 +5n (mod 6n)) if
otherwise.

For any 1− n � c � n, we useXc to denote the
set of those nodes(x1, x2, x3) in HT(n) with x3 =
c. We useYc to denote the set of nodes(i, j) in
GHT(n,6n,3n) where
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(1) i = c + n andj ∈ {k | 4n − c − 3 < k < 6n} ∪ {k |
0� k < n + c} if c < 0,

ck

Suppose thate is an wraparound edge of HM(n).
Then, we have the following three cases.

in
on-
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il-
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f

(2) i = 0 andj ∈ {1 � j < 4n} if c = 0,
(3) i = c and{j | c � j � 4n − c} if 0 < c < n, and
(4) i = 0 andj ∈ {k | 4n � k < 6n} ∪ {0} if c = n.

Let hc denote the function ofh induced byXc . It is
easy to check thathc is a one-to-one function fromXc

ontoYc. Thus,h is one-to-one and onto.
To proveh is an isomorphism, we need to che

that h preserves the adjacency. Suppose thate =
((x1, x2, x3), (x

′
1, x

′
2, x

′
3)) be an edge of HT(n). With-

out loss of generality, we assume thatx1 +x2+x3 = 2
andx ′

1 + x ′
2 + x ′

3 = 1.
Suppose thate is an edge of HM(n). Then either

x3 = x ′
3 or x3 − x ′

3 = ±1.
Case 1: x3 = x ′

3. Obviously, either(x ′
1, x

′
2, x

′
3) =

(x1−1, x2, x3) or (x ′
1, x

′
2, x

′
3) = (x1, x2−1, x3) holds.

Suppose that 0� x3 < n. Then h(x1, x2, x3) =
(x3, x1−x2+2n). Moreover,h(x ′

1, x
′
2, x

′
3) = (x3, x1−

x2 − 1 + 2n) if (x ′
1, x

′
2, x

′
3) = (x1 − 1, x2, x3) and

h(x ′
1, x

′
2, x

′
3) = (x3, x1 − x2 + 1+ 2n) if (x ′

1, x
′
2, x

′
3) =

(x1, x2 − 1, x3). Suppose thatx3 = n. Thenh(x1, x2,

x3) = (0, x1 − x2 + 5n (mod 6n)). Moreover,h(x ′
1,

x ′
2, x

′
3) = (x3, x1 − x2 − 1 + 5n (mod 6n)) if (x ′

1, x
′
2,

x ′
3) = (x1 − 1, x2, x3) and h(x ′

1, x
′
2, x

′
3) = (x3, x1 −

x2 + 1 + 5n (mod 6n)) if (x ′
1, x

′
2, x

′
3) = (x1, x2 −

1, x3). Suppose thatx3 < 0. Then h(x1, x2, x3) =
(x3 + n,x1 − x2 + 5n (mod 6n)). Moreover,h(x ′

1,

x ′
2, x

′
3) = (x3, x1 − x2 − 1 + 5n (mod 6n)) if (x ′

1, x
′
2,

x ′
3) = (x1 − 1, x2, x3) and h(x ′

1, x
′
2, x

′
3) = (x3, x1 −

x2+1+5n (mod 6n)) if (x ′
1, x

′
2, x

′
3) = (x1, x2−1, x3).

Hence,h(x1, x2, x3) andh(x ′
1, x

′
2, x

′
3) are adjacent.

Case 2: x3 − x ′
3 = ±1. Sincex1 + x2 + x3 = 2 and

x ′
1 + x ′

2 + x ′
3 = 1, (x ′

1, x
′
2, x

′
3) = (x1, x2, x3 − 1).

Suppose that 1� x3 < n. Then h(x1, x2, x3) =
(x3, x1 − x2 + 2n) andh(x ′

1, x
′
2, x

′
3) = (x3 − 1, x1 −

x2 + 2n). Suppose thatx3 = 0. Thenh(x1, x2, x3) =
(0, x1 − x2 + 2n) and h(x ′

1, x
′
2, x

′
3) = (n − 1, x1 −

x2 + 5n (mod 6n)). Suppose thatx3 = n. Then
h(x1, x2, x3) = (0, x1 − x2 + 5n (mod 6n)) andh(x ′

1,

x ′
2, x

′
3) = (n − 1, x1 − x2 + 2n). Suppose that 2− n �

x3 � −1. Then h(x1, x2, x3) = (x3 + n,x1 − x2 +
5n (mod 6n)) andh(x ′

1, x
′
2, x

′
3) = (x3 + n − 1, x1 −

x2 + 5n (mod 6n)). Hence,h(x1, x2, x3) andh(x ′
1, x

′
2,

x ′
3) are adjacent.
Case 3: e ∈ {((i, n− i +1,1−n), (i−n,1− i, n)) |
1 � i � n}. Then(x1, x2, x3) = (i, n− i+1,1−n) and
(x ′

1, x
′
2, x

′
3) = (i−n,1− i, n). Obviously,h(x1, x2, x3)

is (1,4n+2i−1) andh(x ′
1, x

′
2, x

′
3) is (0,4n+2i−1).

Hence,h(x1, x2, x3) andh(x ′
1, x

′
2, x

′
3) are adjacent.

Case 4: e ∈ {((1 − n, i, n − i + 1), (n, i − n,1 −
i)) | 1 � i � n}. Hence(x1, x2, x3) = (1 − n, i, n −
i + 1) and(x ′

1, x
′
2, x

′
3) = (n, i − n,1 − i). Obviously,

h(x1, x2, x3) is (0,4n) if i = 1 and(n − i + 1, n− i +
1) if 1 < i � n. Similarly, h(x ′

1, x
′
2, x

′
3) is (0,4n − 1)

if i = 1 and (n − i + 1, n − i) if 1 < i � n. Thus,
h(x1, x2, x3) andh(x ′

1, x
′
2, x

′
3) are adjacent.

Case 5: e ∈ {((i,1−n,n− i +1), (i −n,n,1− i)) |
1 � i � n}. Thus(x1, x2, x3) = (i,1−n,n− i +1) and
(x ′

1, x
′
2, x

′
3) = (i−n,n,1−i). Obviously,h(x1, x2, x3)

is (0,0) if i = 1 and(n − i + 1,3n + i − 1) if 1 <

i � n. Similarly, h(x ′
1, x

′
2, x

′
3) is (0,1) if i = 1 and

(n − i + 1,3n + i) if 1 < i � n. Again,h(x1, x2, x3)

andh(x ′
1, x

′
2, x

′
3) are adjacent.

Thus, the theorem is proved.✷
For example, the honeycomb torus shown

Fig. 1(c) is actually isomorphic to the generalized h
eycomb torus shown in Fig. 1(d).

4. Hamiltonian properties of some generalized
honeycomb tori

It is easy to prove that any honeycomb rectangu
torus and any honeycomb rhombic torus are Ham
tonian. In [5], it is proved that any honeycomb hexa
onal torus is Hamiltonian. We reprove this result w
the following theorem.

Theorem 2. Any generalized honeycomb torus
GHT(m,2k, k) is Hamiltonian.

Proof. In GHT(m,2k, k), let P(i, j, s) denote the
path〈(i, j), (i, j + 1 (mod 2k)), (i, j + 2 (mod 2k)),

. . . , (i, s)〉 andQ(i, s, j) denote the pathP−1(i, j, s).
Assume thatm is even. By the definition o

GHT(m,2k, k), k is even. Thusk = 2r for some posi-
tive integerr.

Let R denote the path from(0,0) to (m − 1,0)

defined by:
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〈
(0,0)

P (0,0,2r−1)−−−−−−−→ (0,2r − 1),

Q(1,2r−1,0)

〈(0,0)
P (0,0,2k−1)−−−−−−−→ (0,2k − 1), (0,0)〉 forms a Hamil-

tonian cycle for GHT(m,2k, k). Thus, we assume that

(1,2r − 1) −−−−−−−→ (1,0), . . . ,

(m − 3,2r − 1)
Q(m−3,2r−1,0)−−−−−−−−→ (m − 3,0),

(m − 2,0)
P (m−2,0,2r−1)−−−−−−−−→ (m − 2,2r − 1),

(m − 1,2r − 1)
Q(m−1,2r−1,0)−−−−−−−−→ (m − 1,0)

〉
.

Let S denote the path from(0,2r) to (m − 1,2r)

defined by:
〈
(0,2r)

P (0,2r,4r−1)−−−−−−−→ (0,4r − 1),

(1,4r − 1)
Q(1,4r−1,2r)−−−−−−−→ (1,2r), . . . ,

(m − 3,4r − 1)
Q(m−3,4r−1,2r)−−−−−−−−→ (m − 3,2r),

(m − 2,2r)
P (m−2,2r,4r−1)−−−−−−−−→ (m − 2,4r − 1),

(m − 1,4r − 1)
Q(m−1,4r−1,2r)−−−−−−−−→ (m − 1,2r)

〉
.

Obviously,〈(0,0)
R→ (m−1,0), (0,2r)

S→ (m−1,

2r), (0,0)〉 forms a Hamiltonian cycle for GHT(m,

2k, k). See Fig. 2(a) for illustration.
Assume thatm is odd. By the definition of GHT(m,

2k, k), k is odd. Suppose thatm = 1. Obviously,
m > 1 andk = 2r + 1 for some nonnegative integerr.
Let X denote the path from(m − 1,2r + 1) to

(1,2r + 1) defined by:
〈
(m − 1,2r + 1)

Q(m−1,2r+1,0)−−−−−−−−→ (m − 1,0),

(m − 2,0)
P (m−2,0,2r+1)−−−−−−−−→ (m − 2,2r + 1), . . . ,

(3,0)
Q(3,0,2r+1)−−−−−−−→ (3,2r + 1),

(2,2r + 1)
Q(2,2r+1,0)−−−−−−−→ (2,0),

(1,0)
P (1,0,2r+1)−−−−−−−→ (1,2r + 1)

〉
.

Let Y denote the path from(0,2r + 2) to (m − 1,

4r + 1) defined by:
〈
(0,2r + 2)

P (0,2r+2,4r+1)−−−−−−−−−→ (0,4r + 1),

(1,4r + 1)
Q(1,4r+1,2r+2)−−−−−−−−−→ (1,2r + 2), . . . ,

(m − 3,2r + 2)
P (m−3,2r+2,4r+1)−−−−−−−−−−−→ (m − 3,4r + 1),

(m − 2,4r + 1)
Q(m−2,4r+1,2r+2)−−−−−−−−−−−→ (m − 2,2r + 2),

(m − 1,2r + 2)
P (m−1,2r+2,4r+1)−−−−−−−−−−−→ (m − 1,4r + 1)

〉
.

(a) (b)

Fig. 2. Illustrations for Theorem 2.
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(0,0), (m − 1,2r + 1) → (1,2r + 1), (0,2r + 1),

(0,2r + 2)
Y→ (m − 1,4r + 1), (0,2r)

Q(0,2r,0)−−−−→ (0,0)
〉

forms a Hamiltonian cycle for GHT(m,2k, k). See
Fig. 2(b) for illustration.

The theorem is proved.✷
By Theorems 1 and 2, any honeycomb hexago

torus HT(n) is Hamiltonian.

5. Discussion

In this paper, we introduced the generalized h
eycomb tori. The generalized honeycomb tori inclu
honeycomb rectangular tori, honeycomb rhombic t
and honeycomb hexagonal tori. We also discussed
Hamiltonian properties of some generalized hon
comb tori. We believe that all generalized honeyco
tori are Hamiltonian.
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