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Abstract

In this paper, we derive the discrete linear-exponential-quadratic-Gaussian (LEQG)
controller which can take both the system and measurement noise covariances into
consideration. Comparing with the traditional linear-quadratic-Gaussian (LQG) design,
the LEQG has the wilder design freedom. The proposed discrete LEQG control scheme
is then applied to the study of reliable control which can tolerate abnormal operation
within some pre-specified set of actuators. This is achieved by suitable modification of
the algebraic Riccati equation for the design of the controller. The bounds of gain
margins for the feedback control gains of reliable stabilization are also derived. The
stability of the overall system is preserved despite the abnormal operation of actuators
within a pre-specified subset in the bounds of gain margins.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The linear-exponential-quadratic-Gaussian (LEQG) method was recently
studied for continuous-time systems [1,2], which is mainly based on the as-
sumption of the estimated states approaching the true ones very quickly, and
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the true states in the performance index can then be replaced by the estimated
ones. The corresponding state estimation procedure is similar to that of the
traditional linear-quadratic-Gaussian (LQG) method using the Kalman filter,
while the suboptimal control is also a linear combination of estimated states
and can be obtained by solving the Hamilton—Jacobi-Bellman equation.

It is known that the control gain of LQG is deterministic since it is the same
as the linear-quadratic-regulator (LQR) method where the LQR system is
treated as deterministic. Thus, the LQG design has disadvantage of less re-
sponsive in the environment with significant noise. In this paper, the proposed
discrete LEQG method is intended to overcome this disadvantage since the
design of the control gain will take both system and measurement noise co-
variances into consideration. Although the derived LEQG design algorithm
may be more complicated than that of the LQG method, it is more adaptive to
a high-noise environment.

Reliable control is viewed as a means of ensuring system stability against the
loss of control components. The basic elements of reliable control design are
limited by the existing actuators of the physical system. This is somewhat
different from redundant control which increases the number of actuators. In
general, reliable control scheme divides the existing control components into
two parts: the main controls and the auxiliary ones. For system stability, the
main control part of actuators must never fail to operate. However, the aux-
iliary control part can provide better system stability and performance. The
reliable control system is required to be stable even if the auxiliary controls
operate abnormally. Although the stability and performance of a reliable
control system may not be better than those obtained by standard control de-
sign, the reliable control system is guaranteed to be stable while the stan-
dard control system may lose its stability when some specified control
components function abnormally. This is the tradeoff between simplicity of
system integration and risking system instability when actuators may operate
abnormally.

In recent years, the design of reliable control laws has attracted considerable
attention. The study of reliable linear-quadratic control of nonlinear systems
by employing the Hamilton—Jacobi inequality in the nonlinear case has been
proposed by Liaw and Liang [3,4]. The designed controllers were shown to be
able to tolerate the malfunction within a pre-specified subset of actuators. The
gain margin for guaranteeing system stability and the performance bound were
estimated. In [5], Veillette proposed linear-quadratic (LQ) state-feedback reli-
able control laws for continuous-time systems in which the actuator mal-
function occurs within a pre-specified subset. In such a design, all the system
states are assumed to be available for feedback design. This is generally not
true for most practical applications. In many modern control systems, it is
unusual to have all the states of a dynamical system available through mea-
surements. Some system states may be impossible or too expensive to measure.
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Thus, in this paper we will apply the LEQG control scheme to provide the
stability of a discrete system in the presence of abnormal actuators. One of the
major goals of this study is to solve the design algorithm for discrete LEQG
control. The main concern is that the special structure of the LEQG controller
explicitly takes both the system and measurement covariances into consider-
ation while the LQG does not. The discrete LEQG control is then applied to
the reliable control design.

The paper is organized as follows. In Section 2, the LEQG design is derived
for general discrete-time systems. It is followed by the design procedure for the
reliable LEQG control of discrete systems. An example is given in Section 4 to
demonstrate the proposed design. Finally, Section 5 summarizes the main re-
sults.

2. The LEQG control for discrete systems

Consider a class of linear discrete systems as given by
Xyt = Awxy + Bruy + ywy, (1)
with measurement process
zx = Hyxp + vy, (2)

where x; € R”, u, € R" and z; € R'. Here, both w; and v; denote Gaussian
white noise with zero mean. Moreover, we assume that E{w,w] } = W;d;; with
Wi =0, E{vv] } = V0 with 7 > 0 and E{wyv; } = 0, where E{-} denotes an
expectation function operator and 6, =1 for k = while ;; = 0 elsewhere.
Before deriving the LEQG control law, the following definitions and notation
are recalled and will be used in the paper.

Definitions and notations:

Information set [6]:

L =A{zo,...,zk;u0, ..., uk_1}. (3)
Induced information set:

I, = {%o,....%; Po,.. ., B} 4)
Priori state estimation:

X = E{xx|li-1 }- (5)

Posteriori state estimation:

)Ek :E{Xka}- (6)
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Priori state estimation error covariance matrix:

M = E{(x — %) (o — %) ) (7)
Posteriori state estimation error covariance matrix:
Pk = E{(.Xk — )Ek)(xk — )Ek)T}. (8)

Applying the separation theorem, a Kalman filter can be constructed to pro-
duce the optimal estimated state from the noisy measurements. The state es-
timation equation can be written as

X = X + KiS, 9)
where s; 1s defined as the innovation

Sy = zx — HiXy, (10)
with zero mean and covariance

Sy = E(sgsp) = HiMH + V;. (11)
From Egs. (8)-(11), we have

P = (I — KeH )M (I — K Hy) ' + K VK] (12)

Minimizing the trace of above estimation error covariance matrix F;, i.e.,
trace(P;), with respect to K; [7], the Kalman gain is obtained as

K, = MiHY (HMHT + V)7 (13)
Eq. (12) can then be rewritten as

Pe = My — My HY (HMHT + Vi)™ HoM;. (14)
From (5), we have

X = Ap—1Xk—1 + Brojug—y. (15)
Thus, the priori state estimation error covariance matrix M; can be derived as

My = Ay P AL |+ T Wi I} (16)

By giving initial values X, = X, and initial covariance matrix M,, we can cal-
culate the values for all Kalman gain K. The Kalman filter block diagram is
shown in Fig. 1.

The LEQG optimization problem for the discrete system (1) is to minimize
the performance index:

PI:E{exp{g@}}, (17)
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Fig. 1. The Kalman filter block diagram.

where
N-1
D= )EI/QN)EN + Z()EkTQk)Ek + MZR/CM/{), (18)
k=0

with Qy and Q, being positive semi-definite matrices, R; a positive definite
matrix and p a tunable scalar.

From the definitions and derivations above, the LEQG control law can be
obtained as in the following Algorithm. Note that, details of the derivation are
given in Appendix A.

Algorithm (LEQG control law):

If ;' — uK Ok, > 0 for k =0,...,N, then the LEQG control law for the
minimization of performance index (17) can be obtained as

u, = —Cx, fork=0,...,N—1, (19)
where

Ci = (Ri + Bf Ay 1B) ' BF g1 Ay, (20)

Ay = Oy + uOK (S, — ukr 0K 'K o, (21)

and

Or 1= Qw1 + AL | [Ar — 4By (Rt + Bz,lAkBk—l)ile,lAk]AN—l7

with boundary condition @y = Qy.
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Following the algorithm above, the performance index (17) can be simplified

as
J* _ lu =T =
= % eXp | 5 Xy AoXo| s (23)
where « is solved by the backward recursive process:
o1 = oyl — #Kg@kKkSkrl/za (24)

with boundary condition oy = 1.

Suppose system (1) is linear time-invariant with N = oo in (18). Employing
an equality property of matrix inverses (see e.g., Appendix A.21 in [8]), Egs.
(20)—(22) can be rewritten as

C = (R+ B"AB) 'B" A4, (25)
where

A=0+ 0K — uk"0K) 'KT0 = (07" — ukSK™) ', (26)

O=0+A"[A—AB(R+B"AB) 'B" A4 = Q+ A" (A" + BR'B") '4

(27)

and the steady Kalman gain is

K =MH"(HMH" +v)™". (28)
Combining Egs. (26) and (27), we have

0=0-4"(O0"+BR'B" — ukSK") 4, (29)

ie, 0=0—A"D'A— pd"[D'K(S™' — uK"D'K)K'D'| "' 4, (30)
where

D=0"+BR'B". (31)
Let

Oteos = O+ pd"[D'K(S™ — uK™D'K)K™D ') ' 4. (32)
Thus, we have

Olkgg = O —A™D'4 =0 — 4"[0 — OB(R + B"OB) 'BT0)4. (33)

Let P be the algebraic Riccati equation (ARE) solution of the standard LQG
problem with the same weighting matrices Q and R, i.e., P solves the ARE
below:

Q=P —A"[P— PB(R+B"PB)'B"P]A. (34)
Then the LQG state-feedback control gain is known to be
Croc = (R+B™PB)'BTPA. (35)
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Suppose p = 0. According to Lemma 4.1 of [10], we have O < Orgqc Which
implies P < ©. Two properties of this LEQG design can then be summarized as
follows.

Property 1. Suppose the LEQG solutions © and A satisfy Egs. (26) and (27).
Then P< O < A (resp. P = O = A) if the LOG solution P satisfies Eq. (34) with
the same weighting matrices Q and R with u = 0 (resp. u<0).

Property 2. The LQG method is a special case of the LEQG control when p tends
to zero, i.e., P= 0 = A.

It is observed from (29) that there exists a positive upper bound ., such
that 0 < BR'BT — ukKSKT for u< u,,,. From Egs. (25) and (35), Property 1
implies that the LEQG method in general has larger control gain than that of
the LQG scheme. Moreover, with the larger control gain, the LEQG control
system will have greater immunity to low-frequency environment noise. For
simplicity and without loss of generality, we set the LEQG tunable scalar u as
0 < u< piy,, In the remainder of this paper.

The next result follows readily from Theorem 6.5 and Corollary 6.6 of [9],
and the discussions above.

Lemma 1. Let 0 =¢q"¢>0, R>0, IWI" =FF" >0 and V > 0. If (4,B) is
stabilizable, (q,A) is detectable, (H,A) is detectable and (A,F) is stabilizable,
then system (1) is asymptotically stabilizable by LEQG control. The corre-
sponding control gain C is given in Eq. (25) and estimator gain K is in Eq. (28).

3. LEQG scheme for reliable control design

In the following, we apply the LEQG control scheme derived in Section 2 to
the stabilization of system (1) subject to the abnormal operation of actuators.
Let the control matrix B and the weighting matrix R be decomposed as

B=[By Bq)

and

respectively, where By corresponds to the normally operating actuators and Bg
for possible malfunctioning actuators.

First, we consider the worst case of which Bo = 0, i.e., the minimum number
of actuators is under operation. Let the weighting matrices of the cost function
in (17) be Q and Ry. Denote O the solution of the following ARE:
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_ _ -1
0=0-A"(0" +ByR,' By, — uKSK") "' 4. (36)

According to that of [11], there exists a unique and positive definite symmetric
solution @ for Eq. (36) if (4, By) is stabilizable. Let

Dy =0 '+ ByR,' By — uKSK". (37)

Since © > 0 and Ry > 0, we have Dy = D/, > 0.

Next, we consider the reliable design of the estimator by checking whether
the matrices @ and A can also solve for the new ARE for the system (1) with
BQ 7é 0. Let

O =0 —A" (O +BR'B" — uKSK™) 4. (38)

From Egs. (36) and (37) and an equality property of matrix inverses, we
have

Ot = O+ A" Dy Bo(Rq + BLD o' Bo)BoD,y' A. (39)

It is obvious that Q. is a symmetric and semi-positive definite matrix. Thus
there exists a matrix g such that QO = gl ¢r. In addition, from (37) and
(39) we have Q. = Q. According to Lemma 4.1 of [10], since Q. = Q, we have
that (g..,4) is a detectable pair if (¢,4) is a detectable pair too. The reliable
control gain can then be obtained as

C=(R+B"4B)'B" 44

BT,

/ T / T 71
_ | Ry +ByABg Bl ABq } % A4, (40)
Q/

BYABy  Rq+ BYABg

which will also stabilize the closed-loop dynamics of system (1).
We have the next theorem.

Theorem 1. Suppose the conditions of Lemma 1 hold. If (A, By) is stabilizable,
then the closed-loop dynamics of linear discrete system (1) is asymptotically
stabilizable in the presence of abnormal operation of actuators and satisfies the
LEQG performance criterion as in (17), where Q is replaced by Q. as defined in
(39). Moreover, the corresponding control gains C is given in Eq. (40).

Now, we summarize the design procedure as follows:

Step 1: Suppose the conditions of Lemma 1 hold and (4, By) is stabilizable.
Solve for the solution @ of the ARE (36) with parameters (4, By,

QaRQ’)'
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Step 2: Substitute the solution @ obtained from Step 1 to calculate 4 in Eq.
(26) and the control gain as in (40) with parameters (4, B, O, R).

Now, we consider the gain margin of the control gain C. Suppose R is a
diagonal matrix and denote N the diagonal matrix corresponding to the
magnitude change of the control gain as given by

Ny 0 .
NE¢ = |: OQ NQ:| = dlag(i’lQ/l, Ngo, ..., N NQ1,NQD, - - - ,I’lQ(m,r)).

(41)

Multiplying C by N, the closed-loop dynamics of (1) becomes x.,; =
(4 — BNCC)x;. From [12], A — BNCC is stable if (4 — BNCC)" A(4 — BNCC) —
A <0, where A in (26) can be obtained by @ from solving (36). This leads to the
checking of the negative semi-definiteness for (4 — BN°C)"A(4 — BNC) — A
to provide the stability of 4 — BN“C. Details are given in Appendix B. We then
have the following result.

Theorem 2. The matrix A — BNCC is stable if the gain matrix N€ satisfies either
of the following two conditions:

. 1
(i) Tog <hei < and bl + ¢ — (1 —ng)’ —d(1 —ng)> >0

+a 1—a

or

1 —=—+b+c—bc 1++vb+c—bc
(i) —————————<ngp<———
1-b4 1-5
azné’i_ (1 _nQ’i)2 -/ _nQ’i)z >0,

where the scalars a, b, c, d and f are defined in Eqs. (B.10)—(B.14).

and

Note that, 4 — BN“C is guaranteed to be stable if both ngy; and ng; statisfy
the bounds of Theorem 2. However, if either ny; or ng; fail to satisfy the
bounds of Theorem 2, the eigenvalues of 4 — BN“C must be calculated to
check the system stability. According to the results of [13], we have a — 1,
b—1,¢c—1,d — 0and f — 0 if the sampling time is sufficiently small. This
leads to the unification of the two sufficient conditions of Theorem 2 as given in
the next corollary.

Corollary 1. Suppose the sampling time is sufficiently small and the matrices R
and N€ are diagonal. Then A — BNCC is stable if (i) 0.5 < ny; < oo for all i =
1,...,rand (i) 0 < ng; < oo foralli=1,.... m—r.
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Note that, Theorem 2 and Corollary 1 show the stability of 4 — B(N“C)
about the control gain variation. In fact, they can also be explained as the
stability of 4 — (BN€)C with respect to the variation of control matrix B.

4. Illustrative example

In this section, we present the numerical results for the proposed discrete-
time LEQG reliable control. Suppose

1 0.05
A= [0 ( } (42)
and
0.0025 0.0625
B=[By Bo]= [ 0.1 05 ] (43)
Let
r=10.01 0.01]", (44)
0.0025 0.1
= [0.0625 0.5]’ (45)
10
-1 (47)
and
0.01 0
V:[ 0 0.01} (48)

In the LEQG design, the Kalman gain must be solved firstly. The solution
M for the ARE is determined to be

0.0102 0.0024
M= {0.0024 0.0017} (49)
The Kalman filter gain can then be calculated as
0.0250 0.1741
K= [0.0168 0.0955] ’ (30)

4.1. Case of actuators are normal

First, we consider all actuators function normally with B = [By Bg|. For the
design of LEQG controller with the LEQG tunable scalar ¢ = 0.02 in this
paper and Kalman gain in (50), we obtain the solutions @ and A for AREs as
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20.2428  0.0904
0= [0.0904 2.5243} 1)
and
20.2455  0.0906
A= {0.0906 2.5244} (52)

The corresponding optimal state feedback control gain for the standard design
can hence be calculated as

C— [—0.0391 0.1522} .

0.7668  0.7656 (53)

The eigenvalues of the uncontrolled version of system (1) are double roots of
1, which imply the instability of system (1). However, the eigenvalues of the
controlled system are found to be 0.9502 and 0.6039. It is obvious that
the closed-loop dynamics of system (1) is stabilized by LEQG control gain
matrix C.

4.2. Case of actuators may be abnormal

Now, we study the reliable design for possible abnormal functioning of
actuators. Following the design procedure in Section 3 with B and R are re-
placed by By and Ry, respectively, we obtain the reliable design solutions &
and A for AREs (36) and (26) as

28.8645 10.0494
0= [10.0494 14.6868] (54)
and
28.8723  10.0535
4= [10.0535 14.6890} (55)

The corresponding optimal state feedback control gain of the proposed reliable
design is attained from (40) as

C— [0.0484 0.2886}

1.2546 1.4925 (56)

The eigenvalues of the controlled system are found to be A(4 — BC) = 0.9593
and 0.1870. The scalars in Theorem 2 are calculated to be a = 0.9317, b =
0.1847 and ¢ = 0.8937. From Theorem 2, the bounds of gain margins for ngy,
and ng; are depicted in Fig. 2. From Fig. 2, 4 — (BN)K¢ is stable for ny = 1
and 0.0544 < ng < 2.3988.

Table 1 below shows the reliable controller design with N = 200 in (18) and
the initial value Xy = [1 0]".
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25

Fig. 2. The stability bounds of (ny, ng).

Table 1
Comparisons of different control designs

System characteristic Performance index from (17) Closed-loop
eigenvalues

[Bg Bo] (standard design)

Normal system [By Bg| 1.2407 0.9502, 0.6039

Faulty system with [By 0] Not available 1.0083, 0.9765
By only (reliable design)

Normal system [By Bg] 1.2514 0.9593, 0.1870

Faulty system with [By 0] 10.8352 0.9855 + 0.0057i

From Table 1, the standard LEQG design makes the system to be unstable
for Bo = 0. However, the proposed reliable design still can tolerate the case for
Bgo = 0 with the tradeoff for higher performance index.

5. Conclusions

In this paper, we have studied the reliable stabilization of discrete-time
systems using LEQG approach. A procedure has been derived for the design of
reliable discrete LEQG control. The key is to find the ARE solutions ® and A
for reliable controller, which maintains system stability despite the abnor-
mal operation of actuators. In additions, the bounds of gain margins for the
feedback control is also obtained as in Theorem 2. In contrast to the traditional
LQG method, LEQG control design explicitly takes both the system and
measurement covariances into consideration. Moreover, the LQG control law
was shown to be a special case of the LEQG control when tunable scalar u
tends to zero.
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Appendix A. Development of LEQG control algorithm

Egs. (17) and (18) can be rewritten in terms of a nested conditional expec-
tation as

Pl = E{E|DU{E|DI{ . -E‘DJ\,M{ exp [gq)] } o }}} (A.1)

Let

Y(Dy) = Epp, { exp [g qs} } (A2)

A recursive formula for ¥(D,) can be obtained from (A.1) and (A.2) as

lP(Dk) = E\Dk{lp(Dk+l)} for k = 07 N ,N —1. <A3)
Moreover,
u N-1
¥(Dy) = Epp, { exp { 5 £y OnZy + Z(fEQkﬁk + MkTRkuk)‘| } }
k=0
u N-1
— oy EXp { E )2';@1\/)21\/ + Z()EZQJ()E/( + u,?Rkuk)l }, (A4)
k=0

where ay = 1 and Oy = Qy.
From Egs. (9)-(11), (A.3) and (A.4), we then have

N-1
£y Onty + > (5] O + uj Reawy)

k=0

Y(Dy-1) = Epp,, { exp { g

U
=Ep, , { exp { 3

N-1
+ Z(ﬁZQk)Ek + ukTRkuk)

k=0

}

(xyv + KNSN)T@N (Xy + Kysy)

l

OO0

N—1
= €Xp { g Z()EkTQk)Ek + qukuk)} / eXp {
k=0

—00

[(Xy + Kysw)"

=



316 D.-C. Liaw, C.-H. Chen | Appl. Math. Comput. 137 (2003) 303-321

1 1
X @N(XN + KNSN)]} W eXp { — ES}\;SNISN} dSN
N

—exp{

X exp

. < 1
I

[S (S&l — ,UK;@NKN)SN — ,UXNT@N)?N

MZ
l\)\'—‘o

/—/H o=

— ,LL(KNSN)T@N;CN — ,LDC;@NKNSN}}dSN. (AS)

Suppose Sy!' > uKlO@yKy. It is clear that Eq. (A.5) can be rewritten as

2 N-1
exp { g xk Oxi + ukRkuk)}
k=0

1
Sol— ,UKT@ K -
q’(DN*l) |:( X |S<]1://‘ i N) |

1 .
X €xp { —5l[- 1L OyZy — (KT ONEY) (Sy! — 1K, OnKy) ™

. o0 1
X (yKN@NxN)]}< /_Oc [(27)"|(Sy! — uKLOyKy) "'

1 _ _
X eXP{ — 5l — (Sy' = RKRONK) ™ (1Y Oxxv)]!

(Sy" = HKFONKN [y — (Sy' — 1K OxKy) ™ (1K @NXN”} dSN>'
(A.6)

Since the integral term in the bracket () of (A.6) equals one, we then have

1/2
Sot— uKroyKy)™ u =
'I/(DN—I) = Oy |( N e N) | cXp Z xk kxk+ukRkuk)
|SN| k=0
X exp{%fc},[@]\/ + ,u@NKN(Sfl — ,LLK;@NKN)_ KN@N]XN}'
(A.7)
Define
_ [adl S — T & T
Y(Dy_1) = o1 €Xp 5 Xy Anxy + Z(xk OiXy + u, Reue) | 9. (A.8)

From (A.7) and (A.8), we have

AN = @N + ,u@NKN<S1;1 — MK]—\I/‘@NKN)ilK;\II‘@N (A9)
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and
1,712
|(Sy' — nKyONKy) |
On—1 = Un
S
= O{N|I — ,uKﬁ@NKNSN‘il/z. (AIO)

From Egs. (15) and (A.8) can be rewritten as

Y(Dy-1) = oy_1 €Xp { g l(AN—lfN—l + BN—I”N—I)TAN(AN—IJEN—I

N-1
—&—BN,luN 1 —|—Z xk kxk—l—ukRkuk)]}. (All)
k=0

Let
PI'= min E{Y(Dy-1)} = mm E{mln Y (Dy-1)}. (A.12)
By solving the opt1mal condition of (A.12) from
Y (Dy_
g (?N 1) _o, (A.13)
Ouy_,

we have the following optimal control law:
M7V71 = _(RN—I +Bx,lANBN—l)7IB£,1ANAN—1-£N—1~ (A14)
Substituting (A.14) into (A.11), we have

PI"(Dy_1) = oy_1 €Xp {g

N-2
v Oy Xy + Z(fZQkfk + ”ZRkuk)] }7

: (A.15)

where
On_1 = On-1 + Ay [Ay — AvBy_1(Ry-1 +B]T/,lANBN—l)_IBI/,lAN]AN—l-
(A.16)

Applying the procedure above recursively backward in time, we will get the
feedback control input u* for each stage.

Appendix B
Let
_ Tip_ | X1 X
X=R+B /1B_{X2T X | (B.1)
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where X; = Ry + BL, ABy, X, = BY, ABo and X; = Ro + BLABo. We have
(4 —BNSC)' A(4 — BN°C) — A
= —0+60—A+A4"ABy(Ry + By ABy) "Bl A4
— A" ABNCC — C'N“B" A4 + C"N“BTABNCC

= -0 - uOK(S™' — uK"SK)"'K'0 + A" 4B [é]
-1
X {[1 0](R + B'4B) m } [ 0]B" 44 — C"(R + B"AB)N“C

— C"N“(R+B"AB)C + C"N“(R + B"AB)N“C — C'"N“RN“C

=-0°-C"rc, (B.2)
where
0 = 0+ uOK(S™' — uk"SK) 'KT0 > 0, (B.3)
Y= [;;T 2] (B4)
and
Y, = NgRyNg — (I — No )X, (I — No), (B.5)

Y, = —(I — No)Xo(I — Ng),
Y; = X5 — X)X ' Xa + NoRoNg — (I — No)X3(I — No). (B.7)

It is known (e.g. Gajic and Qureshi [12]) that 4 — BNCC is stable if
(4 — BNCC)" A(4 — BNCC) — A<0. Thus, from (B.2) the matrix 4 — BNCC is
stable if ¥ > 0.

By employing elementary row and column operations on matrix Y, we
have

I -yl [n n I ol [n-ny'yy o (B.8)
0 I AN IR A ANy 0 Y '

It is obvious from (B.8) that the matrix ¥ > 0if ¥; >0and ¥, — ,¥; 'Y > 0.
Similarly, we have

[ 0)[vn nl[1 -v'n] [n 0 (B9)
_YZTYFI I Y2T Y3 0 I 10 Y3 _ YzT)]leZ . .

This leads to the result of ¥ > 0if ¥; >0 and ¥; — ¥, ¥, 'Y, > 0. Now, we try
to realize the two sufficient conditions above for providing ¥ > 0. Let
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@ = [lmin(Rey) /2max (X1)] "2, (B.10)
b = Jumin(Ro) / Zmax (X3), (B.11)
€ = Jmin(Xz — X3 X' X0) / Zomax (X3) (B.12)
d = Jma{ XS Ry Ny — X1 (I = Noo )] ' Xa(I = Ny )}/ Jamax (X3) (B.13)
and
[ = i {0 [(Xs — XJX['X0) + RoNG — X3(I — No)’] ™', (I — No)*}
[ 2nax (X1). (B.14)

Here Apax () and Apin(-) denote the maximum and minimum eigenvalues of a
matrix, respectively.

Case 1: (Conditions for ¥; >0 and ¥; — V¥ 'Y, > 0)
First, we consider the condition for ¥; > 0. Since 0 < a < 1, from (B.5) we
then have Y; > 0 if

min(Rer )Ny > Jomas (X1) (I = Ny ).
Using (B.10), we have ¥} > 0 if

[(1—a)Nyg —I[(1 +a)Ny —1] <O.
This leads to the result of ¥; > 0 if

1 1
Tl <No <71,
T4a “M<71C

. 1 1
1.e 'T+a <nQr<m foralli=1,...,r

Next, we solve for the condition ¥; — ¥,'¥; 'Y, > 0.
It is observed from (B.5)—(B.7) that

Yy = Y, ¥ 'Ya = RoNg + (X5 — Xy X[ 'X) = X3(I = Ng) — (I — N)
X XJ(I — Ng)[RyN2 — Xi(I — Ng)’) ™' (I = Ng )Xo (I — Ng).
We then have ¥; — ¥,'Y, 'Y, > 0 if
Jmin(RQ)NG + Amin (X — X3 X' X2) — Amax (X)) (I — NP)
— Jmax { X [Ro N2 — X (I — Ny )'] ' Xo(I — N )*}(I — Ng)* > 0.
Using the notation defined in (B.11)~(B.13), we have ¥; — ) ¥ 'Y, > 0 if

bN2 + ¢l — (I — No)* — d(I — Ng)* > 0.
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From (41), the sufficient condition for ¥; — ¥, ¥ 'Y, > 0 can be rewritten as
b} +c—(1—ng) —d(1 —ng)* >0 foralli=1,....m—r.

Case 2: (Conditions for ¥; > 0 and ¥; — LY, 'Y)F > 0)

Similarly, since 0 < b < 1 and 0 < ¢ < 1, we have ¥; > 0 if

Jnin(RQ)NZ 4 Jamin (X3 — XX, X3) > Jnan (X3) (I — No)*.

That is, we have ¥; > 0 if
[(1 —b)Ng — (1 — Vb +c—be)[(1 —b)Ng — (1 + Vb +c — be)l] < 0.

The sufficient condition for ¥; > 0 can also be rewritten as

1 —+b+c—bc 1++vb+c—bc
S S iy P VAP N S Bty
1-5 1-5
. 1—+vb+c—bc 1++vb+c—bc )
1.€., T<n9i T for alllzl,...,m—r.

From (B.5)—(B.7),

Yi = BY, 'Y = ReNg — Xi(I = Noy)* — (I = Ng )Xo (I — No)

X [(Xs — XS X' Xs) + RoN2 — X3(I — No)*] ™ (I — No) X (I — Ng).

Thus, we have ¥; — LY, 'Y > 0 if

Janin (R )NZ = Zmax X)) (I = Ny ) = 2ma {Xa[(X3 — XJ X' X) + (Ro)N2

— X3(I — No)*) 'XJ (I — No)*}(I — Ng)* > 0.

From (B.10) and (B.14), the above condition can be simplified as

&Ny — (I = Ng)* = f(I = Ng)* > 0.

ie., a®nd, — (1 —ng;)" — f(1 —ng;)> >0 foralli=1,...,r.

Results of Theorem 2 are hence implied.
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