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Abstract

In this paper, we derive the discrete linear-exponential-quadratic-Gaussian (LEQG)

controller which can take both the system and measurement noise covariances into

consideration. Comparing with the traditional linear-quadratic-Gaussian (LQG) design,

the LEQG has the wilder design freedom. The proposed discrete LEQG control scheme

is then applied to the study of reliable control which can tolerate abnormal operation

within some pre-specified set of actuators. This is achieved by suitable modification of

the algebraic Riccati equation for the design of the controller. The bounds of gain

margins for the feedback control gains of reliable stabilization are also derived. The

stability of the overall system is preserved despite the abnormal operation of actuators

within a pre-specified subset in the bounds of gain margins.
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1. Introduction

The linear-exponential-quadratic-Gaussian (LEQG) method was recently
studied for continuous-time systems [1,2], which is mainly based on the as-

sumption of the estimated states approaching the true ones very quickly, and
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the true states in the performance index can then be replaced by the estimated

ones. The corresponding state estimation procedure is similar to that of the
traditional linear-quadratic-Gaussian (LQG) method using the Kalman filter,

while the suboptimal control is also a linear combination of estimated states

and can be obtained by solving the Hamilton–Jacobi–Bellman equation.

It is known that the control gain of LQG is deterministic since it is the same

as the linear-quadratic-regulator (LQR) method where the LQR system is

treated as deterministic. Thus, the LQG design has disadvantage of less re-

sponsive in the environment with significant noise. In this paper, the proposed

discrete LEQG method is intended to overcome this disadvantage since the
design of the control gain will take both system and measurement noise co-

variances into consideration. Although the derived LEQG design algorithm

may be more complicated than that of the LQG method, it is more adaptive to

a high-noise environment.

Reliable control is viewed as a means of ensuring system stability against the

loss of control components. The basic elements of reliable control design are

limited by the existing actuators of the physical system. This is somewhat

different from redundant control which increases the number of actuators. In
general, reliable control scheme divides the existing control components into

two parts: the main controls and the auxiliary ones. For system stability, the

main control part of actuators must never fail to operate. However, the aux-

iliary control part can provide better system stability and performance. The

reliable control system is required to be stable even if the auxiliary controls

operate abnormally. Although the stability and performance of a reliable

control system may not be better than those obtained by standard control de-

sign, the reliable control system is guaranteed to be stable while the stan-
dard control system may lose its stability when some specified control

components function abnormally. This is the tradeoff between simplicity of

system integration and risking system instability when actuators may operate

abnormally.

In recent years, the design of reliable control laws has attracted considerable

attention. The study of reliable linear-quadratic control of nonlinear systems

by employing the Hamilton–Jacobi inequality in the nonlinear case has been

proposed by Liaw and Liang [3,4]. The designed controllers were shown to be
able to tolerate the malfunction within a pre-specified subset of actuators. The

gain margin for guaranteeing system stability and the performance bound were

estimated. In [5], Veillette proposed linear-quadratic (LQ) state-feedback reli-

able control laws for continuous-time systems in which the actuator mal-

function occurs within a pre-specified subset. In such a design, all the system

states are assumed to be available for feedback design. This is generally not

true for most practical applications. In many modern control systems, it is

unusual to have all the states of a dynamical system available through mea-
surements. Some system states may be impossible or too expensive to measure.
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Thus, in this paper we will apply the LEQG control scheme to provide the

stability of a discrete system in the presence of abnormal actuators. One of the
major goals of this study is to solve the design algorithm for discrete LEQG

control. The main concern is that the special structure of the LEQG controller

explicitly takes both the system and measurement covariances into consider-

ation while the LQG does not. The discrete LEQG control is then applied to

the reliable control design.

The paper is organized as follows. In Section 2, the LEQG design is derived

for general discrete-time systems. It is followed by the design procedure for the

reliable LEQG control of discrete systems. An example is given in Section 4 to
demonstrate the proposed design. Finally, Section 5 summarizes the main re-

sults.

2. The LEQG control for discrete systems

Consider a class of linear discrete systems as given by

xkþ1 ¼ Akxk þ Bkuk þ Ckwk; ð1Þ

with measurement process

zk ¼ Hkxk þ vk; ð2Þ

where xk 2 Rn, uk 2 Rm and zk 2 Rl. Here, both wk and vk denote Gaussian

white noise with zero mean. Moreover, we assume that EfwkwTj g ¼ Wkdkj with

Wk P 0, EfvkvTj g ¼ Vkdkj with Vk > 0 and EfwkvTj g ¼ 0, where Ef�g denotes an
expectation function operator and dkj ¼ 1 for k ¼ j while dkj ¼ 0 elsewhere.
Before deriving the LEQG control law, the following definitions and notation

are recalled and will be used in the paper.

Definitions and notations:

Information set [6]:

Ik ¼ fz0; . . . ; zk; u0; . . . ; uk	1g: ð3Þ

Induced information set:

Ik ¼ fx̂x0; . . . ; x̂xk; P0; . . . ; Pkg: ð4Þ

Priori state estimation:

�xxk ¼ EfxkjIk	1g: ð5Þ

Posteriori state estimation:

x̂xk ¼ EfxkjIkg: ð6Þ
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Priori state estimation error covariance matrix:

Mk ¼ Efðxk 	 �xxkÞðxk 	 �xxkÞTg: ð7Þ

Posteriori state estimation error covariance matrix:

Pk ¼ Efðxk 	 x̂xkÞðxk 	 x̂xkÞTg: ð8Þ

Applying the separation theorem, a Kalman filter can be constructed to pro-

duce the optimal estimated state from the noisy measurements. The state es-

timation equation can be written as

x̂xk ¼ �xxk þ Kksk; ð9Þ

where sk is defined as the innovation

sk ¼ zk 	 Hk�xxk; ð10Þ

with zero mean and covariance

Sk ¼ EðsksTk Þ ¼ HkMkHT
k þ Vk: ð11Þ

From Eqs. (8)–(11), we have

Pk ¼ ðI 	 KkHkÞMkðI 	 KkHkÞT þ KkVkKTk : ð12Þ

Minimizing the trace of above estimation error covariance matrix Pk, i.e.,

traceðPkÞ, with respect to Kk [7], the Kalman gain is obtained as

Kk ¼ MkHT
k ðHkMkHT

k þ VkÞ	1: ð13Þ

Eq. (12) can then be rewritten as

Pk ¼ Mk 	 MkHT
k ðHkMkHT

k þ VkÞ	1HkMk: ð14Þ

From (5), we have

�xxk ¼ Ak	1x̂xk	1 þ Bk	1uk	1: ð15Þ

Thus, the priori state estimation error covariance matrix Mk can be derived as

Mk ¼ Ak	1Pk	1ATk	1 þ Ck	1Wk	1C
T
k	1: ð16Þ

By giving initial values x̂x0 ¼ �xx0 and initial covariance matrix M0, we can cal-

culate the values for all Kalman gain Kk. The Kalman filter block diagram is
shown in Fig. 1.

The LEQG optimization problem for the discrete system (1) is to minimize

the performance index:

PI ¼ E exp
l
2

U
h in o

; ð17Þ
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where

U ¼ x̂xTNQN x̂xN þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ; ð18Þ

with QN and Qk being positive semi-definite matrices, Rk a positive definite

matrix and l a tunable scalar.
From the definitions and derivations above, the LEQG control law can be

obtained as in the following Algorithm. Note that, details of the derivation are
given in Appendix A.

Algorithm (LEQG control law):

If S	1
k 	 lKTk HkKk > 0 for k ¼ 0; . . . ;N , then the LEQG control law for the

minimization of performance index (17) can be obtained as

u�k ¼ 	Ckx̂xk for k ¼ 0; . . . ;N 	 1; ð19Þ

where

Ck ¼ ðRk þ BTk Kkþ1BkÞ	1BTk Kkþ1Ak; ð20Þ

Kk ¼ Hk þ lHkKkðS	1
k 	 lKTk HkKkÞ	1KTk Hk ð21Þ

and

Hk	1 ¼ Qk	1 þ ATk	1½Kk 	 KkBk	1ðRk	1 þ BTk	1KkBk	1Þ	1BTk	1Kk
AN	1;

ð22Þ

with boundary condition HN ¼ QN .

Fig. 1. The Kalman filter block diagram.
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Following the algorithm above, the performance index (17) can be simplified

as

J � ¼ a0 exp
l
2

�xxT0K0�xx0
h in o

; ð23Þ

where a0 is solved by the backward recursive process:

ak	1 ¼ akjI 	 lKTk HkKkSkj	1=2; ð24Þ
with boundary condition aN ¼ 1.
Suppose system (1) is linear time-invariant with N ¼ 1 in (18). Employing

an equality property of matrix inverses (see e.g., Appendix A.21 in [8]), Eqs.

(20)–(22) can be rewritten as

C ¼ ðR þ BTKBÞ	1BTKA; ð25Þ
where

K ¼ H þ lHKðS	1 	 lKTHKÞ	1KTH ¼ ðH	1 	 lKSKTÞ	1; ð26Þ

H ¼ Qþ AT½K 	 KBðR þ BTKBÞ	1BTK
A ¼ Q þ ATðK	1 þ BR	1BTÞ	1A
ð27Þ

and the steady Kalman gain is

K ¼ MHTðHMHT þ V Þ	1: ð28Þ

Combining Eqs. (26) and (27), we have

Q ¼ H 	 ATðH	1 þ BR	1BT 	 lKSKTÞ	1A; ð29Þ

i:e:; Q ¼ H 	 ATD	1A 	 lAT½D	1KðS	1 	 lKTD	1KÞKTD	1
	1A; ð30Þ

where

D � H	1 þ BR	1BT: ð31Þ
Let

QLEQG ¼ Q þ lAT½D	1KðS	1 	 lKTD	1KÞKTD	1
	1A: ð32Þ
Thus, we have

QLEQG ¼ H 	 ATD	1A ¼ H 	 AT½H 	 HBðR þ BTHBÞ	1BTH
A: ð33Þ
Let P be the algebraic Riccati equation (ARE) solution of the standard LQG
problem with the same weighting matrices Q and R, i.e., P solves the ARE
below:

Q ¼ P 	 AT½P 	 PBðR þ BTPBÞ	1BTP 
A: ð34Þ
Then the LQG state-feedback control gain is known to be

CLQG ¼ ðR þ BTPBÞ	1BTPA: ð35Þ
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Suppose lP 0. According to Lemma 4.1 of [10], we have Q6QLEQG which
implies P 6H. Two properties of this LEQG design can then be summarized as
follows.

Property 1. Suppose the LEQG solutions H and K satisfy Eqs. (26) and (27).
Then P 6H6K (resp. P P H P K) if the LQG solution P satisfies Eq. (34) with
the same weighting matrices Q and R with l P 0 (resp. l6 0).

Property 2. The LQG method is a special case of the LEQG control when l tends
to zero, i.e., P ¼ H ¼ K.

It is observed from (29) that there exists a positive upper bound lmax such
that 06BR	1BT 	 lKSKT for l6 lmax. From Eqs. (25) and (35), Property 1

implies that the LEQG method in general has larger control gain than that of

the LQG scheme. Moreover, with the larger control gain, the LEQG control
system will have greater immunity to low-frequency environment noise. For

simplicity and without loss of generality, we set the LEQG tunable scalar l as
06 l6 lmax in the remainder of this paper.
The next result follows readily from Theorem 6.5 and Corollary 6.6 of [9],

and the discussions above.

Lemma 1. Let Q ¼ qT qP 0, R > 0, CW CT ¼ FF T P 0 and V > 0. If ðA;BÞ is
stabilizable, ðq;AÞ is detectable, ðH ;AÞ is detectable and ðA; F Þ is stabilizable,
then system (1) is asymptotically stabilizable by LEQG control. The corre-
sponding control gain C is given in Eq. (25) and estimator gain K is in Eq. (28).

3. LEQG scheme for reliable control design

In the following, we apply the LEQG control scheme derived in Section 2 to

the stabilization of system (1) subject to the abnormal operation of actuators.

Let the control matrix B and the weighting matrix R be decomposed as

B ¼ BX0 BX

� �
and

R ¼ RX0 0

0 RX

� 	

respectively, where BX0 corresponds to the normally operating actuators and BX

for possible malfunctioning actuators.
First, we consider the worst case of which BX ¼ 0, i.e., the minimum number

of actuators is under operation. Let the weighting matrices of the cost function

in (17) be Q and RX0 . Denote H the solution of the following ARE:
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Q ¼ H 	 ATðH	1 þ BX0R	1
X0 BTX0 	 lKSKTÞ	1A: ð36Þ

According to that of [11], there exists a unique and positive definite symmetric

solution H for Eq. (36) if ðA;BX0 Þ is stabilizable. Let

DX0 � H	1 þ BX0R	1
X0 BTX0 	 lKSKT: ð37Þ

Since H > 0 and RX0 > 0, we have DX0 ¼ DTX0 > 0.
Next, we consider the reliable design of the estimator by checking whether

the matrices H and K can also solve for the new ARE for the system (1) with
BX 6¼ 0. Let

Qrel � H 	 ATðH	1 þ BR	1BT 	 lKSKTÞ	1A: ð38Þ

From Eqs. (36) and (37) and an equality property of matrix inverses, we

have

Qrel ¼ Q þ AT½D	1
X0 BXðRX þ BTXD

	1
X0 BXÞBTXD	1

X0 
A: ð39Þ

It is obvious that Qrel is a symmetric and semi-positive definite matrix. Thus
there exists a matrix qrel such that Qrel ¼ qTrelqrel. In addition, from (37) and
(39) we have Qrel PQ. According to Lemma 4.1 of [10], since Qrel PQ, we have
that ðqrel;AÞ is a detectable pair if ðq;AÞ is a detectable pair too. The reliable
control gain can then be obtained as

C ¼ ðR þ BTKBÞ	1BTKA

¼ RX0 þ BTX0KBX0 BTX0KBX

BTXKBX0 RX þ BTXKBX

� 		1
BTX0

BTX0

" #
KA; ð40Þ

which will also stabilize the closed-loop dynamics of system (1).

We have the next theorem.

Theorem 1. Suppose the conditions of Lemma 1 hold. If ðA;BX0 Þ is stabilizable,
then the closed-loop dynamics of linear discrete system (1) is asymptotically
stabilizable in the presence of abnormal operation of actuators and satisfies the
LEQG performance criterion as in (17), where Q is replaced by Qrel as defined in
(39). Moreover, the corresponding control gains C is given in Eq. (40).

Now, we summarize the design procedure as follows:

Step 1: Suppose the conditions of Lemma 1 hold and ðA;BX0 Þ is stabilizable.
Solve for the solution H of the ARE (36) with parameters ðA;BX0 ;
Q;RX0 Þ.
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Step 2: Substitute the solution H obtained from Step 1 to calculate K in Eq.
(26) and the control gain as in (40) with parameters ðA;B;Q;RÞ.

Now, we consider the gain margin of the control gain C. Suppose R is a
diagonal matrix and denote NC the diagonal matrix corresponding to the

magnitude change of the control gain as given by

NC ¼ NX0 0

0 NX

� 	
¼ diagðnX01; nX02; . . . ; nX0r; nX1; nX2; . . . ; nXðm	rÞÞ:

ð41Þ

Multiplying C by NC, the closed-loop dynamics of (1) becomes xkþ1 ¼
ðA 	 BNCCÞxk. From [12], A 	 BNCC is stable if ðA 	 BNCCÞTKðA 	 BNCCÞ	
K6 0, where K in (26) can be obtained byH from solving (36). This leads to the
checking of the negative semi-definiteness for ðA 	 BNCCÞTKðA 	 BNCCÞ 	 K
to provide the stability of A 	 BNCC. Details are given in Appendix B. We then
have the following result.

Theorem 2. The matrix A 	 BNCC is stable if the gain matrix NC satisfies either
of the following two conditions:

ðiÞ 1

1þ a
< nX0i <

1

1	 a
and bn2Xi þ c	 ð1	 nXiÞ2 	 dð1	 nXiÞ2 > 0

or

ðiiÞ 1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
< nXi <

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
and

a2n2X0i 	 ð1	 nX0iÞ2 	 f ð1	 nX0iÞ2 > 0;

where the scalars a, b, c, d and f are defined in Eqs. (B.10)–(B.14).

Note that, A 	 BNCC is guaranteed to be stable if both nX0i and nXi statisfy
the bounds of Theorem 2. However, if either nX0i or nXi fail to satisfy the

bounds of Theorem 2, the eigenvalues of A 	 BNCC must be calculated to

check the system stability. According to the results of [13], we have a ! 1,

b ! 1, c ! 1, d ! 0 and f ! 0 if the sampling time is sufficiently small. This

leads to the unification of the two sufficient conditions of Theorem 2 as given in

the next corollary.

Corollary 1. Suppose the sampling time is sufficiently small and the matrices R
and NC are diagonal. Then A 	 BNCC is stable if (i) 0:5 < nX0i < 1 for all i ¼
1; . . . ; r and (ii) 0 < nXi < 1 for all i ¼ 1; . . . ;m 	 r.
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Note that, Theorem 2 and Corollary 1 show the stability of A 	 BðNCCÞ
about the control gain variation. In fact, they can also be explained as the
stability of A 	 ðBNCÞC with respect to the variation of control matrix B.

4. Illustrative example

In this section, we present the numerical results for the proposed discrete-

time LEQG reliable control. Suppose

A ¼ 1 0:05
0 1

� 	
ð42Þ

and

B ¼ BX0 BX

� �
¼ 0:0025 0:0625

0:1 0:5

� 	
: ð43Þ

Let

C ¼ 0:01 0:01½ 
T; ð44Þ

H ¼ 0:0025 0:1
0:0625 0:5

� 	
; ð45Þ

Q ¼ R ¼ 1 0

0 1

� 	
; ð46Þ

W ¼ 1 ð47Þ
and

V ¼ 0:01 0

0 0:01

� 	
: ð48Þ

In the LEQG design, the Kalman gain must be solved firstly. The solution

M for the ARE is determined to be

M ¼ 0:0102 0:0024
0:0024 0:0017

� 	
: ð49Þ

The Kalman filter gain can then be calculated as

K ¼ 0:0250 0:1741
0:0168 0:0955

� 	
: ð50Þ

4.1. Case of actuators are normal

First, we consider all actuators function normally with B ¼ ½BX0 BX
. For the
design of LEQG controller with the LEQG tunable scalar l ¼ 0:02 in this
paper and Kalman gain in (50), we obtain the solutions H and K for AREs as
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H ¼ 20:2428 0:0904
0:0904 2:5243

� 	
ð51Þ

and

K ¼ 20:2455 0:0906
0:0906 2:5244

� 	
: ð52Þ

The corresponding optimal state feedback control gain for the standard design

can hence be calculated as

C ¼ 	0:0391 0:1522
0:7668 0:7656

� 	
: ð53Þ

The eigenvalues of the uncontrolled version of system (1) are double roots of

1, which imply the instability of system (1). However, the eigenvalues of the

controlled system are found to be 0.9502 and 0.6039. It is obvious that

the closed-loop dynamics of system (1) is stabilized by LEQG control gain
matrix C.

4.2. Case of actuators may be abnormal

Now, we study the reliable design for possible abnormal functioning of

actuators. Following the design procedure in Section 3 with B and R are re-
placed by BX0 and RX0 , respectively, we obtain the reliable design solutions H
and K for AREs (36) and (26) as

H ¼ 28:8645 10:0494
10:0494 14:6868

� 	
ð54Þ

and

K ¼ 28:8723 10:0535
10:0535 14:6890

� 	
: ð55Þ

The corresponding optimal state feedback control gain of the proposed reliable

design is attained from (40) as

C ¼ 0:0484 0:2886
1:2546 1:4925

� 	
: ð56Þ

The eigenvalues of the controlled system are found to be kðA 	 BCÞ ¼ 0:9593
and 0.1870. The scalars in Theorem 2 are calculated to be a ¼ 0:9317, b ¼
0:1847 and c ¼ 0:8937. From Theorem 2, the bounds of gain margins for nX0i

and nXi are depicted in Fig. 2. From Fig. 2, A 	 ðBNÞKC is stable for nX0 ¼ 1
and 0:0544 < nX < 2:3988.
Table 1 below shows the reliable controller design with N ¼ 200 in (18) and

the initial value �xx0 ¼ ½1 0
T.
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From Table 1, the standard LEQG design makes the system to be unstable

for BX ¼ 0. However, the proposed reliable design still can tolerate the case for
BX ¼ 0 with the tradeoff for higher performance index.

5. Conclusions

In this paper, we have studied the reliable stabilization of discrete-time

systems using LEQG approach. A procedure has been derived for the design of

reliable discrete LEQG control. The key is to find the ARE solutions H and K
for reliable controller, which maintains system stability despite the abnor-
mal operation of actuators. In additions, the bounds of gain margins for the

feedback control is also obtained as in Theorem 2. In contrast to the traditional

LQG method, LEQG control design explicitly takes both the system and

measurement covariances into consideration. Moreover, the LQG control law

was shown to be a special case of the LEQG control when tunable scalar l
tends to zero.

Table 1

Comparisons of different control designs

System characteristic Performance index from (17) Closed-loop

eigenvalues

½BX0 BX
 (standard design)
Normal system ½BX0 BX
 1.2407 0.9502, 0.6039

Faulty system with ½BX0 0
 Not available 1.0083, 0.9765

BX0 only (reliable design)

Normal system ½BX0 BX
 1.2514 0.9593, 0.1870

Faulty system with ½BX0 0
 10.8352 0:9855� 0:0057i

Fig. 2. The stability bounds of (nX0 ; nX).
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Appendix A. Development of LEQG control algorithm

Eqs. (17) and (18) can be rewritten in terms of a nested conditional expec-

tation as

PI ¼ E EjD0 EjD1 � � �EjDN l exp
l
2

U
h in o

� � �
n on on o

: ðA:1Þ

Let

WðDkÞ ¼ EjDk exp
l
2

U
h in o

: ðA:2Þ

A recursive formula for WðDkÞ can be obtained from (A.1) and (A.2) as

WðDkÞ ¼ EjDkfWðDkþ1Þg for k ¼ 0; . . . ;N 	 1: ðA:3Þ

Moreover,

WðDN Þ ¼ EjDN exp
l
2

x̂xTNQN x̂xN

"((
þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#))

¼ aN exp
l
2

x̂xTNHN x̂xN

"(
þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#)
; ðA:4Þ

where aN � 1 and HN � QN .

From Eqs. (9)–(11), (A.3) and (A.4), we then have

WðDN	1Þ ¼ EjDN	1 exp
l
2

x̂xTNHN x̂xN

"((
þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#))

¼ EjDN	1 exp
l
2

ð�xxN

"((
þ KNsN ÞTHN ð�xxN þ KNsN Þ

þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#))

¼ exp l
2

XN	1

k¼0
ðx̂xTk Qkx̂xk

(
þ uTk RkukÞ

)Z 1

	1
exp

l
2
½ð�xxN

n
þ KNsN ÞT
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� HN ð�xxN þ KNsN Þ

o 1

ð2pÞnjSN j½ 
1=2
exp

�
	 1
2
sTNS	1

N sN

�
dsN

¼ exp l
2

XN	1

k¼0
ðx̂xTk Qkx̂xk

(
þ uTk RkukÞ

)Z 1

	1

1

½ð2pÞnjSN j
1=2

� exp
�
	 1
2
½sTN ðS	1

N 	 lKTNHNKN ÞsN 	 l�xxNTHN�xxN

	 lðKNsNÞTHN�xxN 	 l�xxTNHNKNsN 

�
dsN : ðA:5Þ

Suppose S	1
N > lKTNHNKN . It is clear that Eq. (A.5) can be rewritten as

WðDN	1Þ ¼
jðS	1

N 	 lKTNHNKN Þ	1j
jSN j

" #1=2
exp

l
2

XN	1

k¼0
ðx̂xTk Qkx̂xk

(
þ uTk RkukÞ

)

� exp
�
	 1
2
½ 	 l�xxTNHN�xxN 	 ðlKTNHN�xxN ÞTðS	1

N 	 lKNHNKN Þ	1

� ðlKTNHN�xxN Þ

� Z 1

	1

1

½ð2pÞnjðS	1
N 	 lKT

NHNKN Þ	1j
1=2

*

� exp
�
	 1
2
½sN 	 ðS	1

N 	 lKTNHNKN Þ	1ðlKTNHN�xxN Þ
T

ðS	1
N 	 lKTNHNKN Þ½sN 	 ðS	1

N 	 lKTNHNKN Þ	1ðlKTNHN�xxN Þ

�
dsN

+
:

ðA:6Þ
Since the integral term in the bracket h�i of (A.6) equals one, we then have

WðDN	1Þ ¼ aN
jðS	1

N 	 lKTNHNKN Þ	1j
jSN j

" #1=2
exp

l
2

XN	1

k¼0
ðx̂xTk Qkx̂xk

(
þ uTk RkukÞ

)

� exp l
2
�xxTN ½HN

n
þ lHNKNðS	1 	 lKTNHNKNÞ	1KTNHN 
�xxN

o
:

ðA:7Þ

Define

WðDN	1Þ � aN	1 exp
l
2

�xxTNKN�xxN

"(
þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#)
: ðA:8Þ

From (A.7) and (A.8), we have

KN � HN þ lHNKN ðS	1
N 	 lKTNHNKN Þ	1KTNHN ðA:9Þ
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and

aN	1 � aN
jðS	1

N 	 lKTNHNKN Þ	1j
jSN j

" #1=2

¼ aN jI 	 lKTNHNKNSN j	1=2: ðA:10Þ
From Eqs. (15) and (A.8) can be rewritten as

WðDN	1Þ ¼ aN	1 exp
l
2

ðAN	1x̂xN	1

"(
þ BN	1uN	1ÞTKN ðAN	1x̂xN	1

þ BN	1uN	1Þ þ
XN	1

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#)
: ðA:11Þ

Let

PI� � min
u0;...;uN	1

EfWðDN	1Þg ¼ min
u0;...;uN	2

Efmin
uN	1

WðDN	1Þg: ðA:12Þ

By solving the optimal condition of (A.12) from

oWðDN	1Þ
ou�N	1

¼ 0; ðA:13Þ

we have the following optimal control law:

u�N	1 ¼ 	ðRN	1 þ BTN	1KNBN	1Þ	1BTN	1KNAN	1x̂xN	1: ðA:14Þ

Substituting (A.14) into (A.11), we have

PI�ðDN	1Þ � aN	1 exp
l
2

x̂xTN	1HN	1x̂xN	1

"(
þ
XN	2

k¼0
ðx̂xTk Qkx̂xk þ uTk RkukÞ

#)
;

ðA:15Þ

where

HN	1 ¼ QN	1 þ ATN	1½KN 	 KNBN	1ðRN	1 þ BTN	1KNBN	1Þ	1BTN	1KN 
AN	1:

ðA:16Þ

Applying the procedure above recursively backward in time, we will get the

feedback control input u� for each stage.

Appendix B

Let

X � R þ BTKB � X1 X2
X T2 X3

� 	
; ðB:1Þ
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where X1 ¼ RX0 þ BTX0KBX0 , X2 ¼ BTX0KBX and X3 ¼ RX þ BTXKBX. We have

ðA 	 BNCCÞTKðA 	 BNCCÞ 	 K

¼ 	Q þ H 	 K þ ATKBX0 ðRX0 þ BTX0KBX0 Þ	1BTX0KA

	 ATKBNCC 	 CTNCBTKA þ CTNCBTKBNCC

¼ 	Q 	 lHKðS	1 	 lKTSKÞ	1KTH þ ATKB
I

0

� 	

� ½I 0
ðR
�

þ BTKBÞ
I

0

� 	�	1

½I 0
BTKA 	 CTðR þ BTKBÞNCC

	 CTNCðR þ BTKBÞC þ CTNCðR þ BTKBÞNCC 	 CTNCRNCC

� 	QC 	 CTYC; ðB:2Þ

where

QC � Q þ lHKðS	1 	 lKTSKÞ	1KTH P 0; ðB:3Þ

Y � Y1 Y2
Y T2 Y3

� 	
ðB:4Þ

and

Y1 � NX0RX0NX0 	 ðI 	 NX0 ÞX1ðI 	 NX0 Þ; ðB:5Þ

Y2 � 	ðI 	 NX0 ÞX2ðI 	 NXÞ; ðB:6Þ

Y3 � X3 	 X T2 X	1
1 X2 þ NXRXNX 	 ðI 	 NXÞX3ðI 	 NXÞ: ðB:7Þ

It is known (e.g. Gajic and Qureshi [12]) that A 	 BNCC is stable if

ðA 	 BNCCÞTKðA 	 BNCCÞ 	 K6 0. Thus, from (B.2) the matrix A 	 BNCC is
stable if Y > 0.
By employing elementary row and column operations on matrix Y, we

have

I 	Y2Y 	1
3

0 I

� 	
Y1 Y2
Y T2 Y3

� 	
I 0

	Y 	1
3 Y T2 I

� 	
¼ Y1 	 Y2Y 	1

3 Y T2 0

0 Y3

� 	
: ðB:8Þ

It is obvious from (B.8) that the matrix Y > 0 if Y3 > 0 and Y1 	 Y2Y 	1
3 Y T2 > 0.

Similarly, we have

I 0

	Y T2 Y 	1
1 I

� 	
Y1 Y2
Y T2 Y3

� 	
I 	Y 	1

1 Y2
0 I

� 	
¼ Y1 0

0 Y3 	 Y T2 Y 	1
1 Y2

� 	
: ðB:9Þ

This leads to the result of Y > 0 if Y1 > 0 and Y3 	 Y T2 Y 	1
1 Y2 > 0. Now, we try

to realize the two sufficient conditions above for providing Y > 0. Let
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a ¼ ½kminðRX0 Þ=kmaxðX1Þ
1=2; ðB:10Þ

b ¼ kminðRXÞ=kmaxðX3Þ; ðB:11Þ

c ¼ kminðX3 	 X T2 X	1
1 X2Þ=kmaxðX3Þ; ðB:12Þ

d ¼ kmaxfX T2 ½RX0N 2
X0 	 X1ðI 	 NX0 Þ2
	1X2ðI 	 NX0 Þ2g=kmaxðX3Þ ðB:13Þ

and

f ¼ kmaxfX2½ðX3 	 X T2 X
	1
1 X2Þ þ RXN 2

X 	 X3ðI 	 NXÞ2
	1X T2 ðI 	 NXÞ2g
=kmaxðX1Þ: ðB:14Þ

Here kmaxð�Þ and kminð�Þ denote the maximum and minimum eigenvalues of a
matrix, respectively.

Case 1: (Conditions for Y1 > 0 and Y3 	 Y T2 Y 	1
1 Y2 > 0)

First, we consider the condition for Y1 > 0. Since 0 < a < 1, from (B.5) we
then have Y1 > 0 if

kminðRX0 ÞN 2
X0 > kmaxðX1ÞðI 	 NX0 Þ2:

Using (B.10), we have Y1 > 0 if

½ð1	 aÞNX0 	 I 
½ð1þ aÞNX0 	 I 
 < 0:

This leads to the result of Y1 > 0 if

1

1þ a
I < NX0 <

1

1	 a
I ;

i:e:;
1

1þ a
< nX0i <

1

1	 a
for all i ¼ 1; . . . ; r:

Next, we solve for the condition Y3 	 Y T2 Y 	1
1 Y2 > 0.

It is observed from (B.5)–(B.7) that

Y3 	 Y T2 Y 	1
1 Y2 ¼ RXN 2

X þ ðX3 	 X T2 X	1
1 X2Þ 	 X3ðI 	 N 2

XÞ 	 ðI 	 NXÞ
� X T2 ðI 	 NX0 Þ½RX0N 2

X0 	 X1ðI 	 NX0 Þ2
	1ðI 	 NX0 ÞX2ðI 	 NXÞ:

We then have Y3 	 Y T2 Y 	1
1 Y2 > 0 if

kminðRXÞN 2
X þ kminðX3 	 X T2 X	1

1 X2Þ 	 kmaxðX3ÞðI 	 N 2
XÞ

	 kmaxfX T2 ½RX0N 2
X0 	 X1ðI 	 NX0 Þ2
	1X2ðI 	 NX0 Þ2gðI 	 NXÞ2 > 0:

Using the notation defined in (B.11)–(B.13), we have Y3 	 Y T2 Y 	1
1 Y2 > 0 if

bN 2
X þ cI 	 ðI 	 NXÞ2 	 dðI 	 NXÞ2 > 0:
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From (41), the sufficient condition for Y3 	 Y T2 Y 	1
1 Y2 > 0 can be rewritten as

bn2Xi þ c 	 ð1	 nXiÞ2 	 dð1	 nXiÞ2 > 0 for all i ¼ 1; . . . ;m	 r:

Case 2: (Conditions for Y3 > 0 and Y1 	 Y2Y 	1
3 Y T2 > 0)

Similarly, since 0 < b < 1 and 0 < c < 1, we have Y3 > 0 if

kminðRXÞN 2
X þ kminðX3 	 X T2 X	1

1 X2Þ > kmaxðX3ÞðI 	 NXÞ2:

That is, we have Y3 > 0 if

½ð1	 bÞNX 	 ð1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c	 bc

p
ÞI 
½ð1	 bÞNX 	 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p
ÞI 
 < 0:

The sufficient condition for Y3 > 0 can also be rewritten as

1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
I < NX <

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
I ;

i:e:;
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
< nXi <

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ c 	 bc

p

1	 b
for all i ¼ 1; . . . ;m 	 r:

From (B.5)–(B.7),

Y1 	 Y2Y 	1
3 Y T2 ¼ RX0N 2

X0 	 X1ðI 	 NX0 Þ2 	 ðI 	 NX0 ÞX2ðI 	 NXÞ

� ½ðX3 	 X T2 X	1
1 X2Þ þ RXN 2

X 	 X3ðI 	 NXÞ2
	1ðI 	 NXÞX T2 ðI 	 NXÞ:

Thus, we have Y1 	 Y2Y 	1
3 Y T2 > 0 if

kminðRX0 ÞN 2
X0 	 kmaxðX1ÞðI 	 NX0 Þ2 	 kmaxfX2½ðX3 	 X T2 X

	1
1 X2Þ þ ðRXÞN 2

X

	 X3ðI 	 NXÞ2
	1X T2 ðI 	 NXÞ2gðI 	 NX0 Þ2 > 0:

From (B.10) and (B.14), the above condition can be simplified as

a2N 2
X0 	 ðI 	 NX0 Þ2 	 f ðI 	 NX0 Þ2 > 0:

i:e:; a2n2X0i 	 ð1	 nX0iÞ2 	 f ð1	 nX0iÞ2 > 0 for all i ¼ 1; . . . ; r:

Results of Theorem 2 are hence implied.
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