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Abstract

Issue of robust control for non-linear affine systems with uncertainties appearing in

both drift and non-drift terms are presented. Based on Lyapunov function approach,

control laws are proposed to guarantee uniformly asymptotic stability of the equilib-

rium point. To facilitate the design and simplify the checking procedure, stabilization

control for the uncertain systems possess asymptotic stabilizable nominal time-invariant

driftness terms are proposed for the demonstration of robust design.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Robust control; Uncertain systems; Lyapunov functions; Matched and mismatched

uncertainties

1. Introduction

In the recent years, robust stabilization of non-linear systems have been

widely discussed (see e.g. [1,3–5,8,10–13,15]). For instance, Gutman [5] devel-

oped discontinuous min–max controllers to asymptotically stabilize matched-

type uncertain dynamics. Corless and Leitmann [4] employed the same
approach to design continuous state feedback controllers for guaranteeing

uniform ultimate boundedness of matched-type uncertain system trajectories.

Barmish et al. [1] introduced the concept of practical stabilizability and pro-

posed stabilizing controllers for systems with matched-type uncertainties via

Lyapunov stability. Using a differential-geometric approach, Kravaris and
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Palanki [8] designed a class of stabilizing controllers for matched-typed un-

certain dynamical systems. Qu [11] introduced the concept of equivalently
matched uncertainties and investigated global asymptotic stabilization of a

class of non-linear dynamical systems with so-called ‘‘equivalently matched

uncertainties’’. He also employed the backstepping design method to the ro-

bust control of the uncertain systems with generalized matching condition [12].

Wang et al. [15] employed differential geometric feedback linearization to deal

with robust stabilization of uncertain systems with mismatched time-varying

uncertainties.

The main goal of this paper is to study the robust control of non-linear
affine systems. The uncertainties are supposed to appear in both drift and

driftless terms of the system dynamics. Those uncertainties appearing in the

drift term are assumed to be in equivalently matched-type as in [11], however,

those appearing in the input-related matrix are allowed to be more general than

those in [11]. Moreover, in this paper we study both local and global cases. To

facilitate the proposed design, we also study the robust control of the uncertain

systems without assuming the stability of the nominal drift part. This might

give a guide to the construction of Lyapunov function for the implementation
of control laws.

The paper is organized as follows. In Section 2, we briefly introduce the

considered uncertain systems and some basic assumptions of [11]. An as-

sumption is then introduced to relax the requirements of the equivalently

matched-type uncertainties appearing in driftless part. It is followed by the

design of control laws for the uncertain system having asymptotic stabilizable

nominal driftless part. An illustrative example is also given to demonstrate the

use of the main results. Finally, Section 3 gives the conclusions.

2. Robust stabilization of the uncertain systems

Consider a class of non-linear affine systems with uncertainties as given by

_xxðtÞ ¼ f ðxðtÞ; tÞ þ Df ðxðtÞ; qðtÞ; tÞ þ fgðxðtÞ; tÞ þ DgðxðtÞ; qðtÞ; tÞgu ð1Þ

with xðt0Þ ¼ x0. Here, t 2 R denotes time, xðtÞ 2 Rn is the state vector, u 2 Rm is

the control vector, qðtÞ 2 Rp is the uncertainty and f ð�; �Þ, Df ð�; �; �Þ, gð�; �Þ and

Dgð�; �; �Þ, respectively, are known vectors and matrix functions with appro-

priate dimensions. We decompose the uncertainties into matched and mis-

matched parts (for definition, see e.g., [1]) as

Df ðx; q; tÞ ¼ gðx; tÞDfmðx; q; tÞ þ Df�mmðx; q; tÞ ð2Þ

and

Dgðx; q; tÞ ¼ gðx; tÞDgmðx; q; tÞ þ Dg�mmðx; q; tÞ: ð3Þ
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For system (1), Assumptions 1 and 2 below are introduced to guarantee the

existence of classical solution.

Assumption 1. The uncertainty qð�Þ : R ! Rp, is Lebesgue measurable and its
values qðtÞ lie within a pre-specified compact set Q 
 Rp for all t 2 R.

Assumption 2. The functions f ð�; �Þ : Rn � R ! R, Df ð�; �; �Þ : Rn � Rp � R !
Rn and Dgð�; �; �Þ : Rn � Rp � R ! Rn�m are all continuous.

Note that, it is known that continuous and piecewise continuous functions

are two kinds of Lebesgue measurable functions (e.g., [14]). Regarding the

nominal system and the uncertainties, [11] introduced the following three as-

sumptions:

Assumption 3. The origin of the uncontrolled nominal model _xx ¼ f ðx; tÞ of
system (1) is locally uniformly asymptotically stable. In particular, there exists

a neighborhood Xx, a smooth function (i.e., continuously differentiable func-

tion) V : Xx � R ! Rþ and continuous, strictly increasing functions

ci : Rþ ! Rþ, i ¼ 1; 2; 3, with

cið0Þ ¼ 0; i ¼ 1; 2; 3 ð4Þ

lim
r!1

ciðrÞ ¼ 1; i ¼ 1; 2 ð5Þ

such that for all ðx; tÞ 2 Xx � R,

c1ðkxkÞ6 V ðx; tÞ6 c2ðkxkÞ ð6Þ

and

oV ðx; tÞ
ot

þrT
x V ðx; tÞf ðx; tÞ6 � c3ðkxkÞ: ð7Þ

Here k � k denotes the Euclidean norm and rT
x V ðx; tÞ denotes the transpose of

the column vector rxV ðx; tÞ ¼ o
ox V ðx; tÞ.

Assumption 4. There exist two known, non-negative continuous functions

emðx; tÞ and e�mmðx; tÞ such that

(i) kDfmðx; q; tÞk6 emðx; tÞ and

(ii) krT
x V ðx; tÞDf�mmðx; q; tÞk6 e�mmðx; tÞ and e�mmðx; tÞ=krT

x V ðx; tÞgðx; tÞk is uni-
formly bounded with respect to t. Here, the two scalar functions emðx; tÞ
and e�mmðx; tÞ are assumed to be uniformly bounded with respect to t.

Assumption 5. The uncertainties of system (1) appear in non-drift part satis-

fying the following condition:
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inf
ðx;q;tÞ

kmin I
��

þ 1

2
ðDgmðx; q; tÞ þ DgT

mðx; q; tÞÞ
�
� krT

x V ðx; tÞDg�mmðx; q; tÞk
krT

x V ðx; tÞgðx; tÞk

�

P g > 0: ð8Þ

Here, I and kminð�Þ denote, respectively, the identity matrix and the smallest

eigenvalue of a symmetric matrix.

Note that, the uncertainties Df�mmðx; q; tÞ in Assumption 4 and Dg�mmðx; q; tÞ in

Assumption 5 are referred as the so-called ‘‘equivalently matched-type’’ uncer-

tainties [11]. From Assumptions 4 and 5, rT
x V ðx; tÞDf�mmðx; q; tÞ and rT

x V ðx; tÞ�
Dg�mmðx; q; tÞ must vanish when rT

x V ðx; tÞgðx; q; tÞ ¼ 0.
Under Assumptions 1–5, [11] proposed a class of control laws that makes

the origin of the closed-loop uncertain system globally asymptotically stable.

However, the stability conclusion can be derived under a more general as-

sumption as given in Assumption 6 below. In addition, both local and global

cases will also be considered in this study. Details are given as follows.

First, we introduce the next assumption, which can also be found in ([13],

condition 2.3) and ([2], Assumption 5) for a more general version. However,

Qu only studied the global result and Chen only obtained practical stability
result.

Assumption 6. Dgðx; q; tÞ is uniformly bounded with respect to time and there

exists an g > 0 such that

DT
x V ðx; tÞDgðx; q; tÞgTðx; tÞrxV ðx; tÞP ðg � 1Þ � krT

x V ðx; tÞgðx; tÞk
2 ð9Þ

for all (x; q; t) with x 2 Xx and q 2 Xq, where Xx is a neighborhood of x ¼ 0 and

Xq denotes the region of the uncertainty parameter q.

To study the relationship between Assumption 5 and 6, we show in Lemma

1 below that condition (8) implies condition (9).

Lemma 1. Condition (8) implies Condition (9).

Proof. Suppose condition (8) holds. Then multiplying (8) by krT
x V ðx; tÞg

ðx; tÞk2
, we have for all (x; q; t),

kmin I
�

þ 1
2
ðDgmðx; q; tÞ þ DgT

mðx; q; tÞÞ
�
krT

x V ðx; tÞgðx; tÞk
2

� gkrT
x V ðx; tÞgðx; tÞk

2 P krT
x V ðx; tÞDg�mmðx; q; tÞk � krT

x V ðx; tÞgðx; tÞk:
ð10Þ

From the Cauchy–Schwartz Inequality, we have jvT
1 v2j6 kv1k � kv2k for any

vectors v1; v2 2 Rn. Also, it is known that kminðAÞ � kvk2
6 vTAv for any A ¼

AT 2 Rn�n and v 2 Rn. Inequality (10) then leads to
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rT
x V ðx; tÞgðx; tÞfI þ Dgmðx; q; tÞggTðx; tÞrxV ðx; tÞ

� grT
x V ðx; tÞgðx; tÞgTðx; tÞrxV ðx; tÞ

P �rT
x V ðx; tÞDg�mmðx; q; tÞgTðx; tÞrxV ðx; tÞ:

ð11Þ

Here, we have used the fact that 1
2
½Dgmðx; q; tÞ þ DgT

mðx; q; tÞ� ¼ Dgmðx; q; tÞþ
1
2
½DgT

mðx; q; tÞ � Dgmðx; q; tÞ� with DgT
mðx; q; tÞ � Dgmðx; q; tÞ an antisymmetric

matrix and that xTBx ¼ 0 for all x if B is an antisymmetric matrix. Rearranging

these terms, we have

rT
x V ðx; tÞfgðx; tÞDgmðx; q; tÞ þ Dg�mmðx; q; tÞggTðx; tÞrxV ðx; tÞ
P ðg � 1ÞrT

x V ðx; tÞgðx; tÞgTðx; tÞrxV ðx; tÞ: ð12Þ

Since Dgðx; q; tÞ ¼ gðx; tÞDgmðx; q; tÞ þ Dg�mmðx; q; tÞ, the assertion is then

proved. �

Lemma 1 shows that Assumption 6 is more general than Assumption 5. It is
noted that the converse of Lemma 1 is not true. An example is given in Ex-

ample 1 below.

Example 1. Consider system (1) with xðtÞ, uðtÞ, qðtÞ 2 R2, gðx; tÞ ¼ diagfx1; x3
2g

and f ðx; tÞ ¼ 0. Also, the uncertainties given by (2) and (3) are

Df ðx; q; tÞ ¼ 0; ð13Þ

Dgmðx; q; tÞ ¼
q1 2

2 q2

� �
for q1; q2 P

3

4
ð14Þ

and

kDg�mmðx; q; tÞk6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

1 þ x8
2

q
: ð15Þ

For q1 ¼ q2 ¼ 1, we have

kmin I
�

þ 1
2
½Dgmðx; q; tÞ þ DgT

mðx; q; tÞ�
�
¼ 0: ð16Þ

It follows that there does not exist an g > 0 such that condition (8) holds.
However, we can show that Assumption 6 holds for such system. To see this,

choose

V ðx1; x2Þ ¼ 1
2
ðx2

1 þ x2
2Þ:
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It follows that

rT
x V ðx; tÞDgðx; q; tÞgTðx; tÞrxV ðx; tÞ

¼ rT
x V ðx; tÞgðx; tÞDgmðx; q; tÞgTðx; tÞrxV ðx; tÞ

þ rT
x V ðx; tÞDg�mmðx; q; tÞgTðx; tÞrxV ðx; tÞ

P q1x4
1 þ q2x8

2 þ 4x2
1x

4
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
� ðx4

1 þ x8
2Þ

P ðg � 1Þ � ðx4
1 þ x8

2Þ
¼ ðg � 1Þ � krT

x V ðx; tÞgðx; tÞk
2

for all x around the neighborhood Xx ¼ fxj kxk6 1=4g of the origin for

0 < g < 3
2
, which implies that Assumption 6 holds.

To achieve certain stability performance, several control laws have been

proposed (see e.g. [3,4,8,11]). Among these control laws, in order to achieve

maximum control effort regarding the Lyapunov function V ðxÞ for the nominal

system, they are usually chosen in the form of

uðx; tÞ ¼ �wðx; tÞgTðx; tÞrxV ðx; tÞ; ð17Þ

where wðx; tÞ is a non-negative scalar function to be determined by compen-

sating the effect of uncertainties. Under the control law given by (17) and the

decomposition of uncertainties given (2) and (3), the time derivative of V ðxÞ
along the trajectories of the uncertain system (1) is calculated as

_VV ¼ oV ðx; tÞ
ot

þrT
x V ðx; tÞ½f ðx; tÞ þ gðx; tÞDfmðx; q; tÞ þ Df�mmðx; q; tÞ�

� wðx; tÞrT
x V ðx; tÞ½gðx; tÞ þ Dgðx; q; tÞ�gTðx; tÞrxV ðx; tÞ

6 � c3ðkxkÞ þ emðx; tÞkrT
x V ðx; tÞgðx; tÞk þ e�mmðx; tÞ

� gwðx; tÞkrT
x V ðx; tÞgðx; tÞk

2 ð18Þ

Here, we have used Assumption 6 in the last inequality above. Choose wðx; tÞ to

satisfy

wðx; tÞP
emðx; tÞ � krT

x V ðx; tÞgðx; tÞk þ e�mmðx; tÞ
g � krT

x V ðx; tÞgðx; tÞk
2

ð19Þ

It follows that

_VV 6 � c3ðkxkÞ ð20Þ

We hence have the next results.

Theorem 1. Consider the uncertain system (1) satisfying Assumptions 1–4 and 6.

Then the origin is locally (resp., globally if Xx ¼ Rn) uniformly asymptotically
stable if the control law is chosen in the form (17) with wðx; tÞ satisfying (19).
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To relax the possible discontinuity of the control law, [11] used the relation
_VV 6 � c3ðkxkÞ þ 2�e�bt instead of Inequality (20) for controller design. With a
slight modification of Qu�s approach [11], we propose the control law (17) with

wðx; tÞ being given by

wðx; tÞ ¼

e2
mðx; tÞ

gðemðx; tÞkrT
x V ðx; tÞgðx; tÞk þ �e�btÞ

þ e2
�mmðx; tÞ

gðe�mmðx; tÞ�e�btÞ � krT
x V ðx; tÞgðx; tÞk

2
if x 6¼ 0;

0 otherwise;

8>>>><
>>>>:

ð21Þ

where � and b are two positive constants determined by the designer to achieve

desired stability performance. Note that, by Assumption 4, e2
�mmðx; tÞ=

krT
x V ðx; tÞgðx; tÞk

2
is uniformly bounded with respect to t and rT

x V ð0; tÞ ¼ 0

since V ðx; tÞ is a locally positive definite function. These imply that uðx; tÞ is

continuous everywhere and

kuðx; tÞjj6 emðx; tÞ
g

þ e�mmðx; tÞ
gkrT

x V ðx; tÞgðx; tÞk
: ð22Þ

We then have the next result

Theorem 2. Suppose the uncertain system (1) satisfying Assumption 1–4 and 6.

Then the origin is locally (resp., globally if Xx ¼ Rn) asymptotically stable if the
control laws uðx; tÞ are chosen in the form of (17) with wðx; tÞ in (21) and � sat-
isfying condition (A.2).

Proof. The proof is analogous to those of [11] with a slight modification.

Details are given in Appendix A. �

It is observed from Theorems 1 and 2 that the designed stabilizing control

laws strongly depend on the given Lyapunov function V ðx; tÞ for the nominal
drift part f ðx; tÞ. However, in general, there is no guideline for the construction

of Lyapunov function. To facilitate the design of control laws and simplify the

checking procedure, we can rewrite the uncertain system (1) as

_xxðtÞ ¼ f ðx; tÞ þ Df ðx; q; tÞ þ fgðxÞ þ D~ggðx; q; tÞgu; ð23Þ

where D~ggðx; q; tÞ ¼ gðx; tÞ þ Dgðx; q; tÞ � gðxÞ. That is, we extract time-invariant

part gðxÞ from gðx; tÞ and put the remaining time-varying part into the un-
certain term. In the following, instead of requiring the uniformly asymptotic

stability assumption on the nominal drift part f ðx; tÞ, we assume that

_xx ¼ gðxÞu ð24Þ
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is locally asymptotically stabilizable at the origin. As given in [9], such an as-

sumption is equivalent to Assumption 7 below.

Assumption 7. There exists a neighborhood Xx of the origin x ¼ 0 and a

smooth locally positive definite function V ðxÞ satisfying

rT
x V ðxÞgðxÞ 6¼ 0 for all x 2 Xx n f0g: ð25Þ

Remark 1. Note that, although Assumption 7 is a special case for (ii) of As-

sumption 4, it might provide a guideline for the construction of Lyapunov

function V ðxÞ for some special cases. One of the results concerning the exis-

tence of a quadratic positive definite function V ðxÞ satisfying condition (25) can

be found in [9]. The results are obtained from Taylor�s series expansion of gðxÞ
and the determination of the local definiteness of a defined scalar function. It
was shown that, for instance, there exists a V ðxÞ satisfying condition (25) for

the linear driftless system _xx ¼ Bu (i.e., gðxÞ ¼ B) if B is a square non-singular

matrix. Also, condition (25) is satisfied for the bilinear driftless system
_xx ¼

Pm
i¼1 uiBix with

Pm
i¼1ðxTBixÞ2

> 0 for all x 6¼ 0, where x 2 Rn, ui 2 R and

Bi 2 Rn�n. In particular, the condition of
Pm

i¼1ðxTBixÞ2
> 0 is guaranteed when

one of the matrices Bi is definite. For details, please refer to [9].

Motivated by Assumption 7, Eq. (23) can then be rewritten as

_xx ¼ �gðxÞgTðxÞrxV ðxÞ þ ff ðx; tÞ þ Df ðx; q; tÞ þ gðxÞgTðxÞrxV ðxÞg
þ fgðxÞ þ D~ggðx; q; tÞgu: ð26Þ

Here, f ðx; tÞ does not require to satisfy Assumption 3. Let

f0ðxÞ ¼ �gðxÞgTðxÞrxV ðxÞ; ð27Þ

then the origin is an asymptotic stable equilibrium point for _xx ¼ f0ðxÞ if As-

sumption 7 holds [9]. By decomposing the uncertainty Df ðx; q; tÞ and f ðx; tÞ
into matched and mismatched parts, we can rewrite Eq. (26) as

_xxðtÞ ¼ f0ðxÞ þ gðxÞDfmðx; q; tÞ þ Df�mmðx; q; tÞ þ fgðxÞ þ D~ggðx; q; tÞgu: ð28Þ

From the above derivation, we then have the next result from Theorem 2.

Lemma 2. Suppose the uncertain system (26) satisfying Assumptions 1, 2, 4, 6

and 7 with Dgðx; q; tÞ being replaced by D~ggðx; q; tÞ. Then the origin is locally
(resp., globally if Xx ¼ Rn) asymptotically stable if the control laws uðx; tÞ are
chosen in the form of (17) with wðx; tÞ as in (21) and � satisfying condition (A.2).

For the demonstration of the proposed robust stabilization design, numer-

ical results for Example 1 are obtained as depicted in Fig. 1. In these simula-
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tions, the initial state and the positive definite function V ðxÞ are, respectively,

chosen to be x0 ¼ ð0:5;�0:3ÞT
and V ðxÞ ¼ 1

2
ðx2

1 þ x2
2Þ to make rT

x V ðxÞgðxÞ 6¼ 0
in a neighborhood of the origin. The system parameters and the uncertainties

are considered as q1 ¼ q2 ¼ 1, e�mmðx; tÞ ¼ 0, emðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x6

1 þ x14
2

p
and

Dg�mmðx; q; tÞ ¼
1

2

x4
2 sin x1 x2

1 cos x2

x2
1 cos x1 x4

2 sin x2

� �
ð29Þ

For the stabilization design, we choose g ¼ � ¼ b ¼ 1. Fig. 1(a) and (b),

respectively, show the time evolution of the norm of the system state with and

without uncertainities. These show that all the system states converge to the

origin, which agree with the results of Theorem 2. However, since the closed

loop system behaves like a polynomial system with order greater than one, the

convergent rate is getting smaller as system states get closer to the origin.

3. Conclusions

This paper has studied the robust stabilization of uncertain non-linear affine

systems. The uncertainties considered in this study are more general than that

Fig. 1. Norm of system states.
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of the so-called ‘‘equivalently matched-type’’. Since control laws strongly de-

pend on the given Lyapunov function, stabilization design is also proposed for
uncertain system with asymptotic stabilizable nominal driftless time-invariant

terms but not the stabilizability of the nominal drift part to provide a means of

the construction of Lyapunov function for fulfilling the design.

Appendix A (Proof of Theorem 2)

By direct calculation, we have from (17), (18) and (21) that

_VV 6 � c3ðkxkÞ þ 2�e�bt: ðA:1Þ

The constant � in (A.1) will be determined later to guarantee the uniformly
asymptotic stability of the origin. Choose r0 > 0 and q > 0 such that Br0

� Xx

and q < minkxk¼r0
c1ðkxkÞ, where Br0

denote the open ball with radius r0. It

implies that X1¼D fx 2 Br0
: c1ðkxkÞ6qg � Br0

. Define Xt;q¼D fx 2 Br0
jV ðx; tÞ6qg.

This leads to X2¼
D fx 2 Br0

: c2ðkxkÞ6 qg6Xt;q � X1. Choose � such that

� <
1

2
inf

x2X1nX2

c3ðkxkÞ: ðA:2Þ

It follows that _VV < 0 for all x 2 X1 n X2 and the state will remain inside X1 if

it starts inside X2. This shows uniformly stability of the origin. To show the

attractive property of the origin, it is noted that

0 6 V ðxðtÞ; tÞ
¼ V ðxðt0Þ; t0Þ þ

R t
t0
_VV ðx; ðsÞ; sÞds

6 V ðxðt0Þ; t0Þ þ
R t
t0
ð�c3ðkxðsÞkÞ þ 2�e�bsÞds:

ðA:3Þ

This implies that

lim
t!1

Z t

t0

c3ðkxðsÞkÞds6 V ðxðt0Þ; t0Þ þ
2�

b
e�bt0 < 1: ðA:4Þ

Moreover, the state trajectory xðtÞ is continuous (see e.g., [6]) and bounded

since the origin is uniformly stable. The boundedness property of xðtÞ together

with Assumptions 1, 2 and 6 imply that xðtÞ is uniformly continuous. Thus, the

function c3ðkxðtÞkÞ is also uniformly continuous. Then, from (A.4) and the use

of Babalat�s Lemma (see e.g., [7]), we have c3ðkxðtÞkÞ ! 0 as t ! 1. It follows

that xðtÞ ! 0 and the results of theorem is hence implied. �
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