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Abstract

This paper focuses on an integrated optimization problem that involves multiple qualitative and quantitative re-

sponses in the thin quad flat pack (TQFP) molding process. A fuzzy quality loss function (FQLF) is first applied to the

qualitative responses, since the molding defects cannot be simply represented by the relationship between molding

conditions and mathematical models. Neural network is then used to provide a nonlinear relationship between process

parameters and responses. A genetic algorithm together with exponential desirability function is employed to determine

the optimal parameter setting for TQFP encapsulation. The proposed method was implemented in a semiconductor

assembly factory in Taiwan. The results from this study have proved the feasibility of the proposed approach.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The manufacturing of integrated circuits has

become the heart of the electronic industry that is
now the second largest basic industry (behind ag-

riculture) and the fastest expanding manufacturing

industry in the world. In the past, product is the

only determinant of the profitability of a semi-

conductor company. However, over the last de-

cade, the ever-increasing competition had led to

the need for IC companies to also be able to

manufacture their products in an efficient and cost

effective manner. Increasingly, these companies

have turned to data intensive operational model-

ing and analysis tools and techniques because of
their potential to significantly improve the bottom

line performance [14].

Recently, IC packages have been diversified due

to increasing handy or high performance electronic

applications, which require smaller body, light-

weight, and high I/O connection. Thin quad flat

pack packages (TQFP) are applied to accommodate

higher I/Os and faster production cycle times. The
TQFP assembly process includes wafer mounting,

die sawing, die bonding, wire bonding, molding,

marking, plating, trimming and forming, and elec-

trical functional testing.
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This study is presents an integrated optimiza-

tion approach of neural networks, generic algo-

rithms, exponential desirability function, and

fuzzy theory for solving multiple qualitative and

quantitative response problems in the molding

process of TQFP.

2. The molding process of TQFP

TQFP packages are plastic die encasements

with lead contact distribution around the perime-

ters of the packages and can be referred to as ‘‘Gull

Wing’’ packages due to the shape of the very fine
contact leads (50:5 mm pitches) (Fig. 1). TQFP

can be seen in a wide area of applications includes

mobile communications, portable consumer elec-

tronics, portable computers, and PCMCIA cards

with pin counts ranging from 44 leads to 256.

The TQFP molding process is used to provide

mechanical support, connect and distribute sig-

nals, dissipate and distribute power, and insulate
electricity. The quality of the molding process de-

pends on the appropriate process parameter set-

tings such as mold temperature, clamp pressure,

transfer time, transfer pressure, cure time, and

heat-plate temperature (Table 1).

Three types of TQFP molding defects that are

most often encountered during operation and their

characteristics are considered in this study (Table
2). However, optimization of multiple responses

with qualitative and quantitative characters has

received little attention in engineering fraternity.

Complexity in decision-making is an issue con-

cerning parameter design for the TQFP molding

process. The excessive numbers of operation al-

ternatives exist in the manufacturing system,

which makes the selection of appropriate param-
eter combinations a difficult task. An alternative

methodology exploring the relationship between

parameters and identifying the optimal setup val-

ues is an example of experimental design, that

is, the Taguchi method. Although applying the

Taguchi method can successfully identify the op-

timal parameter settings in the factorial design, the

real optimal parameter values in the complete ex-
plored region cannot be guaranteed [11]. It is not

unusual in most semiconductors manufacturing

processes where engineers have to deal with mul-

tiple responses. Phadke [10] applied the Taguchi

method with engineer�s judgement to the selection

of the optimal parameters in a VLSI manufactur-

ing system with multiple responses. By human

judgement, the validity and feasibility of the ex-
perimental results cannot be assured. Further-

more, the design and analysis of multiple responses

that involve not only quantitative but also quali-

tative characteristics have received little attention

in the related literature. To make up for this

shortfall, an integrated optimization approach forFig. 1. The outline photographs of the TQFP package.

Table 1

TQFP molding process parameters

Parameter Definition

Mold temperature Temperature in the mold dies, control-

ling viscosity and cure rates of the mold

compound

Clamp pressure Pressure between upper and bottom

mold dies keeping from molding com-

pound linkage

Transfer time Operation time for filling molding cav-

ities

Transfer pressure Operation pressure in molding cavities

Cure time Cure time for solidifying the compound

in the cavities

Heat-plate

temperature

Preheating temperature for lead frames

before moving molding compound into

cavities

Table 2

TQFP molding defects and their characteristics

Defect type Characteristic

Void (y1) Linguistic

Resin bleed (y2) Linguistic

Warpage (y3) Numeric
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multiple responses by using fuzzy theory, neural

network, exponential desirability function, and

genetic algorithms in the TQFP molding process is

proposed in this paper.

The rest of this paper is organized as follows. A

brief description of fuzzy quality loss function,
neural network, genetic algorithms, and exponen-

tial desirability functions is provided first. An in-

tegrated procedure for optimizing the TQFP

molding process is presented in the next section.

Then an experimental design for the implementa-

tion of proposed procedure is illustrated, followed

by a benchmark of the proposed procedure and

Taguchi method. Concluding remarks are made in
the end.

3. Background information

This section will briefly introduce some portions

of fuzzy quality loss function, neural network,

genetic algorithms and exponential desirability
function used in this study.

3.1. Fuzzy quality loss function

The quality loss is the most widely used tech-

nique of evaluating the quality performance [8].

The concept of Taguchi�s loss function is applied

to formulating the quality loss of the linguistic
data in terms of the membership function. It is

shown that operating a process at the minimum of

the quality loss function has the additional benefit

of minimizing sensitivity of the product to noise

variation in the design parameter settings, leading

to robust designs automatically [1]. In this study,

we develop an approach by minimizing fuzzy

quality loss function (FQLF) of qualitative re-
sponses. The FQLF value is calculated based on

the quality loss of the categories of the qualitative

response. The FQLF can be formed as [5]

FQLF ¼
X
u2U

½ðu� utargetÞ2 � lðuÞ�; ð1Þ

lðuÞ ¼ rA � uAðuÞ þ rB � uBðuÞ þ rC � uCðuÞ þ 
 
 
 ;
ð2Þ

ri ¼
niP

8i;
i2fuzzy term

ni

; ð3Þ

where uA; uB; uC; . . . represent the membership

function of the fuzzy terms A, B, C; utarget denotes

the target value of the qualitative response. rA;
rB; rC; . . . are the related frequency of fuzzy terms

A, B, C, . . . in the experiment, and ni is the count

owing to the ith fuzzy term.

3.2. Neural network

Basically, a neural network approach can typi-

cally be constructed without any assumption

about the functional form of the relationship be-

tween predictors and responses [13]. In addition to

learning and extracting the process behavior from
previous operating information, this approach can

also be used as a model for process optimization.

The neural network approach holds a major ad-

vantage over the statistical method in that the

neural network is explicitly nonlinear through hid-

den layers. Neural networks have recently emerged

as a highly promising alternative to physically

based models and statistical methods of semicon-
ductor process modeling. Fig. 2 displays the gen-

eral structure of a feedforward multilayer neural

network used for semiconductor process modeling

that is typically trained via back-propagation [9].

3.3. Exponential desirability function

The desirability function approach attempts to
transform a multiresponse problem into a single

response problem by mathematical transformation

[3]. Kim and Lin [7] developed an approach based

Fig. 2. Topology of the back-propagation neural network.
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on maximizing exponential desirability functions

that do not require any assumptions regarding the

form or degree of the estimated response models.

Such an approach is robust to the potential in-

terdependency between response variables. Their

approach aims to identify the settings of the input
variables to maximize the degree of overall sat-

isfaction with respect to all the responses. The

exponential desirability function has been exten-

sively used to simultaneously optimize several re-

sponses. The exponential desirability function can

be formed as [7]

dðzÞ ¼
expðtÞ�expðtjzjÞ

expðtÞ�1
if t ¼ 0;

1 � jzj if t 6¼ 0:

�
ð4Þ

3.4. Genetic algorithms

For solving optimization problems, genetic al-
gorithms have been investigated recently and

shown to be effective at exploring a large and

complex space in an adaptive way guided by the

equivalent biological evolution mechanism [4,6].

Many conventional optimization methods start

from one point in the search area and then

move sequentially to achieve the optimal solution,

thereby operating rather locally and highly prone
to falling inside a coincidental local optimum. GAs

perform a global, random, and parallel search for

an optimal solution using simple computations.

Generally speaking, GAs start the search with a

population of randomly generated design candi-

dates known as the first generation. Once the first

generation is generated, GAs produce subsequent

generations based on three operators of repro-
duction, crossover, and mutation in an iterative

way.

4. Proposed optimization procedure

This study proposes an integrated optimizing

algorithm of the parameter settings in the TQFP
molding process that involves multiple qualitative

and quantitative responses. The proposed ap-

proach consists of three major stages. The first

stage of the procedure defines the linguistic fuzzy

term, defective category, and membership function

for each qualitative response. The value of fuzzy

quality loss function is then computed in the or-

ganized experiment. The next stage involves using

a BP network to derive the relationship model

between input parameters and output responses.
Notably, the trained network can accurately pre-

dict the behavior of the feasible parameter com-

binations. Thus, tuning the input parameters in the

trained network allows us to obtain the corre-

sponding responses. The exponential desirability

function is then used to transform the multiple

responses into a single response. During the third

stage, GA is applied to obtain the optimum degree
of satisfaction (k). Herein, the chromosome rep-

resents the possible solution. Each gene in the

chromosome represents the value of the input

parameter. For example, a manufacturing process

has three input parameters M, N, and O. The value

of the three parameters (M, N, O) can be rep-

resented by a chromosome, respectively. The es-

sential genetic operators during the iterative
procedure can be found in the previous section.

These operations are conducted to obtain the op-

timal response, which is evaluated by the fitness

function. Therefore, the optimal parameters con-

cerning the problem can be obtained. Fig. 3 sche-

matically depicts the proposed optimization

procedure. The detailed procedure is summarized

as follows:

Step 1. Define the qualitative and quantitative re-

sponses. Determine the control factors

and their levels.

Step 2. Identify the linguistic fuzzy sets, catego-

ries, and membership functions for quali-

tative responses.

Step 3. Conduct the experimental design.
Step 4. Collect the data and compute FLQF value

of each qualitative response.

Step 5. Develop a BP network model to obtain the

relationship between input parameters and

output responses.

Step 6. Apply the exponential desirability function

to transforming the multiple responses into

a single one. The trained network with a
modified single response is referred to as

a fitness function.

T.-L. Chiang, C.-T. Su / European Journal of Operational Research 147 (2003) 156–164 159



Step 7. Set the GA operating conditions (e.g.

population size, generation size, parame-

ter number, crossover rate, and mutation

rate).

Step 8. Create an initial population by randomly

selecting the value of the input parame-

ters.
Step 9. Repeat steps 10–14 until the stopping con-

dition is reached.

Step 10. Calculate the fitness value by inputting

the parameter values to the fitness func-

tion.

Step 11. Select the parameter values according to

the computed responses.

Step 12. Crossover the fitness parameter val-

ues.
Step 13. Mutate the parameter values to yield the

next generation.

Fig. 3. The proposed procedure for determining the optimal molding parameters.
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Step 14. Obtain the current optimal parameter

values.

Step 15. Obtain the optimal parameter settings.

5. Implementation

5.1. Conduction of the experiment

This study focuses on three types of TQFP

molding defects, i.e., void, resin bleed and war-

page, which are most often encountered during the

operation. In order to optimize the molding pro-
cess with respect to each response, an engineering

experiment on the 1.4 mm TQFP100 molding

process is conducted. Table 3 lists the process pa-

rameters and values for each level. Thirty-six trials

(36 strips of lead frames) are conducted by a well-

structured orthogonal array L18.

A universal set of u � U ¼ f1; 2; 3; 4; 5g is de-

fined based on process engineer�s experience as the
categories of defect significance of void and resin

bleed from u ¼ 1 (the worst grade) to u ¼ 5 (the

best grade). Thus, the target value of the two

qualitative responses is 5 for each. The member-

ship functions of both fuzzy sets A (good) and B

(serious) with respect to defects of void and resin

bleed according to the impact on the final quality

can be given as:

For void:

A ¼ hgoodi ¼ 0:1

1
� 0:2

2
� 0:4

3
� 0:7

4
� 1:0

5
;

B ¼ hseriousi ¼ 1:0

1
� 0:9

2
� 0:3

3
� 0:1

4
� 0

5
:

For resin bleed:

A ¼ hgoodi ¼ 0

1
� 0:1

2
� 0:7

3
� 0:9

4
� 1:0

5
;

B ¼ hseriousi ¼ 1:0

1
� 0:8

2
� 0:5

3
� 0:2

4
� 0:1

5
:

Tables 4–6 list the membership value of each

category corresponding to each element in the
universal set U by applying Eqs. (2)–(5) to the

qualitative responses to void and resin bleed, re-

spectively. The FQLF of each run for the quali-

tative defects of void and resin bleed is computed

by Eq. (1). The experimental data (as shown in

Table 7) are then used to construct the relationship

model between parameters and responses through

the neural network training.

Table 3

Parameters level setting

Parameter Level 1 Level 2 Level 3

Mold temperatue (x1) 150 175 200

Clamp pressure (x2) 1500 1800 2100

Transfer time (x3) 3.0 6.0 9.0

Transfer pressure (x4) 300 600 900

Cure time (x5) 50 70 90

Heat-plate temperature (x6) 70 100 130

Table 4

Definition of the categories of the qualitative characteristics

Category Linguistic description of defects

I [very][good]

II [good]

III [not][good][and][not][serious]

IV [serious]

V [very][serious]

Table 5

The membership functions with respect to the category of void

Category of

response

Element of the universal set u

1 2 3 4 5

I 0.01 0.04 0.16 0.49 1

II 0.1 0.2 0.4 0.7 1

III 0 0.1 0.6 0.3 0

IV 1 0.9 0.3 0.1 0

V 1 0.81 0.09 0.01 0

Table 6

The membership functions with respect to the category of resin

bleed

Category of

response

Element of the universal set u

1 2 3 4 5

I 0 0.01 0.49 0.81 1

II 0 0.1 0.7 0.9 1

III 0 0.2 0.3 0.1 0

IV 1 0.8 0.5 0.2 0.1

V 1 0.64 0.25 0.04 0.01
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5.2. Determination of the fitness function

The BP neural network is used to develop the

required model. Eighty percent of the patterns for

training and 20% for testing are randomly selected

from Table 7. Fig. 4 displays the detailed neural

network architecture which the structure 6-4-3 is

selected under the best convergence criterion of the

root of mean square (RMSE).

In this study, all of the responses y1, y2 and y3

belong to the smaller-the-better type. Herein, the

exponential desirability function is used to solve
the multiresponse problem. We have

k ¼ minðd1; d2; d3Þ; ð5Þ
where di is calculated from Eq. (4). The engineer-

ing management agrees on employing convex ex-

ponential desirability functions for y1, y2 and y3

with t ¼ �3;�1, and )2, respectively, according to

their importance. Therefore, k is set as the fitness

function of the GA, which will be further explored

in the next section.

5.3. Optimization using genetic algorithms

Each input parameter in the TQFP molding
process is normalized to a value between 0 and

1and combined with others into one string. That

is, the input parameters listed in Table 3 are

transformed into the chromosome representation

ðx1; x2; x3; . . . ; x6Þ in a string. Strings are randomly

generated to form the initial population. When

GA is applied to optimize the TQFP molding pa-

rameter selection, the essential operators, includ-
ing reproduction, crossover and mutation should

Table 7

Experimental data

Test no. Void

(FQLF, 40

ea/2 strips)

Resin bleed

(FQLF, 40

ea/2 strips)

Warpage

(mil, two strips)

S1 S2

1 13.9 13.4 3.2 3.5

2 18.1 22.7 4.1 3.9

3 15.5 14.8 3.1 3.3

4 5.8 3.9 1.8 1.4

5 3.7 5.6 2.6 3.0

6 10.1 5.0 0.5 0.6

7 3.4 3.7 0.9 0.5

8 6.1 4.3 1.3 1.1

9 4.1 4.3 1.4 1.2

10 18.3 19.5 3.9 3.6

11 21.8 21.5 3.0 3.2

12 6.9 4.8 2.6 2.7

13 17.4 20.9 2.0 1.8

14 13.3 15.0 2.7 2.9

15 3.1 3.2 0.4 0.3

16 8.0 7.4 2.0 1.8

17 3.7 11.1 2.6 2.5

18 3.4 5.8 1.9 2.1

Fig. 4. Parameters-to-responses BP neural network.
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be determined in advance. Herein, a roulette wheel

approach is adopted as the selection procedure.

The crossover rate and mutation rate are set as 0.5
and 0.01, respectively. Fifty strings are randomly

generated to establish the initial population. No-

tably, 6000 generations were processed.

The above information is used and the GA is

executed 20 runs. Table 8 summarizes the imple-

mentation results. A greater value of k implies a

better degree of satisfaction in terms of compro-

mised solution. The largest k value is 0.9021 and
its optimum chromosome is (181, 1733, 4, 791,

88, 97). It indicates the optimal setting for the six

process parameters.

6. Confirmation experiment and benchmark

Many practitioners have applied Taguchi�s ap-
proach and sound engineering knowledge with

experience to tackling multiresponse problem [12].

This study finally conducted a comparison be-

tween the Taguchi method and the proposed ap-

proach under the optimum conditions. The

analysis of the 18 original trials shown in Table 3

by using the Taguchi method results in the optimal

settings for six control factors are as listed in Table
9. For benchmarking purpose, the Taguchi meth-

od and the proposed approach are again applied

to the analysis of 40 strips (20 units per strip) for

each at an IC assembly site. Table 10 compares the

implementation results and reveals the superior

quality of the proposed approach over Taguchi�s
approach.

According to the comparison in Table 10, the

proposed approach reveals better performance

more than 3.5% and 5.6% on the void and resin

bleed, respectively.

This study also employed the t-tests of the mean

values for warpage between the two approaches,

respectively; the t statistics are )5.46 with a P

value of 0.00001. Thus, there are strong evidences

to indicate that the means for warpage by the

proposed approach are better than the means by

the Taguchi�s approach.

7. Conclusion

This study is presents an integrated optimiza-

tion approach of neural networks, generic algo-

rithms, exponential desirability function, and

fuzzy theory for solving multiple qualitative re-

sponse problems, which has received little atten-

tion among the engineering fraternity. Fuzzy set

theory incorporates imprecision and subjectivity

into the model formulation and solution process.
The method of formalizing linguistic evaluation

based on fuzzy sets proposed by Zadeh [2,15] is

used in this study for providing more flexibility in

presentation by defining each qualitative response.

This study applies the fuzzy quality loss function

(FQLF) to represent the value of each qualitative

Table 10

A comparison between the Taguchi�s approach and the proposed approach

Probabilities by categories (void) Probabilities by categories (resin bleed) Warpage (mil)

I II III IV V I II III IV V �xx s

Proposed approach 0.88 0.11 0.01 0.0 0.0 0.94 0.06 0.0 0.0 0.0 1.4 0.3

Taguchi�s approach 0.85 0.12 0.03 0.0 0.0 0.89 0.11 0.0 0.0 0.0 2.1 0.5

Table 9

Optimum parameters identified by the proposed approach and

Taguchi approach

x1 x2 x3 x4 x5 x6

The proposed

approach

181 1733 4 791 88 97

Taguchi�s
approach

200 2100 6 600 90 100

Table 8

Implementation results of GA

Item Data

The largest k value in 20 runs 0.9021

The smallest k value in 20 runs 0.8531

Average k value 0.8819
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response. Therefore, operating a process at the

minimum of the FQLF has the additional benefit

of minimizing sensitivity of the product to noise

variation in the design parameters setting, leading

to robust designs automatically.

The results of the study have demonstrated that
the proposed methodology can be applied as a

very effective approach to optimizing multiple re-

sponses in the TQFP molding process. These set-

tings facilitate process engineers in achieving

acceptable process control during the production.

In addition, the improvement in process perfor-

mance enables factories to more easily manufac-

ture products with superior quality in the IC
assembly industry.
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