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Spin-orbit interaction and electron elastic scattering from impurities in quantum wells
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We present a theoretical study of the spin-dependent scattering of electrons from screened impurities in Ill-V
semiconductor quantum wells. Our calculation is based on the effective one-electronic-band Hamiltonian and
the spin-orbit coupling with the Coulombic potential of the impurities. We demonstrate that the spin-orbit
interaction can lead to recognizable magnitudes of spin asymmetry in the elastic-scattering cross section. Fairly
large values of the Sherman functigabout 0.01 are obtained for repulsive and attractive impurities in
quantum wells of narrow gap semiconductors.
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I. INTRODUCTION repulsive impurities can be precisely placed in heterostruc-
tures. Using this fact one can model theoretically the scatter-
A large number of studies of the electron transport ining from the impurities located insider outsidé? the con-
two-dimensional2-D) semiconductor systems has been car-ductive channel. Most of the theoretical simulations of 2-D
ried out over the past 40 yeaisee, for instance, Refs. 1)-8 electron elastic-scattering processes from the impurities were
This is especially important for electronic applications.conducted in detail in the first Born approximatfohHow-
Progress in modern semiconductor technologies has allowe?Ver, it is well known that when perturbation theory is used,
us to experimentally and theoretically model the variousthe dependence on spin in the elastic cross section appears
scattering mechanisms in 2-D semiconductor structure§nly in the approximation that follows the first Born
within a wide range of material parametéré.It is com-  approximatior>~2° For this reason, one should use other
monly accepted now that the electron mobility of a semicon2pproaches in calculations of the spin-dependent scattering
ductor 2-D heterostructure is determined by impurity scattercross section. In particular, this is the partial-wave
ing at low temperatures and by the phonon scattering at higAPProact,”?” which was also used in some simulations of
temperatures. the spin-independent elastic-scattering cross section when
Recently there has been renewed interest in spinthe first Born approximation is not applicabife:* _
dependent scattering and transport phenomena in semicon- In this paper we calculate the spin-dependent elastic-
ductor heterostructures because a branch of semiconductgfattering cross section for electrons scattered by impurities
electronics so called SpintroniCS, has become a focus of inf 2-D heterostructures of IlI-V semiconductors. We use the
terest (see Refs. 9-12, and references therelhe extra  effective one-electronic-band - Hamiltonfdn with - Ben-
degree of freedom provided by the electron spin opens a neaniel-Duke boundary conditions for electronic envelope
field for the development of semiconductor devices. In prinfunctions to calculate the spin-dependent cross section for
ciple, one can use the semiconductor approach to genera@,ectrons scattered from repulsive and attractive isolated im-
control, and detect electron-spin polarizatidn® This ap-  Purities with spin-orbit coupling’~*° The impurities are lo-
proach has the advantage of being compatible with converf:ated inside the quantum well. For narrow gap semiconduc-
tional semiconductor technology. tor quantum wells(systems with large spin-orbit coupling
In the absence of magnetic impurities, the main source oparameterswe found a large spin-related asymmetry in the
spin-dependent scattering processes at low temperatures GESS section.
spin-orbit coupling to local defects. The effect of spin-orbit ~ The paper is organized as follows: Section Il begins with
interaction on spin relaxation for semiconductor 2-D system#@n introduction to the effective one-electronic-band 2-D
also has been studied for a long tifdel” Recently coherent Hamiltonian with impurities located inside semiconductor
spin transport has been demonstrated in homogeneous serfiHantum wells. Section Il gives details of the variable phase
conductors and heterostructur@s® Unfortunately, the @approach to spin-dependent elastic scattering in 2-D systems.
theory of spin-dependent transport for semiconductor 2_DT_he calcula_tion _results are presented in Sec. IV and conclu-
systems is still far from being complete. For this reason weSions are given in Sec. V.
recently investigated spin-dependent elastic-scattering pro-
cesses in semiconductors in the presence of spin-orbit
interaction?®?! In 2-D quantum well§l,‘3) this effect is pex- II. BASIC EQUATIONS

pected to be stronger than that in the Bllkecause of the We consider electrons in semiconductor heterostructures
localization of electronic wave functions in the conductivewith charged impurities and use the approximate one-
channel. It should be noted that the problem remains comelectronic-band effective Hamiltonian for the electron enve-
plicated even for the simplest models of 2-D electron motionppe wave functions
because, in general, spin-orbit interaction should be de-
scribed by a three-dimensional model. L

Using the delta-doping technique, Coulomb attractive and H=Hg+ Vip(r). D
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In Eq. (1) HO is the Hamiltonian of the system without the conduction-band edge between the quantum (wedte-
impurities1 -3 rial 1) and the barrier regiofmaterial 2) the potential can
be presented as
. h?
H0= _V

V. +V(r),
m(Er)} 0, <zs% (rel),

whereV, stands for the spatial gradientj(E,r) is the en- V(r)= (4
ergy and position-dependent electron effective mass, Vv |z|>L  (re2)
0> A .
2

I\JII_

1 2P? 2
— = We assume that an isolated impurity is locatea¢=atd and
2 _
m(E,r) 342 E+Eg(r)—V(r) the unscreened Coulomb potential of the impurity is given as
+ ! Z€
; e
E+Eg(r)+A(r)—V(r) Vo (r)= , )

2 21172
whereV(r) is the confinement potential of the wel;is the sl p™H(z=d)7]
electron energy;E,(r) and A(r) stand for the position- whereeg is the relative permittivity of the system antlis
dependent band gap and the spin-orbit splitting in the vathe charge of the impurity. For most IlI-V quantum wells we
lence bandpP is the momentum matrix element; aNgl,(r)  can neglect the image potential and use for simplieity
is the scattering potential of the impurity. =(e1+£3)/2 (g1 ande; are the dielectric constants of ma-

The impurity scattering potential consists of two parts, terials 1 and 2, correspondingly
Following Refs. 1, 2, and 31 we present the solution of

Vi) =Vie(1) + Viso(r), the confinement problem with the Hamiltoni&hy as
whereV,.(r) is the Coulomb potential of the charged impu- s
rity and Vis.(r) describes the spin-orbit interaction of elec- Y s(p.2)=4(p)en(2),

trons with the impurity where n labels the eigenenergies in the normal direction

(E,), ands=*1 is the quantum number related to the spin

VisoN)= =17 (ENVVie(r)-[oX V], 2 polarization along the direction.
whereg?34 As is shown in Ref. 32, due to the reflection symmetry of
the well in thez direction(there are no built-in electric fielgls

p2 1 the Rahsba spin splitting in the electron spectrum does not

Y(E'r):? [E+Ey(r)—V(r)]? occur and one can use the conventional Ben-Daniel-Duke

g boundary condition for the wave functionp,(z),
- ! >5[ (3 1 d
[E+Eg(r)+A(r)—V(r)] en(2), md—z%(Z)

The spin-orbit interaction in the form of Eq2) is the
generalization of the well-known Rashba spin-orbit
interaction>> which comes from system inversion
asymmetry*>3*In semiconductor structures with the average 7=+
uniform electric fieldF one can consider

continuous at

N~

(6)

1 Considering for simplification only the first subband as
F=—EVVp(r), being populated we describe only intrasubband elastic-
scattering processes. First we obtain the ground dtate
Wheree |S the e|ectron Charge anu (r) |S the average firSt Subband W|tm 1) The wave function Of th|S ground
space-charge electric potential. When the electron with thétate has the well-known form
wave vectorkL F is moving in the field, one can readily

obtain from Eq.(2) the well-known Rashba interaction Acoskz, |z|< E
1 — 2 1
Vo) =an-[aXxk], ¢ (2)= L )
where a=—eyF and n is the unit vector parallel to the B exp(—u2), |Z|>§'
field >3
Here we consider 1Il-V semiconductor symmetrical quan-where
tum wells of thicknes4.. In the structure we denote athe
direction perpendicular to the well interfaces, gnd(x,y) k=~2my(E)E4/h
is the position vector parallel to the interfaces=0 is the
center of the we)l For systems with sharp discontinuity in w=2my(E)(Vo—E)/,
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andE=E,+E, consists of the energies of theandz direc- q
tions of motion, correspondingly. From the Ben-Daniel-Duke e(q)=1+ -
boundary condition$6) we obtain the spinless transcenden- a
tal equation is the 2-D electronic dielectric function,

ml(E)lu‘(Ep vEl)

MAEV<(E_E.) e?m,(E
my(E)k(E, Eq) ® = 1—(':)

T 2wh2eg

_ d
ta x(E, ,Eq)L/2] 1+ ggntmy(E)]

)
Equation(8) gives us the eigenenergy in ta@irection inan . ) .
implicit form. is the 2-D Thomas-Fermi screening constant in the degener-

The wave function(7) (after proper normalizationwe  ated elesctronic system, artel- is the Fermi energy of the
substitute into the three-dimensional Safinger equation SyStent. The Fermi wave vectdke(E) must be defined by
with the Hamiltonian(1) and integrate out the coordinate ~Means of the solution of the following equation:
by taking the average, 22

F

BF omy(Er)

+ 00
H,= f_ dze} (2)He1(2).
IIl. TWO-DIMENSIONAL ELASTIC SCATTERING

After the averaging and introducing the screening of the im- AND SHERMAN FUNCTION

purity at low temperatures by means of Refs. 1 and 23 the
quaS|-2-D_ S(_:hrdlnger equation in the polar coordinates pye to the radial symmetry of the potentidls(p) and
p=(p.¢) is given by W(p) in Eq. (9) the method of partial waves is convenient

5 for our consideration. One can separate variables in the ex-
10 ( ? )_i a__v(p)Jr isw(p)%Jr k2| yS(p) =0, pression for the wave function as the followifig2®

030\ P30) 52 992
(9) S & S il
) W(p)= 2 Ri(p)e'’x’
where =—
27 M(E) (= d o wherel is the orbital momentum number and is a spin
YV(p)= — &) 99 25— qlz—d| function upon which the Pauli matrix vector operates,
p Jo(ap) | dZes(2)|%e
ag Mm1(0) Jo &(q) o
1 0
is the statically screened Coulomb potential in the quantum xHi= ) x 1= .
well plane, 0 1
~ The Schrdinger equation for the radial wave function be-
W(p)=— 2Z m(E) (=qdq 3.(ap) comes of the following form:
agp M(0) Jo &(q) !
ld( d)_" V(p)—sIW(p)+k?|R¥(p)=0
gl T\ Pg |~ V(ip)—sIW(p p)=0.

At a large distance from the scattering center the asymtotic
+a2(E)f | |dZ|(pl(Z)|Ze_q|Z_d|} value of the radial function is given by

s s, _qi . N
is the screened spin-orbit interacticaf = & 42/e?m, (0) is Ri(p)—Atlcosord(kp) —singiNi(kp)]; - p—ce,

the effective Bohr radius in the well, where 67 is the spin-dependent scattering phase ¥hitf
- andN;, is the Neumann function.
k2_2m(E)Ep In the variable phase appro&éfi® the phase function
2 5;(p) at the pointp determines the phase shift produced by

the part of the potential contained within the cycle of a radius
p. The scattering phase shift for the total potential is equal to

1 1 J' :
_ _ dzlo-(2)]2 the asymptotic value
m(E) Mi(E)Jz<|r| le1(2)]
&= lim 53(p).
+—— dZe.(2)|?, P
My(E) Jz= 1| |e1(2) _ - . .
The phase functiod)(p) satisfies the following differential
J,(x) is the Bessel function, equation?’36
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dés¥(p) T _ For degenerated electronic systems, for instance, the Hall
P Ep[V(p)+sIW(p)][coséf(p)J|(kp) angle is proportional to the Sherman function at the Fermi
p energy shelf839-4

—sindy(p)Ni(kp)1? (10

with the boundary condition IV. CALCULATION RESULTS

To present the realistic estimation of the effect of the spin-
67(0)=0. (11)  orbit coupling on the electron elastic cross section we choose
two types of symmetrical quantum well structures: type
The complex 2-D scattering amplitude can be expressel js Al ,dn o sAS/INg sdGag 4 AS/Al g udnosAS  (Where
ag 0?42 E,1=0813 eV, E,=1508eV, A;=0.361eV, A,
. . =0.332 eV, m;(0)=0.041m,, M,(0)=0.075m,, &,=14,
F(0)=[f(0)+029(0)]x, (12) £,=12.5,V,=0.504 eV myis the free-electron masand

where f5(6) andg(#) describe scattering without and with ti/pe Il is Cd_Te/InSb/CdTeEwhere E91:0'2_4 eV, Eg
electron-spin reorientation, and they are determined by thg 199 €V, 4;=0.81 eV, A,=0.8 eV, m,(0)=0.013n,,
expressions My(0)=0.08My, &,=16.8, &,=10.2, Vy=0.55 eV (Refs.

42 and 43]. While type | presents quantum well structures

@ with well-developed growth technology, type Il demonstrates
f(a):|2 f, cog16), (13)

=0
9(0)=2, gisin(6), (14)

where

[1 [exp2idy)—1; |=0;
0= Vo exp(i28) ) +expi2s )—2; 1=1;

g =i \/ﬁ [exp(i28,)—exp(i26, )],

where 6 is the scattering angle between initi&, Y and final
(ks) wave vectors.

The Mott scatterintf cross section for electrons spin po-
larized parallel to the axis can be expressed in terms of the
incident electron-beam spin polarizatiBnalong thez direc-
tion as the following:

o(0)=1(6)[1+S(0)P;], (15

wherel () is the differential cross section for unpolarized

incident electrons, 0.86
1(6)=1f(6)|2+1g(0)|2, (16) 085
0.84
and 5, 0.83
c 0.82
f*(6)g(0)+1(6)g*(0) B
S(6)= - - (17) 0.81
[f(6)]“+|g(6)| 0.8
is the Sherman function for 2-D electrons. The Sherman 0.79 120 360
function is an important characteristic of the spin-dependent (© 0 (degree)

scattering(see Refs. 37 and 38, and references thgrdin

presents the left-right asymmetry in the scattering cross sec- FiG. 1. The scattering cross section for the screened impurities
tion for initially polarized electron beams and the averageén the type-I structure l(=20 nm): (a) repulsive = +1) impu-
polarization of unpolarized electrons after the scatteringrity; (b) attractive ¢=—1) impurity; (c) the ratio between the
This characteristic is important in the evaluations of thecomplete numerical resulio,,) and the first Born approximation
anomalous Hall effect in different materials and structures(og,,) for the repulsive impurity whekag=1.8 (E,=0.01 eV).
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FIG. 2. The Sherman function for the type-l structure (

=20 nm): (a) repulsive impurity;(b) attractive impurity. ) )
FIG. 3. The Sherman function for the type-l structures with

he | . i ff In all calculati different well widths €,=0.02 eV): (a) repulsive impurity; (b)
the arg_egt Spin-coupling effects. In a cg culations we assUrGiiractive impurity. Insets: the dependencies of the Sherman func-
the validity of the one-subband scattering model,when the; amplitude on the well width.

intersubband gap is larger than the energy ofgdkdirection

motion: E,<E,—E;. This allows us to consider scattering g 1 1=0

of electrons with the following wave vectors: for type-I g,~il \ﬁj J2(kp)W(p)pdpx ' " (19
structures withL <30 nm, k<kp=2.5(a) ! (the electron 2kJo 2, 1=1.
concentrationns=3.5x 10" cm~?); for type-Il structures |t is knowr* that the first Born approximation is valid for
with L=30 nm, k=kg=6.6@5) " (ns=3x10" cm~?).  2.p elastic scattering when

Notice thata} is taken to be different according to the defi-

nitions for the different types of the systems. kaf>1.

The phase shifts were obtained by the numerical solutior|1t . th notina. that th icall lculated
of Eq. (10) with the initial condition of Eq.(11) and then IS worth noting, that tnhé numerically calculated Cross Sec-

used in Egs.(12—(17) to calculate the elastic-scattering t'r?; g)t:tg!ﬁezd-DnSi(r:]:aefeps?ngﬁqugom?op%e;;'t;I 'nsei'rftehrggt dfr(;n;f
cross section. From our calculation experience the convel! : ! ' pproximati 9

gence criteria on the cross sectidhe maximum net error is "€ @Pproximation validityKag =1.8). In addition, it can be

less than 10%) can be reached by taking the necessary numS€€n from Egs(18) and(19) that in the first Born approxi-

ber|l|<70 of the partial waves included Eqd3) and(14). ~ mation all gspég-zgolanzatlon effects in the elastic cross sec-

Figure 1 shows energy and angle dependencies of the elastio"n vanish:=="

scattering cross section for 2-D electrons scattered from at- e *( 0y —

tractive = +1) and repulsiveZ= — 1) impurities located S(O)~17(0)g(6) +1(0)g™ () =0.

in the center of the type-I structure. The cross sections demFhus, the Sherman function should be calculated only by

onstrate the well-known logarithmic divergence at zero engoing beyond the first Born approximation and taking into

ergy (E,—0) for both types of impuritiegrepulsive and consideration the higher partial waveg|0). The com-

attractive.?® In Fig. 1(c) we compare our results with the plete numerical solution allows us to do that.

cross section obtained within the first Born  Figure 2 shows the Sherman functions for the type-l

approximatioR”?8 when structure, when the repulsiy&ig. 1(a)] and attractivg Fig.
1(b)] impurities are located in the center of the well with the
width L=20 nm. We first note that, in the energy range con-

fi~— /lijF(kp)V(p)pde L 1=0; (18) _sidered, the gﬁ‘ect is _slightly larger for the repulsive scatter-
2k Jo 2, 1=1, ing center. Sinc&( ) is closely connected to the cross sec-
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FIG. 5. The Sherman function for the type-Il structures with
FIG. 4. The dependencies of the effective averaged potentials odifferent well widths €,=0.04 eV): (a) repulsive impurity;(b)
the well width for the type-I structuresa) spinless par¥/(p), (b) attractive impurity. Insets: the dependencies of the Sherman func-
spin-orbit coupling pariV(p). tion amplitude on the impurity location in the well.

tion curves, the high values of the Sherman function occucauses the stronger polarization effects for the relatively nar-
where the cross-section is small and vice versa. The changew wells (as is shown in the insets of the Fig. 3his result

of the impurity sign leads to inversion in the three- suggests the possibility of controlling Sherman function by
dimensional plots. This is a direct and clear consequence dgheans of the well size.

sign altering in the potentialé(p) andW(p) [see Eq(10)]. The spin—orbit interaction is kn_own to be Iarger in.small
It can be seen that with suitable electron energies and th@2P Semiconductors. Based on this fact, we show in Fig. 5, as

large scattering angles one can reach polarizations of mo@" xample, the calculation results for the type-Il structures.
than 0.1%. The asymmetry effect in the scattering cross section for those

In our simulation we found a decrease in the p0|arizati0,§tructures can reach about 1% for electrons with moderate

effect when well width increases. The dependence of th&€n€rgy, when the impurity is located in the center of the well.
Sherman function on the well widthfor the type-I structure  1h€ insets show the dependencies of the amplitude of the
is presented in Figs.(8 and 3b) (the impurity is located in Sherman functlon on the_posmon of the impurity in the
the center of the welld=0). This decrease is obviously wells. Obwously, the magnitude of the Sherman function de-
connected to the form of the averaged effective potential§"€@ses wheml increases. But the effect remains valuable

V(p) and W(p). The various potentials for different well (ivl?/nz)for the impurities located at the edge of the well (
widths are shown in Fig. 4. The curves represent the absolute In addition, we notice that the spin-dependent asymmetry

value of the potentialffor the repulsive cente¥(p) is posi-  for the elastic-scattering cross section for the impurities lo-
tive andW(p) is negative; for the attractive cent¥(p) is  cated in the well§2-D systemyis significantly larger than
negative andV(p) is positiveg and demonstrate the influence calculated for 3-D spin-dependent elastic scattering from im-
of the 2-D confinement and screening on the elastic scattepurities in the bulk. To demonstrate the difference we present
ing processes in quantum weftd?® The figure shows that in Table | our results for the type-Il structure and results
the spin-orbit coupling potential becomes stronger near thebtained in Ref. 26 and 39, when all parameters of the sys-
impurity site when the well width decreases. Electrons thatems are chosen the sane systems differ only in the
are scattered at large anglaghere the polarization effects dimensionality. In the table,, is the phase shift for=0

are expected to be highgpass through the relatively strong and 8" is the correction to the phase shift of the partial
fields at fairly small distances from the impurity site. This wave with1=1 when the spin-orbit coupling is included.
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TABLE I. The ratio »=&P"5, for InSb structures
(L=5 nm).
Impurity type v for 3-D systent? v for 2-D system
z=-1 3.7x10°° 2.8x1072
Z=+1 2.3x10°° 2.7x1072

8Reference 26.

PHYSICAL REVIEW B 67, 195337 (2003

For the CdTe/InSb/CdTe quantum well we found that the
spin-orbit coupling in the two-dimensional systems leads to
larger spin-dependent asymmetry in the scattering cross sec-
tion than that in the bulk. The calculated amplitude of the
Sherman function for this structure is more than 0.01. This
could be detected in the measurements of the Hall effect at
low temperature$>°4%4%and this is potentially useful in in-
tegrated electron-spin polarization devices based on semi-
conductor heterostructures. It also can be used as a tool to

This result suggests that the spin-orbit coupling with thedetermine spin-coupling parameters in 1ll-V narrow gap
charged impurities in 2-D systems can provide sufficientlysemiconductor heterostructures.

larger spin-dependent effects than those in the bulk.

V. CONCLUSIONS

Finally, we would like to point out that the described ef-
fect is a clear analog of the well-known effect of spin-
dependent scattering in magnetic mater{ake Ref. 3), but
it can also be realized in nhonmagnetic semiconductor struc-

We have presented a theoretical study of the elastic spityres. Our model can be used as the starting point for more

dependent scattering of 2-D electrons from the screenegetailed calculations. Experimental investigations need to be
Coulomb centers located in quantum wells. The onetgonducted to verify our theory predictions.

electronic-band effective Hamiltonian and spin-orbit cou-
pling potential of the impurities allow us to calculate the
left-right asymmetry in the electron elastic-scattering cross
section. We have found a large spin-dependent asymmetry in
the cross section for electrons scattered from impurities in  This work was supported by the National Science Council
AllnAs/InGaAsAs/AllInAs and CdTe/InSh/CdTe symmetrical of the Republic of China under Contract Nos. NSC-90-2215-
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