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Abstract

The rapid growth of Internet brings the need for a low cost high performance file system. Two objectives are to be pursued in

building such a large scale storage system on multiple disks: load balancing and storage minimization. We investigate the opti-

mization problem of placing variable-size data items onto multiple disks with replication to achieve the two objectives. An ap-

proximate algorithm, called LSB_Placement, is proposed for the optimization problem. The algorithm performs bin packing along

with MMPacking to obtain a load balanced placement with near-optimal storage balancing. The key issue in deriving the algorithm

is to find the optimal bin capacity for the bin packing to reduce storage cost. We derive the optimal bin capacity and prove that

LSB_Placement algorithm is asymptotically 1-optimal on storage balancing. That is, when the problem size exceeds certain

threshold, the algorithm generates a load balanced placement in which the data sizes allocated on disks are almost balanced. We

demonstrate that, for various Web applications, a load balanced placement can be generated with disk capacity not exceeding 10%

more than the balanced storage space. This shows that the LSB_Placement algorithm is useful in constructing a low cost and high

performance storage system.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

This paper deals with challenges in designing a large

scale storage system for Web applications. A Web server

stores large amount of data on multiple disks. In re-

sponse to tremendous data retrieving requests, data

items (files) should be distributed to balance workload

for all disks, and frequently accessed items may be

replicated on multiple disks. Assuming that the capacity
of each disk is identical, amount of data allocated to all

disks should be kept balanced such that the storage ef-

ficiency of these disks can be maximized. We investigate

such a data placement problem for load and storage

balancing.

Data placement has been widely studied (Johnson

et al., 1974; Dowdy and Foster, 1982; Wah, 1984; Wolf

and Pattipati, 1990; Rotem et al., 1993; Lee and Park,
1995; Little and Venkatesh, 1995; Narendran et al.,

1997; Serpanos et al., 1998; Lee et al., 2000). In early

1970s, researchers investigated data placement for min-
imizing the storage cost (Johnson et al., 1974). From

1980s, needs in high performance database systems has

turned the research focus to improve the data retrieval

performance (Dowdy and Foster, 1982; Wah, 1984;

Wolf and Pattipati, 1990; Rotem et al., 1993; Lee and

Park, 1995; Little and Venkatesh, 1995; Narendran et al.,

1997; Lee et al., 2000). Starting in late 1990s, informa-

tion explosion brought by the Internet raises new chal-
lenges in designing storage systems––both performance

and storage cost have to be taken into consideration.

Serpanos et al. (1998) proposed the MMPacking algo-

rithm, which distributes identical-size data items onto

multiple disks for both load and storage balancing. In

this paper, we extend the work of MMPacking and

propose an algorithm which places variable-size data

items to generate a load and storage balanced place-
ment.

The optimization problem is as follows. The input is

a set of data items, each associated with an access

probability and a data size; and a set of (identical) disks.

The output is a placement that places data items onto

disks in which frequently accessed data items may be

*Corresponding author. Tel.: +886-3-5712121; fax: +886-3-

5724176.

E-mail address: ycma@csie.nctu.edu.tw (Y.-C. Ma).

0164-1212/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00073-0

The Journal of Systems and Software 66 (2003) 157–166

www.elsevier.com/locate/jss

mail to: ycma@csie.nctu.edu.tw


replicated to multiple disks. The objective is to find a

load balanced placement which also minimizes required

capacity for each disk.

We propose an approximate algorithm for the opti-

mization problem. The algorithm first performs bin

packing Horowitz et al., 1996 to pack data items into a
set of bins with approximately equal sizes. This reduces

the variable-size data item placement to the identical-

size data item placement, which can be dealt with by

MMPacking (Serpanos et al., 1998). The key issue is to

find an optimal bin capacity for bin packing to minimize

the required disk capacity. Choosing a large bin capacity

results in uniform packed bin size but increases the

replication overhead. The trade-off is modeled as a ca-
pacity function, which maps the bin capacity to the re-

quired disk capacity. The optimal bin capacity can then

be calculated.

The performance of the proposed algorithm is ana-

lyzed mathematically. We prove that the proposed al-

gorithm generates a load balanced placement with

asymptotically 1-optimal storage cost. The solution

found by the proposed algorithm approaches optimal
storage balancing when the problem size exceeds a cer-

tain threshold. Statistics shows that, for most Web ap-

plications, a load balanced placement can be obtained

with disk capacity not exceeding 10% more than the

balanced storage space. This shows that the proposed

algorithm is effective in constructing a low cost and high

performance storage system.

This paper is outlined as follows. Section 2 formu-
lates the optimization problem. The metric for evaluat-

ing an approximate algorithm and two related

optimization problems are introduced in Section 3.

Section 4 gives a brief description on the proposed al-

gorithm. We show that the proposed algorithm pro-

duces a load balanced placement in Section 5. Section 6

analyzes the storage requirement to derive the optimal

bin capacity. Section 7 completes the proposed algo-
rithm and shows the asymptotic behavior of the algo-

rithm. The usefulness of applying the proposed

algorithm to real world applications is demonstrated in

Section 8. Finally, a conclusion is given in Section 9.

2. Problem modeling

The optimization problem can be modeled as follows.

The input is a set of N data items I ¼ fI0; I1; . . . ; IN�1g
and a set ofM disks D ¼ fD0;D1; . . . ;DM�1g. Each data

item Ii is associated with an access probability pi and a

data size si. The data sizes are normalized such that the

size of the largest item is 1.00 and 0 < si 6 1:00 for any

data item Ii. Items in I are to be placed on disks in D,

and frequently accessed items are allowed to be repli-
cated to multiple disks. The optimization problem is to

find a placement such that minimum single disk capacity

is required and the access loads to all disks are also

balanced.

A placement can be represented by an N �M matrix

X, in which a row corresponds to a data item and a

column corresponds to a disk. An entry at row i and

column k, denoted Xik , represents the ratio of access
probability of item Ii imposed on disk Dk. The following

properties hold:

06Xik 6 1 and ð1Þ

XM�1
k¼0

Xik ¼ 1 for each Ii ð2Þ

Distributing the access probability of an Ii across mul-

tiple disks is to replicate the item onto multiple disks. A

copy of Ii is to be placed on disk Dk if Xik > 0. For a

placement X, the required storage on disk Dk is thus

sizeX ðDkÞ ¼
XN�1
i¼0

si � dXike ð3Þ

where dXike ¼ 1 if Xik > 0 and dXike ¼ 0 if Xik ¼ 0.

The data request load is formulated as follows. We

assume that the load of accessing a data item once is

proportional to the data size of the item. The load to the

server by Ii is pi � si. And the aggregate load L of the

server

L ¼
XN�1
i¼0

pi � si ð4Þ

For a placement X, the load share of accessing Ii on disk

Dk is Xik � pi � si, and the load of a disk Dk is

LoadX ðDkÞ ¼
XN�1
i¼0

Xik � pi � si ð5Þ

A load balanced placement is a placement X in which the
load of each disk equals the balanced load L=M .

LoadX ðDkÞ ¼
XN�1
i¼0

Xik � pi � si

¼ L
M

for each disk Dk ð6Þ

The cost of a placement X is the largest size of the

disks

costðX Þ ¼ max
Dk

fsizeX ðDkÞg ¼ max
Dk

XN�1
i¼0

si � dXike
( )

ð7Þ

The objective of this research is to find a placement X to
minimize Eq. (7) subject to Eqs. (1), (2) and (6).

3. Background and related work

We follow Johnson et al. (1974) to define the metric

to evaluate an approximate algorithm of an optimiza-
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tion problem (minimizing certain cost). Given a problem

instance J, we denote F ðJÞ the cost of the solution found

by an approximate algorithm and OPTðJÞ the cost of

the optimal solution for the problem instance J. In this

study, a problem instance represents a pair ðI ;DÞ of data
item set I and disk set D. The performance of an ap-
proximate algorithm is indicated by the upper bound on

the ratio F ðJÞ=OPTðJÞ for all problem instance J. What

we concern is the asymptotic behavior when the problem

size (and hence OPTðJÞ) is large. By writing the upper

bound on F ðJÞ=OPTðJÞ as a function GðOPTðJÞÞ,

F ðJÞ
OPTðJÞ 6GðOPTðJÞÞ ð8Þ

we call that an approximate algorithm is �––optimal if

lim
OPTðJÞ!1

GðOPTðJÞÞ ¼ � ð9Þ

This � is the metric to be used to evaluate our proposed

algorithm.

We introduce two related optimization problems and

corresponding approximate algorithms. Our proposed
algorithm uses these algorithms as building blocks.

3.1. MMPacking for identical-size data item placement

Serpanos et al. (1998) proposed the MMPacking

algorithm for placing data items with identical sizes.

The input is a set of n objects B ¼ fB0;B1; . . . ;Bn�1g
with identical data sizes, and a set of M disks

D ¼ fD0;D1; . . . ;DM�1g. Each object Bj is associated

with an estimated load to access Bj, denoted LoadðBjÞ,
according to the access probability. MMPacking algo-

rithm places objects in B onto disks in D with frequently

accessed objects been replicated. Serpanos et al. (1998)

has proved the following properties for the MMPacking
algorithm.

Property 1. The MMPacking algorithm generates a load
balanced placement.

Property 2. The MMPacking algorithm places at least
bn=Mc and at most dn=Me þ 1 objects on each disk.

Fig. 1 illustrates the operations of MMPacking. Ob-

jects are sorted in increasing order of load and then

assigned to disks in round-robin. Once the accumulated
load of a disk exceeds the balanced load, the load of the

object is split to the next disk in round-robin again.

Splitting the load of an object is to replicate the object to

multiple disks. The object with load 0.2 is replicated to

the fourth and the first disk. Similar to the X matrix in

Section 2, we represent the output of MMPacking with

an n �M matrix Y. For the example in Fig. 1, the matrix

Y is shown in Fig. 2.

3.2. Bin packing

The bin packing problem Horowitz et al., 1996 is as

follows. The input is a set of items I ¼ fI0; I1; . . . ; IN�1g

Fig. 1. A placement example using the MMPacking algorithm.
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and a bin capacity x. Each item Ii is associated with a

size si of it. The goal is to pack the set of items I into the

minimum number of bins B ¼ fB0;B1; . . . ;Bn�1g. Fig. 3
depicts an example of packing items with size not ex-

ceeding 1.00 to a set of bins with capacity x ¼ 1:00.
We use the best-fit algorithm Horowitz et al., 1996 to

perform bin-packing. This algorithm iteratively places

an item to a bin with the smallest room left. The bin-
packing property which we will use in our design is

Property 3. During the best-fit bin-packing process, a new
bin is initialized only when the current item to be placed
cannot be fit in any existing bin.

4. Framework of the approximate algorithm

We find that MMPacking and bin-packing can be

useful in dealing with the load and storage balanced

placement for variable-size data items. An almost

complete description of the approximate algorithm is as

follows:

Phase 1: Perform best-fit bin-packing to pack items in I
into a set of bins B ¼ fB0;B1; . . . ;Bn�1g with

bin capacity x.
Phase 2: Perform MMPacking to obtain a placement Y

for bins in B on disks in D. The load of Bj is

the sum of the loads of all Iis in Bj.

LoadðBjÞ ¼
X
Ii2Bj

pi � si ð10Þ

Phase 3: For each item Ii, Xik  Yjk where Bj is the bin

containing Ii.

The key idea is problem reduction. The first phase

performs bin packing to pack items into a set of bins

with approximately equal storage requirements. The

problem is thus reduced to the identical-size data item

placement that can be dealt with by MMPacking.

The algorithm described above is almost complete.

Only the bin capacity x for Phase 1 is not given here. We

first show that the algorithm generates a load balanced
placement in Section 5. Section 6 establishes the rela-

tionship between the bin capacity x and the disk ca-

pacity required to find the optimal bin capacity. Section

7 gives the complete description of the algorithm and

summarizes its behavior on different problem sizes.

5. Load balancing of proposed algorithm

It is a direct consequence of Property 1 that the

proposed algorithm can generate a load balanced

placement. Imagine that a block in Fig. 1(a) represents
load of a bin shared by a disk. (Disk Dk sharing the load

of a bin Bj means that each item Ii 2 Bj is stored a copy

in Dk with access probability Xik shared.) Items in Bj

contribute load
P

Ii2Bj
Xik � pi � si to Dk. This value is the

load of Bj shared by Dk. A load balanced placement is

obtained if the load of a bin is shared as expected in the

MMPacking. This is imposed by setting Xik ¼ Yjk for

each Ii 2 Bj (cf. Phase 3 of the proposed algorithm).

Theorem 1 (Load balancing). The proposed algorithm
generates a load balanced placement.

Proof. Let X be the output of the proposed algo-

rithm and Y be the intermediate result produced by

MMPacking. Load of a disk Dk is the total load of all

bins shared on Dk.

LoadX ðDkÞ ¼
XN�1
i¼0

Xik � pi � si

¼
X

Bj:Yjk 6¼0

X
Ii2Bj

Xik � pi � si ð11Þ

Since Xik ¼ Yjk for each Ii 2 Bj (cf. Phase 3 of the pro-

posed algorithm), we have

Fig. 2. Result of MMPacking of the previous example.

Fig. 3. Example of bin-packing.
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X
Ii2Bj

Xik � pi � si ¼ Yjk �
X
Ii2Bj

pi � si ¼ Yjk � LoadðBjÞ ð12Þ

and hence

LoadX ðDkÞ ¼
X

Bj:Yjk 6¼0
Yjk � LoadðBjÞ ð13Þ

According to Property 1, MMPacking generates a load

balanced placement:

LoadY ðDkÞ ¼
X

Bj:Yjk 6¼0
Yjk � LoadðBjÞ

¼ L
M

for each disk Dk ð14Þ

where L is the total load of all objects and M is the

number of disks. Hence we have LoadX ðDkÞ ¼ L=M .

This proves the theorem. �

6. Setting bin capacity for minimizing storage cost

This section analyzes the choice of bin capacity, with

which we can determine the disk capacity for a load

balanced placement. In Section 6.1, we consider the case

when the bin capacity is the size of the largest item. In

Section 6.2, we allow the bin capacity to be larger than
the size of the largest item for better storage balancing.

We omit the subscript X in the notation sizeX ðDkÞ since
only the placement generated by the proposed algorithm

is considered.

6.1. Case of elementary bin capacity

We first consider the case of setting bin capacity
x ¼ 1, the size of the largest item, for bin packing. We

prove that bin packing generates a set of bins with sizes

exceeding 1/2 except for the smallest bin (Lemma 1). The

number of bins generated are bounded (Corollary 1),

and the required disk capacity is obtained (Theorem 2).

Lemma 1. With bin capacity x ¼ 1, there is at most one
bin filled with size less than 1/2 in the output of the bin-
packing.

Proof. We prove this by induction on the number of

items placed. The induction hypothesis is the lemma it-
self. The basis, after placement of item I0, is trivial.

Suppose the lemma holds after placement of Ii. The

lemma holds again after placement of Iiþ1 if no new bin

is initialized for Iiþ1. We focus on the case that a new bin

is initialized to place Iiþ1. If size of each bin is at least 1/2

after placement of Ii (see Fig. 4(a)), the new bin is the

only possible one with size not exceeding 1/2 after

placement of Iiþ1. In case that there is a unique bin Bj

with size less than 1/2 after placement of Ii (see Fig.

4(b)), according to Property 3, each of the initialized bin

has no room for Iiþ1 and hence size Siþ1 P 1=2. The size
of the new bin will exceed 1/2 and the bin Bj is still the

only one with size not exceeding 1/2 after placement of

Iiþ1. The lemma holds again after placement of Iiþ1 for

all possible cases. �

Let S be the total data size of all items,

S ¼
XN
i¼1

si ð15Þ

We derive the upper bound on the number of bins

generated.

Corollary 1.With bin capacity x ¼ 1, the number of bins n
generated by the bin-packing phase is bounded as follows:

n6 2 � S þ 1 ð16Þ

Proof. According to Lemma 1, the total size of all items

is at least the total data size of the ðn� 1Þ bins with size

exceeding 1/2.

sP
1

2
� ðn� 1Þ ð17Þ

Eq. (16) is thus obtained. �

Fig. 4. Initializing a new bin to place an item.
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LetM be the number of disks. We derive the required

disk capacity as follows:

Theorem 2 (Required disk capacity). With bin capacity
x ¼ 1, the proposed algorithm generates a placement in
which

sizeðDkÞ6 2 � S
M
þ 3 ð18Þ

for each disk Dk.

Proof. MMPacking places at most dn=Me þ 1 bins in

each disk (Property 2) and the data size of each bin is at

most 1.00. Hence we have the upper bound on the data

size allocated on disk Dk:

sizeðDkÞ6 dn=Me þ 1 ð19Þ
Total number of bins n is bounded from above as stated

in Eq. (16). We thus obtain Eq. (18). �

This theorem states that a load balanced placement

can be generated by the algorithm if the capacity of each

disk exceeds two times the balanced data size ðS=MÞ plus
some constant (three times the size of the largest item).

6.2. Case of enlarged bin capacity

We improve storage balancing by enlarging bin ca-

pacity. Fig. 5 depicts an example of no items being

packed together if bin capacity is set to be 1. (Recall that

size is normalized such that the size of the largest item is

1.00 and size si 6 1 for any item Ii.) In this example,

some items are with size 1.00 and some are with size

slightly greater than 1/2. In the worst case, the size of the

disk containing most data approaches twice the data size

of the disk containing least data. However, the worst
case can easily be improved by enlarging bin capacity.

The key issue is to find the optimal bin capacity to

minimize required disk capacity.

Selecting bin capacity encounters a trade-off. Suppose

the bin capacity is set to be x > 1:00. Let n be the

number of bins generated andM be the number of disks.

Fig. 6 depicts maximum difference on allocated data size

between disks. MMPacking Serpanos et al., 1998 allo-
cates bn=Mc to bn=Mc þ 2 bins on each disk. Except for

the smallest bin, the size of each bin generated by bin-

packing lies between x� 1 and x (Lemma 2). Data size

allocated on a disk is bounded from above as follows:

max
Dk

fsizeðDkÞg6
n
M

j k�
þ 2
�
� x

In a disk, there is at most one bin with size not exceeding

x� 1. Data size allocated on a disk is bounded from

below as follows:

min
Dk

fsizeðDkÞgP
n
M

j k�
� 1
�
� ðx� 1Þ

Difference on allocated data size between disks is as

follows:

Fig. 5. The worst case of setting bin capacity to be the size of the largest item.

Fig. 6. Effects of bin capacity selection.
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max
Dk

fsizeðDkÞg �min
Dk

fsizeðDkÞg ¼ O
n
M

� �
þOðxÞ

Selecting a large x reduces number of bins n generated

and hence reduces Oðn=MÞ in the above equation.

However, selecting a large x increases OðxÞ in the above

equation. We resolved the trade-off analytically.

Derivation of bin capacity and storage requirement is

outlined as follows. Lemma 2 states packed bin sizes.

Corollary 2 bounds a number of generated bins ac-
cording to packed bin sizes. With the bound on number

of generated bins, Lemma 3 relates storage requirement

to selected bin capacity and defines the capacity function
(Eq. (24)). The optimal bin capacity x is selected to

minimize the capacity function. The storage requirement

for a disk can also be derived (Theorem 3).

Lemma 2. With bin capacity x > 1, there will be at most
one bin filled with size less than x� 1 in the output of the
bin packing.

Proof.We prove this lemma by induction on the number

of items placed. The induction hypothesis is the lemma

itself. The basis, status after placing item I0, is trivial.

Suppose the lemma holds after placement of Ii. There
are two cases for the status after placement of Ii: (i) size
of each bin exceeds x� 1 (Fig. 7(a)), and (ii) there is a

unique bin Bj with size not exceeding x� 1 (Fig. 7(b)).

For case (i), the new bin (if initialized) is the only pos-

sible one with size less than x� 1 after placement of Iiþ1.
For case (ii), no new bin will be initialized (Property 3)

since size siþ1 6 1 and at least Bj has room for Iiþ1. Bj is

the only possible bin with size not exceeding x� 1 after

placement of Iiþ1. The lemma holds again after place-
ment of Iiþ1. �

Let S be the total data size of all items. Similar to

Corollary 1, we derive the upper bound on the number
of bins generated.

Corollary 2.With bin capacity x > 1, the number of bins n
generated by bin packing is bounded as follows:

n6
S

x� 1
þ 1 ð20Þ

Proof. According to Lemma 2, there are at least n� 1

bins with sizes exceeding x� 1, and the total data size S
exceeds the total size of these n� 1 bins,

S P ðx� 1Þ � ðn� 1Þ ð21Þ

Eq. (20) is obtained immediately. �

Lemma 3. With bin capacity x > 1, the proposed algo-
rithm generates a placement in which

sizeðDkÞ6
S
M
� 1

	
þ 1

x� 1



þ 3x ð22Þ

for each disk Dk.

Proof. In the output of the proposed algorithm, each

disk Dk contains at most dn=Me þ 1 bins with the sizes

of all bins not exceeding x.

sizeðDkÞ6 ðdn=Me þ 1Þ � x ð23Þ
Corollary 2 gives an upper bound on n and Eq. (22) is

obtained immediately. �

We define the capacity function to indicate the re-

quired capacity of a disk if bin capacity is set to be x.

f ðxÞ � S
M
� 1

	
þ 1

x� 1



þ 3x ð24Þ

The curve of the capacity function on the x–y plane
is depicted in Fig. 8, which reflects the trade-off on se-

lecting the bin capacity. Taking differential on f ðxÞ and
solving the equation f 0ðxÞ ¼ 0, we obtain the optimal bin
capacity x0 to minimize f ðxÞ:

x0 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
S

3 �M

r
ð25Þ

And the required disk capacity for a load balanced

placement is obtained.

Fig. 7. Placement of an item in bin-packing with enlarged bin capacity.
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f ðx0Þ ¼
S
M
þ 2

ffiffiffi
3
p
�

ffiffiffiffiffi
S
M

r
þ 3 ð26Þ

This completes the approximate algorithm.

Theorem 3. [Required disk capacity] By selecting bin
capacity x ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ð3 �MÞ

p
, the proposed algorithm

generates a placement in which

sizeðDkÞ6
S
M
þ 2

ffiffiffi
3
p
�

ffiffiffiffiffi
S
M

r
þ 3 ð27Þ

for each disk Dk.

Proof. This is the conclusion of previous discussion. �

Theorem 3 relates the capacity required for each disk

to the balanced data size S=M , which is a lower bound

on the cost of the optimal solution. Eq. (27) thus indi-

cates the relation between the optimal solution and the

solution found by the proposed algorithm.

7. LSB_Placement and its asymptotic behavior

We complete the approximate algorithm,

LSB_Placement (load and storage balanced placement),

in Fig. 9. This algorithm determines the bin capacity for

the first phase according to the discussion in Section 6.

Whether to enlarge the bin capacity or not is determined
by comparing the worst case storage requirement stated

in Theorem 2 and Theorem 3. Bin capacity is enlarged

when Eq. (27)<Eq. (18). The two equations Eq. (18)

and Eq. (27) equal at S=M ¼ 12 (where S is the total

data size and M is the number of disks). Properties of

the output are proved in previous sections. Note that,

when bin capacity is enlarged (when S=M > 12), the

selected bin capacity is at least 3 and generated bins are
at least 2/3 full except for the smallest bin. The criteria

S=M > 12 ensures that the derived cost upper bound

(Eq. (27)) is tight.

The complexity of the proposed algorithm is as fol-

lows. Let N be the number of data items and M be the

number of disks. To implement the proposed algorithm,

an OðN �MÞ space is required to store the intermediate

Fig. 8. Curve of the capacity function.

Fig. 9. Algorithm to generate load and storage balanced placement.
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placement Y generated by MMPacking and the final

placement X. The time complexity of best-fit bin packing
is OðN2Þ Horowitz et al., 1996. The time complexity for

the MMPacking to place nð6NÞ bins is OðnþMÞ
Serpanos et al., 1998. Hence the time complexity of the

proposed algorithm is OðN2 þM þ nÞ.
We now describe the asymptotic behavior of the ap-

proximate algorithm. For a problem instance J (a pair

of item set I and disk set D), we denote F ðJÞ as the cost
(required disk capacity) of the solution found by
LSB_Placement and OPTðJÞ as the cost of the optimal

solution. The asymptotic behavior of the optimization

problem is as follows:

Theorem 4 (Asymptotic behavior). LSB_Placement al-
gorithm is 1-optimal.

Proof. We want to show that the ratio F ðJÞ=OPTðJÞ
approaches 1 as the problem size approaches infinite.

When problem size is large (S=M exceeds certain

threshold), the cost F ðJÞ is determined by Theorem 3.

We have

F ðJÞ6OPTðJÞ þ 2
ffiffiffi
3
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OPTðJÞ

p
þ 3 ð28Þ

since S=M 6OPTðJÞ. And hence

16
F ðJÞ

OPTðJÞ 6 1þ 2
ffiffiffi
3
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OPTðJÞ

p þ 3

OPTðJÞ ð29Þ

The fact

lim
OPTðJÞ!1

1

 
þ 2

ffiffiffi
3
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OPTðJÞ

p þ 3

OPTðJÞ

!
¼ 1 ð30Þ

indicates that LSB_Placement is 1-optimal. �

The behavior of the proposed algorithm with respect

to problem size is depicted in Fig. 10. The upper bound

of the curve F ðJÞ=OPTðJÞ is indicated by Eq. (29). For a

given problem instance J, the point F ðJÞ=OPTðJÞ lies
between 1.00 and the curve. As the problem size grows

(and hence OPTðJÞ grows), F ðJÞ=OPTðJÞ decreases.

The solution found by LSB_Placement algorithm ap-
proaches optimal when the problem size exceeds certain

threshold.

8. Remark on applying to real world applications

This section demonstrates the effectiveness of apply-

ing the proposed algorithm to various real world ap-

plications. Table 1 shows how the ratio ðF ðJÞ=OPTðJÞÞ
is decreased according to Eq. (27). Let S be the total

data size of all items (with size of the largest item

normalized to 1.00) and M be the number of disks. The
balanced storage size S=M is chosen to be 1, 1.52,

22, 2.52, 32,102 times 2
ffiffiffi
3
p 2

. These selections of S=M are

to compare the storage requirement (Eq. (27)) to ðð1þ
ð1=aÞÞ � ðS=MÞ þ constantÞ, where a is an integer or a

simple rational number. A simple way to check whether

LSB_Placement can generate a load balanced placement

for a given configuration is to compute the order of S=M
and map it in Table 1.

Table 2 shows the performance of applying LSB_
Placement to various Web applications (IEEE/IEE 1,

ACM 2 and MP3.COM 3). In late 1990s, the capacity of

a commercial disk is 10–50 GB and the size of a single

file is small compared to the disk capacity. It is appro-

priate to use a number of disks such that, in the optimal

placement, a disk contains thousands of files and S=M is

in the range of several thousands. For each of the listed
applications, a load balanced placement can be gener-

ated as long as the capacity of each disk is 10% more

than the balanced storage space.

9. Conclusion

This paper investigates the optimization problem of
placing variable-size data items onto multiple disks with

replication. The objective is to minimize storage cost

subject to the ideal load balancing constraint. A data

placement algorithm is proposed. The algorithm per-

forms bin packing followed by MMPacking to place

variable-size items onto workstations. We prove that the

algorithm generates a load balanced placement with

asymptotically 1-optimal storage cost.

Fig. 10. Ratio to cost of the optimal solution.

Table 1

Ratio of placement result to optimal storage cost for some typical

problem sizes

F ðJÞ
OPTðJÞ

S
M ¼ 12 <2.25
S
M ¼ 27 <1.78
S
M ¼ 48 <1.56
S
M ¼ 75 <1.45
S
M ¼ 108 <1.35
S
M ¼ 1200 <1.10

1 IEEE/IEE electronics library (http://iel.ihs.com).
2 ACM digital library (http://www.acm.org/dl).
3 MP3.COM (http://mp3.com).
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These results greatly simplify the design of a large-

scale file server. In recent years, many major Websites

use a cluster with huge storage volume to cope with high

request arrival rate and store all data. Simulation, the

traditional method to design a computer system, is in-

feasible for such a large-scale file server. A quantitative

method that precisely estimate the performance with

closed form equations is desired. A barrier to derive a
quantitative method was the lack of a data placement

algorithm with good �-optimality been proved. This

paper presents the first �-optimality result for the con-

cerned data placement problem. The result shows that,

even in the worst-case, the difference between generated

placement and optimal placement is still small and ac-

ceptable. This paper opens the quantitative approach to

design a large-scale file server. Papadimitriou and Stei-
glitz (1982); Coffman et al. (1978); Garey and Johnson

(1979) and Kwan et al. (1995).
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Table 2

Performance of LSB_Placement algorithm for some Web applications

File type Typical file size Range of S
M F ðJÞ=OPTðJÞ

Papers (pdf or

postscript)

300 KB–1.5 MB >1200 61:10

Homepages 10 KB–2 MB >1200 61:10

MP3 music 1 MB–20 MB >1200 61:10
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