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Abstract

In this paper we present a novel computational method for calculating the heterojunction bipolar transistor (HBT)
characteristics in the time domain. To calculate the HBT high frequency properties, the Gummel–Poon equivalent circu
is applied to replace the HBT in the circuit and a set of governing ordinary differential equations (ODEs) is formulat
directly decouple the system ODEs and solve each decoupled ODE with the monotone iterative method in the time dom
solution methodology proposed here has been applied to semiconductor device simulation by us earlier, and we find th
for the HBT simulation has good accuracy and converges globally. Compared with the HSPICE circuit simulator res
results present the accuracy, efficiency, and robustness of the method.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the extremely high linearity of HBTs operating at high frequency, these semiconductor devic
structures have been of great interest for physical applications, such as wireless communications in rec
[1–4]. The harmonic balanced method [5–8] is a way for the solution of the HBT ODEs in the frequency d
This frequency domain approach has some merits, but it has also limitations in studying the physical pr
of HBTs with time evolution. Contrary to those solution methods in the frequency domain, another compu
alternative to analyze the physical behavior for an HBT device is to solve a set of equivalent circuit O
the time domain directly. Together with the fast Fourier transformation (FFT), the time domain approach
extended to study the HBT high frequency properties in the time and frequency domain at the same ti
discretized ODEs in circuit simulation are solved traditionally with the Newton’s iterative (NI) method [9]
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well known that the NI method is a local method; in general, it converges quadratically in a sufficiently
neighborhood of the exact solution. For example, the famous HSPICE circuit simulator [10,11] applied
method in the solution of nonlinear system.

In this paper, a novel simulation method for HBT physical characteristics calculations in the large-sca
domain is proposed. This approach mainly uses the monotone iterative (MI) method [12–19] instead o
method to solve the ODEs. The MI method has been successfully developed and applied to semiconduct
simulation by us earlier [12–17]. Based on the decoupling procedure (so-called the waveform relaxatio
method [20]) and MI method, the HBT circuit ODEs are directly solved in the time domain. The compute
domain results are then analyzed with the FFT to obtain the necessary information in frequency doma
approach is strongly dependent on the robustness of the nonlinear ODE solver; compared with the con
NI method, this method converges globally and is inherently parallel. First of all, a set of ODEs are dec
with the decoupling algorithm. Each decoupled nonlinear ODE is then solved directly with the MI techniq
the Runge–Kutta (RK) method. The proposed computational approach has been successfully implemen
PC-based cluster with message passing interface (MPI) library [21]. The primary parallel results show tha
designed parallel algorithm can reduce the execution time up to an order of magnitude.

This paper is organized as follows. Section 2 states the HBT ODE model, and introduces compu
procedure. Section 3 presents the simulation results. Section 4 draws the conclusions.

2. An HBT circuit model and simulation method

As shown in Fig. 1(a), based on the node current flow conservation (the well-known Kirchhoff’s curren
and utilize the Gummel–Poon large signal equivalent circuit model (Fig. 1(b)) for the HBT device [9,2
the complete simulation model can be formulated with nodal equations. The system of node equations
dependent HBT circuit is a set of nonlinear coupled ODEs. At nodes C, E, and B we have the following diffe
equations (1)–(3), respectively.
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Similarly, at nodes BX, CX, and EX we formulate, respectively, the equations as follows:
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Fig. 1. (a) The HBT circuit for the high frequency simulation, (b) a plot of the Gummel–Poon equivalent circuit model for the HBT de

VC − VCX

RC

+ VCC − VCX

RCCS
= 0, (5)
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RE

− VEX

REE
= 0. (6)

Eqs. (1)–(4) are the ODEs, and Eqs. (5) and (6) are the algebraic equations. These equations are subjec
initial values at timet = 0 for all unknowns to be solved. All currentsI and capacitancesC above are nonlinea
functions of unknown variables. These nonlinear terms are
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whereVT = kT
q

is thermal voltage;q1, q2 andτF are as follows:
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The model parameters above for the In0.49Ga0.51P/GaAs HBT in our simulation are listed in Table 1. The
are 4 coupled ODEs with the nonlinear current and capacitance models have to be solved and the u
to be calculated in the system of ODEs areVC, VE, VB, VBX, VCX , andVEX, respectively. We note that th
system consists of strongly coupled nonlinear ODEs, due to the exponential dependence of current and ca
models [1,20,22].

We propose here a decoupled and globally convergent simulation technique to solve the system ODE
large-scale time domain directly. Firstly, under the steady state condition, we find the DC solution as the
point to compute other time dependent solutions. For a specified time periodT , to solve these nonlinear ODEs
the time domain, our approach consists of following steps:

(i) Let an initial time stept be given.
(ii) Use the decoupling method to decouple all Eqs. (1)–(6).
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Table 1
A list of the parameters used in the modeling and simulation

Parameters Numeric value Unit

BF 86.95 –
BR 1.47 –
CJCO 24.27E–15 F
CJEO 130.0E–15 F
FC 0.50 –
IKF 0.1815 A
IKR 1.032E–3 A
IS 2.85E–24 A
ISC 2.142E–14 A
ISE 2.34E–18 A
ITF 419.80E–3 A
MJC 0.266 –
MJE 0.1188 –
NC 1.954 –
NE 1.910 –
NF 1.068 –
NR 1.060 –
RB 48.130 Ohm
RB2 8.750 Ohm
RC 6.750 Ohm
RE 1.256 Ohm
TF 2.680E–12 second
TR 350.0E–12 second
VJC 0.7161 V
VJE 1.3670 V
VTF 66.0000 –
XCJC 0.3428 –
XTF 275.6000 –

(iii) Each decoupled ODE is solved sequentially with the MI and RK methods.
(iv) Convergence test for each MI loop.
(v) Convergence test for overall outer loop.

(vi) If the specified stopping criterion is reached for the outer loop, then go to step (vii), else update the
results and back to step (iii).

(vii) If t < T , t = t +�t and repeat the steps (iii)–(vi) until the time step meets the specified time periodT .

For a given specified time stept and the previous calculated results (i.e. results at time stept − 1), Fig. 2 is
the flowchart of the proposed simulation procedure for the solutions (VC, VE, VB, VBX, VCX, VEX) in the large-
scale time domain simulation. In step (ii), the decoupling algorithm solves the circuit equations sequenti
instance, theVC in Eq. (1) is solved for given the previous results(VE, VB, VBX, VCX, VEX). TheVE in Eq. (2)
is solved for newer givenVC and(VB, VBX, VCX, VEX). TheVB in Eq. (3) is solved for newer given(VC, VE)

and(VBX, VCX, VEX). We have similar procedure for other unknowns [13,17,19,20]. We use the DC solutio
previous calculated results as the starting point for all unknowns to be solved at present time stept . This method
converges globally and is not sensitive to the initial guesses in the solution process [19].

Each decoupled ODE is solved with the MI algorithm. To clarify the MI algorithm for the numerical soluti
the decoupled nonlinear ODEs, we write the above ODEs as the following form

dVX

dt
= f (VX, t), (20)
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Fig. 2. A flowchart of the proposed simulation methodology.
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Fig. 3. The maximum norm error versus number of outer iterations. All computed unknowns have the same strictly convergent be

Table 2
A comparison of simulation CPU time between our developed circuit simulator and
HSPICE

Number of points per cycle 200 400 800 1600

CPU time of our method (sec.) 2670 5450 11,030 22,600
CPU time of HSPICE (sec.) 2490 6020 14,570 27,020

whereVX is the unknowns to be solved andf is the collection of the nonlinear functions. We define the
parameterλ = ∂f

∂VX
[13,17–19] and inserted theλ into Eq. (20), then we have the MI equation

dVX

dt
= f (η, t)− λ(VX − η), (21)

where v0 � η � w0 is a value in [0, T ], and v0 and w0 are the lower and upper solutions of Eq. (2
respectively [18,19]. Based on the nonlinear behaviors of each decoupled circuit ODEs, mathematically
shown that the solution algorithm has monotone convergence property [19]. As shown in Fig. 2, we solve
with respect to each unknown using the RK method, where the notation subscripto is the previous iteration
results, and the superscripts(t − 1) and(t) represent the previous and present time steps. The nonlinear fun
Fi(.), i = 1, . . . ,6 are the corresponding nonlinear terms of the ODEs above, where the TOL is the error tol
h is the increment in the RK formula of fourth order [24].

Fig. 3 shows the achieved convergence properties (maximum norm error versus number of outer itera
the proposed method for the HBT simulation, where theVIN = 1.42 V andVCC = 5 V. In our calculation expe
rience, a convergence criterion for all quantities (maximum norm error< 10−10 and 10−7 for the inner and the
overall outer loops) can be reached by only 8−12 MI loops and 25−30 outer loops, respectively. The simulati
time is an important consideration in circuit simulation. Under the same convergence criterion above, a com
of the simulation CPU time between our developed simulator and HSPICE simulator is performed on a P
Linux workstation (CPU is with Pentium-IV 1 GHz and RAM= 512 MBytes). In the comparison, 40 cycles a
computed, the input amplitude of two-tone signalVm = 0.002 V, and the frequenciesf1 andf2 are 1.71 and
1.89 GHz, respectively. As shown in Table 2, we find the simulation time of two simulations is in the same
magnitude. For a fixed convergence criterion, simulation time of our method increases linearly when the nu
simulation points per cycle are increased. Furthermore, our method can be easily implemented on a Linu
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for a parallel speedup. Based on the global convergence of the MI method, we can solve all jobs independe
hence this algorithm is inherently parallel in the time domain analysis. For an HBT circuit simulation at 1.
with 40 waveform periods, the achieved parallel speedup factor is about 6.4 on an 8-PCs based Linux-clu
MPI library [15].

3. Results and discussion

The DC characteristics of the HBT circuit shown in Fig. 1 is performed firstly, and the computed resu
inputted as starting points in high frequency simulation. In our simulations, computed family DC curves w
method demonstrate very good consistence with the results from the well-known HSPICE simulation.

For the nonlinearity analysis of the equivalent HBT circuit, we calculate the two-tone input signal in th
domain with intermodulation. The simulation was done directly in the time domain relies on the robustn
the developed circuit simulator with the MI method. From the computed periodic output results, we fou
output signal has good repetition. Fig. 4 shows the calculated output voltage(VOUT) in the time domain with a

Fig. 4. TheVOUT (t) versus the time simulated with our developed simulator.

Fig. 5. TheVOUT (t) versus the time simulated with the HSPICE. There is an unstable output at the beginning of the simulation
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Fig. 6. The output power versus frequency. The results are calculated with our time domain results and FFT.

Fig. 7. The frequency domain results from the HSPICE simulation. The IM3 products cannot be identified from this calculation

two-tone input signal. As shown in Fig. 1, the input signalVIN is the DC bias and the expression ofVin is as
follows:Vin = Vm sin(2πf1t)+Vm sin(2πf2t), where theVm = 0.002 V, and the frequenciesf1 andf2 are 1.71 and
1.89 GHz, respectively. Figs. 4 and 5 are our results and the HSPICE results, respectively. Contrary to the
results initially have some unstable calculations, our simulator presents its robustness in the large sig
domain analysis. We convert the time domain results into the frequency with the FFT directly. Figs. 6 and 7
corresponding results with Figs. 4 and 5, respectively. We find the products of the third-order intermodulatio
at 2f1−f2 and 2f2−f1 are clearly observed in Fig. 6. However, as shown in Fig. 7 it is difficult to identified the
IM3 products. Our methodology for large scale time domain analysis and two-tone intermodulation demo
its superiority over some approaches. Compared to conventional NI-based circuit simulation methodolo
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HSPICE), our approach provides a novel alternative in studying the physical properties of transistors and
for modern microelectronic system simulation.

4. Conclusions

A novel circuit simulation based on the waveform relaxation and monotone iterative methods has been p
With this approach, the DC and two-tone AC characteristics for an HBT circuit were directly computed from
domain results. Compared with the HSPICE simulator, our solution method for an HBT high frequency sim
has been presented to show the accuracy and efficiency of the method. This method provides an alternat
time domain solution of circuit ODEs. This solution methodology can be generalized for larger circuit simu
including more transistors.
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