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Abstract

In this paper we present a novel computational method for calculating the heterojunction bipolar transistor (HBT) physical
characteristics in the time domain. To calculate the HBT high frequency properties, the Gummel-Poon equivalent circuit model
is applied to replace the HBT in the circuit and a set of governing ordinary differential equations (ODESs) is formulated. We
directly decouple the system ODEs and solve each decoupled ODE with the monotone iterative method in the time domain. This
solution methodology proposed here has been applied to semiconductor device simulation by us earlier, and we find this method
for the HBT simulation has good accuracy and converges globally. Compared with the HSPICE circuit simulator results, our
results present the accuracy, efficiency, and robustness of the method.
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1. Introduction

Due to the extremely high linearity of HBTs operating at high frequency, these semiconductor devices and
structures have been of great interest for physical applications, such as wireless communications in recent years
[1-4]. The harmonic balanced method [5-8] is a way for the solution of the HBT ODEs in the frequency domain.
This frequency domain approach has some merits, but it has also limitations in studying the physical properties
of HBTs with time evolution. Contrary to those solution methods in the frequency domain, another computational
alternative to analyze the physical behavior for an HBT device is to solve a set of equivalent circuit ODES in
the time domain directly. Together with the fast Fourier transformation (FFT), the time domain approach can be
extended to study the HBT high frequency properties in the time and frequency domain at the same time. The
discretized ODEs in circuit simulation are solved traditionally with the Newton'’s iterative (NI) method [9]. It is
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well known that the NI method is a local method; in general, it converges quadratically in a sufficiently small
neighborhood of the exact solution. For example, the famous HSPICE circuit simulator [10,11] applied the NI
method in the solution of nonlinear system.

In this paper, a novel simulation method for HBT physical characteristics calculations in the large-scale time
domain is proposed. This approach mainly uses the monotone iterative (MI) method [12-19] instead of the NI
method to solve the ODEs. The MI method has been successfully developed and applied to semiconductor device
simulation by us earlier [12-17]. Based on the decoupling procedure (so-called the waveform relaxation (WR)
method [20]) and MI method, the HBT circuit ODESs are directly solved in the time domain. The computed time
domain results are then analyzed with the FFT to obtain the necessary information in frequency domain. This
approach is strongly dependent on the robustness of the nonlinear ODE solver; compared with the conventional
NI method, this method converges globally and is inherently parallel. First of all, a set of ODEs are decoupled
with the decoupling algorithm. Each decoupled nonlinear ODE is then solved directly with the MI technique and
the Runge—Kutta (RK) method. The proposed computational approach has been successfully implemented on a
PC-based cluster with message passing interface (MPI) library [21]. The primary parallel results show that a well-
designed parallel algorithm can reduce the execution time up to an order of magnitude.

This paper is organized as follows. Section 2 states the HBT ODE model, and introduces computational
procedure. Section 3 presents the simulation results. Section 4 draws the conclusions.

2. An HBT circuit model and simulation method

As shown in Fig. 1(a), based on the node current flow conservation (the well-known Kirchhoff’s current law)
and utilize the Gummel-Poon large signal equivalent circuit model (Fig. 1(b)) for the HBT device [9,22,23],
the complete simulation model can be formulated with nodal equations. The system of node equations for time
dependent HBT circuit is a set of nonlinear coupled ODEs. At nodes C, E, and B we have the following differential
equations (1)—(3), respectively.
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Similarly, at nodes BX, CX, and EX we formulate, respectively, the equations as follows:
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Fig. 1. (a) The HBT circuit for the high frequency simulation, (b) a plot of the Gummel-Poon equivalent circuit model for the HBT device.
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Egs. (1)—(4) are the ODEs, and Egs. (5) and (6) are the algebraic equations. These equations are subject to proper
initial values at time = O for all unknowns to be solved. All currenisand capacitanceS above are nonlinear

functions of unknown variables. These nonlinear terms are
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The model parameters above for the J6Gay51P/GaAs HBT in our simulation are listed in Table 1. There

are 4 coupled ODEs with the nonlinear current and capacitance models have to be solved and the unknowns
to be calculated in the system of ODEs &g, Ve, Vp, Vex, Vcx, and Vex, respectively. We note that the

system consists of strongly coupled nonlinear ODESs, due to the exponential dependence of current and capacitance
models [1,20,22].

We propose here a decoupled and globally convergent simulation technique to solve the system ODEs in the
large-scale time domain directly. Firstly, under the steady state condition, we find the DC solution as the starting
point to compute other time dependent solutions. For a specified time [#riodsolve these nonlinear ODESs in
the time domain, our approach consists of following steps:

(i) Letan initial time step be given.
(i) Use the decoupling method to decouple all Egs. (1)—(6).
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Table 1
A list of the parameters used in the modeling and simulation
Parameters Numeric value Unit

Brp 86.95 —

Bgr 147 -
Cico 24.27E-15 F
CiEO 1300E-15 F

Fe 0.50 —

IKp 0.1815 A

IKR 1.032E-3 A

I 2.85E-24 A

Isc 2.142E-14 A

I 2.34E-18 A

It 419.80E-3 A
Mjc 0.266 -
Mje 0.1188 -

Nc¢ 1.954 -

Ng 1.910 -

Np 1.068 -

Ng 1.060 -

Rp 48130 Ohm
Rp> 8.750 Ohm

Rc 6.750 Ohm

Rg 1.256 Ohm

Tr 2.680E-12 second

Tr 3500E-12 second

Vic 0.7161 \%

Vie 1.3670 V

VTE 66.0000 -
Xcic 0.3428 -
XTF 2756000 -

(iif) Each decoupled ODE is solved sequentially with the Ml and RK methods.
(iv) Convergence test for each Ml loop.
(v) Convergence test for overall outer loop.
(vi) If the specified stopping criterion is reached for the outer loop, then go to step (vii), else update the newer
results and back to step (iii).
(vii) If t < T, t =t + At and repeat the steps (iii)—(vi) until the time step meets the specified time fgeriod

For a given specified time stepand the previous calculated results (i.e. results at timerstef), Fig. 2 is
the flowchart of the proposed simulation procedure for the solutigas Ve, Vs, Vex, Vcx, Vex) in the large-
scale time domain simulation. In step (ii), the decoupling algorithm solves the circuit equations sequentially, for
instance, thé/¢ in EqQ. (1) is solved for given the previous resulig, Vs, Vex, Vcx, Vex). The Vg in Eq. (2)
is solved for newer giveW¢ and(Vp, Vex, Vcx, Vex). The Vp in Eq. (3) is solved for newer givefVc, Vi)
and(Vex, Vex, Vex). We have similar procedure for other unknowns [13,17,19,20]. We use the DC solutions and
previous calculated results as the starting point for all unknowns to be solved at present timé ktspnethod
converges globally and is not sensitive to the initial guesses in the solution process [19].

Each decoupled ODE is solved with the Ml algorithm. To clarify the Ml algorithm for the numerical solution of
the decoupled nonlinear ODEs, we write the above ODEs as the following form

dVx

TZf(VXJ), (20)
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Fig. 2. A flowchart of the proposed simulation methodology.
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Fig. 3. The maximum norm error versus number of outer iterations. All computed unknowns have the same strictly convergent behavior.

Table 2

A comparison of simulation CPU time between our developed circuit simulator and

HSPICE
Number of points per cycle 200 400 800 1600
CPU time of our method (sec.) 2670 5450 11,030 22,600
CPU time of HSPICE (sec.) 2490 6020 14,570 27,020

where Vy is the unknowns to be solved andis the collection of the nonlinear functions. We define the M
parametei = % [13,17-19] and inserted theinto Eq. (20), then we have the Ml equation

dVy

where vg < n < wp is a value in[0, T], and vg and wp are the lower and upper solutions of Eqg. (20),
respectively [18,19]. Based on the nonlinear behaviors of each decoupled circuit ODEs, mathematically we have
shown that the solution algorithm has monotone convergence property [19]. As shown in Fig. 2, we solve Eq. (21)
with respect to each unknown using the RK method, where the notation subsdsighe previous iteration
results, and the superscrigts— 1) and(¢) represent the previous and present time steps. The nonlinear functions
F; (), i =1,...,6 are the corresponding nonlinear terms of the ODEs above, where the TOL is the error tolerance,
h is the increment in the RK formula of fourth order [24].

Fig. 3 shows the achieved convergence properties (maximum norm error versus number of outer iterations) on
the proposed method for the HBT simulation, where ¥he = 1.42 V andVcc = 5 V. In our calculation expe-
rience, a convergence criterion for all quantities (maximum norm etrt0~1° and 107/ for the inner and the
overall outer loops) can be reached by onlyl® Ml loops and 25-30 outer loops, respectively. The simulation
time is an important consideration in circuit simulation. Under the same convergence criterion above, a comparison
of the simulation CPU time between our developed simulator and HSPICE simulator is performed on a PC-based
Linux workstation (CPU is with Pentium-1V 1 GHz and RAM512 MBytes). In the comparison, 40 cycles are
computed, the input amplitude of two-tone signg) = 0.002 V, and the frequencief and f> are 1.71 and
1.89 GHz, respectively. As shown in Table 2, we find the simulation time of two simulations is in the same order
magnitude. For a fixed convergence criterion, simulation time of our method increases linearly when the number of
simulation points per cycle are increased. Furthermore, our method can be easily implemented on a Linux-cluster
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for a parallel speedup. Based on the global convergence of the MI method, we can solve all jobs independently, and
hence this algorithm is inherently parallel in the time domain analysis. For an HBT circuit simulation at 1.0 GHz
with 40 waveform periods, the achieved parallel speedup factor is about 6.4 on an 8-PCs based Linux-cluster with
MPI library [15].

3. Resultsand discussion

The DC characteristics of the HBT circuit shown in Fig. 1 is performed firstly, and the computed results are
inputted as starting points in high frequency simulation. In our simulations, computed family DC curves with our
method demonstrate very good consistence with the results from the well-known HSPICE simulation.

For the nonlinearity analysis of the equivalent HBT circuit, we calculate the two-tone input signal in the time
domain with intermodulation. The simulation was done directly in the time domain relies on the robustness of
the developed circuit simulator with the Ml method. From the computed periodic output results, we found the
output signal has good repetition. Fig. 4 shows the calculated output valvage) in the time domain with a
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Fig. 4. TheVoyT(¢) versus the time simulated with our developed simulator.
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Y. Li, K.-Y. Huang / Computer Physics Communications 152 (2003) 307-316 315

1e+1

1e+0 |-* Fundamental frequencies

1e-1 |
? oo
1e-2 i

1e3 |-

IM3 products

1e-4
1e-5

Output power (W)

1e-6
1e-7
1e-8

1e-9

Frequency (Hz)

Fig. 6. The output power versus frequency. The results are calculated with our time domain results and FFT.
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Fig. 7. The frequency domain results from the HSPICE simulation. The IM3 products cannot be identified from this calculation.

two-tone input signal. As shown in Fig. 1, the input sigiva| is the DC bias and the expression f, is as

follows: Vin = V,,, Sin(2x f1t) + V,,, SIN(2x fot), where theV,,, = 0.002 V, and the frequencigi and f» are 1.71 and

1.89 GHz, respectively. Figs. 4 and 5 are our results and the HSPICE results, respectively. Contrary to the HSPICE
results initially have some unstable calculations, our simulator presents its robustness in the large signal time
domain analysis. We convert the time domain results into the frequency with the FFT directly. Figs. 6 and 7 are the
corresponding results with Figs. 4 and 5, respectively. We find the products of the third-order intermodulation (IM3)
at 2f1 — f> and 2f> — fy are clearly observedin Fig. 6. However, as shown in Fig. 7 it is difficult to identified the two
IM3 products. Our methodology for large scale time domain analysis and two-tone intermodulation demonstrates
its superiority over some approaches. Compared to conventional NI-based circuit simulation methodology (e.qg.,
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HSPICE), our approach provides a novel alternative in studying the physical properties of transistors and is useful
for modern microelectronic system simulation.

4. Conclusions

A novel circuit simulation based on the waveform relaxation and monotone iterative methods has been proposed.
With this approach, the DC and two-tone AC characteristics for an HBT circuit were directly computed from time
domain results. Compared with the HSPICE simulator, our solution method for an HBT high frequency simulation
has been presented to show the accuracy and efficiency of the method. This method provides an alternative for the
time domain solution of circuit ODEs. This solution methodology can be generalized for larger circuit simulation
including more transistors.
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