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Abstract

An e!cient minus (respectively, signed) dominating function of a graph G = (V; E) is a
function f :V → {−1; 0; 1} (respectively, {−1; 1}) such that

∑
u∈N [v] f(u) = 1 for all v∈V ,

where N [v]={v}∪{u | (u; v)∈E}. The e!cient minus (respectively, signed) domination problem
is to 8nd an e!cient minus (respectively, signed) dominating function of G. In this paper,
we show that the e!cient minus (respectively, signed) domination problem is NP-complete on
chordal graphs, chordal bipartite graphs, planar bipartite graphs and planar graphs of maximum
degree 4 (respectively, on chordal graphs). Based on the forcing property on blocks of vertices
and automata theory, we provide a uniform approach to show that in a special class of interval
graphs, every graph (respectively, every graph with no vertex of odd degree) has an e!cient
minus (respectively, signed) dominating function. We also give linear-time algorithms to 8nd
these functions. Besides, we show that the e!cient minus domination problem is equivalent to
the e!cient domination problem on trees.
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1. Introduction

Let G=(V; E) be a 8nite, undirected and simple graph, i.e., G has no multi-
ple edges and no self-loops. For any vertex v∈V , the open neighborhood of v is
N (v)= {u∈V |(u; v)∈E} and the closed neighborhood of v is N [v] = {v}∪N (v). Let
f :V →Y be a function which assigns to each v∈V a value in Y , where Y is a subset
of real numbers. To simplify notation, we let f(S)=

∑
u∈S f(u) for any set S ⊆V .

We call f(V ) the weight of f. The function f is called an e4cient Y -dominating
function if f(N [v])= 1 for every vertex v∈V and Y is called the weight set of f.
In particular, f is called an e4cient (respectively, e4cient minus and e4cient signed)
dominating function if the weight set Y is {0; 1} (respectively, {−1; 0; 1} and {−1; 1}).
In [1], Bange et al. showed that if f1 and f2 are any two e!cient Y -dominating func-
tions of G, then f1(V )=f2(V ). In other words, all e!cient Y -dominating functions
of G have the same weight. Hence, the e4cient Y -domination problem is the problem
of 8nding an e!cient Y -dominating function of G. The e!cient minus and signed
domination problems have applications in sociology, electronics and facility location
of operation research [7–9,14,15]. Note that not every graph has an e!cient (minus,
signed) dominating function (see Fig. 1 for examples). By the de8nition, an e!cient
(signed) dominating function is also an e!cient minus dominating function, but the
converse is not true.
There is an extensive number of papers concerning the algorithmic complexity of

the e!cient domination problem in several graph classes [2,4–6,10,17–21]. The most
frequently used algorithmic technique for solving the e!cient domination problems
is dynamic programming based on the forcing property on vertices, i.e., the value 1
assigned to a vertex v forces the other vertices in N [v] to be assigned the value 0.
However, for the e!cient minus and signed domination problems, this forcing property
does not work because of the “neutralization” of values −1 and 1. Hence, the techniques
used for the e!cient domination problem cannot be applied to these two problems. To
date, the only known result is that the e!cient signed domination problem is NP-
complete on general graphs [1].
In this paper, we show that the e!cient minus domination problem is NP-complete

on chordal graphs, chordal bipartite graphs, planar bipartite graphs and planar graphs
of maximum degree 4; the e!cient signed domination problem is NP-complete on
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Fig. 1. Each entry means whether the graph has EDF, EMDF or ESDF, where EDF, EMDF and ESDF
stand for e!cient dominating function, e!cient minus dominating function and e!cient signed dominating
function, respectively.
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chordal graphs. We 8nd that a special class of interval graphs, which we call chain
interval graphs, can be represented as a sequence of blocks, where a block is a set of
vertices in which all vertices have the same closed neighborhood. According to clique
and block structures, the chain interval graphs can be described by a formal language
L. By applying the forcing property on blocks, we create a 8nite state automaton
which exactly accepts L. As a result, every chain interval graph has an e!cient minus
dominating function. Similarly, we show that every chain interval graph with no vertex
of odd degree has an e!cient signed dominating function. In addition, we give linear-
time algorithms to 8nd them. For trees, we show that the e!cient minus domination
problem coincides with the e!cient domination problem. According to Bange et al. [2],
we can hence 8nd an e!cient minus dominating function of a tree in linear time.

2. NP-completeness results

A graph is chordal if every cycle of length greater than 3 has a chord, i.e., an edge
between two non-consecutive vertices of the cycle [13]. Chordal bipartite graphs are
bipartite graphs in which every cycle of length greater than 4 has a chord [13]. Note
that the class of chordal bipartite graphs is not the intersection of the classes of chordal
graphs and bipartite graphs.
E4cient domination problem (EDP)
Instance: A graph G=(V; E).
Question: Does G have an e!cient dominating function?

E4cient minus domination problem (EMDP)
Instance: A graph G=(V; E).
Question: Does G have an e!cient minus dominating function?
It is known that EDP is NP-complete even when restricted to chordal graphs [21],

chordal bipartite graphs [18,19], planar bipartite graphs [18,19] and planar graphs of
maximum degree 3 [10]. In the following, we show that EMDP on chordal graphs,
chordal bipartite graphs, planar bipartite graphs and planar graphs of maximum degree
4 is NP-complete by reducing from EDP.

Theorem 1. EMDP is NP-complete on chordal graphs, chordal bipartite graphs, pla-
nar bipartite graphs and planar graphs of maximum degree 4.

Proof. It is not di!cult to see that EMDP on chordal graphs (chordal bipartite graphs,
planar bipartite graphs and planar graphs of maximum degree 4) is in NP. Hence,
we only show that this problem can be reduced from EDP on the same graphs in
polynomial time.
Given a graph G=(VG; EG), we construct the graph H =(VH ; EH ) by adding a path

of length 3, say v–v1–v2–v3, to each vertex v of G. That is, VH =VG ∪ (⋃v∈VG
{v1; v2; v3})

and EH =EG ∪ (⋃v∈VG
{(v; v1); (v1; v2); (v2; v3)}). Then, H is a chordal graph (respec-

tively, chordal bipartite graph, planar bipartite graph and planar graph of maximum
degree 4) if G is a chordal graph (respectively, chordal bipartite graph, planar bipartite
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graph and planar graph of maximum degree 3). Clearly, the construction of H can be
done in polynomial time.
Now, we show that G has an e!cient dominating function f if and only if H

has an e!cient minus dominating function g. First, suppose that G has an e!cient
dominating function f. Note that for each v∈VG, there are four corresponding ver-
tices v; v1; v2 and v3 in VH . De8ne a function g :VH →{−1; 0; 1} of H as follows.
Let g(v)=f(v) for each v∈VG. Furthermore, if g(v)= 0, then let g(v1)= 0; g(v2)= 1
and g(v3)= 0; otherwise, let g(v1)= g(v2)= 0 and g(v3)= 1. It can be veri8ed that
g(N [v])= g(N [v1])= g(N [v2])= g(N [v3])= 1. Hence, g is an e!cient minus dominat-
ing function of H .
Conversely, suppose that H has an e!cient minus dominating function g. We then

claim that g(v)¿0; g(v1)= 0; g(v2)¿0 and g(v3)¿0 for each v∈VG. If g(v3)=−1,
then g(N [v3])60, which contradicts the fact that g(N [v3])= 1. If g(v2)=−1, then
g(N [v3])60, a contradiction again. If g(v1)=−1, then g(N [v2])= 1 implies that g(v2)
= g(v3)= 1, which leads to g(N [v3])= 2, a contradiction. If g(v1)= 1, then
g(N [v2])= 1 implies that g(v2)= g(v3)= 0, which leads to g(N [v3])= 0, a contradic-
tion. If g(v)=−1, then g(N [v1])= 1 and g(N [v2])= 1 imply that g(v1)= g(v2)= 1 and
g(v3)=−1, which contradicts the fact that g(v3)¿0. De8ne a function f :VG→{0; 1}
of G by letting f(v)= g(v) for every v∈VG. It is not hard to see that f is an e!cient
dominating function of G since f(N [v])= 1 for all v in VG.

One-in-three 3SAT problem
Instance: A set U of n boolean variables and a collection C of m clauses over U

such that each clause has exactly three literals.
Question: Is there a truth assignment t :U →{true; false} for C such that each

clause in C has exactly one true literal?

E4cient signed domination problem (ESDP)
Instance: A graph G=(V; E).
Question: Does G have an e!cient signed dominating function?
Next, we will show that one-in-three 3SAT problem, which is known to be

NP-complete [11], is reducible to ESDP on chordal graphs in polynomial time.

Theorem 2. ESDP is NP-complete on chordal graphs.

Proof. It is not hard to see that ESDP on chordal graphs is in NP. We now show that
one-in-three 3SAT problem is polynomially reducible to this problem. Let U = {u1;
u2; : : : ; un} and C= {C1; C2; : : : ; Cm} be an instance of one-in-three 3SAT problem,
where each clause Cj, 16j6m, contains three literals lj;1; lj;2 and lj;3. We assume
that no clause contains both a literal and its negation because this clause is always true
and can be omitted. Let U ′= {ui; Kui|16i6n}. We construct a chordal graph G=(V; E)
as follows.

(1) For each variable ui, 16i6n, we construct the subgraph Gui of G as shown in
Fig. 2(a).
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(a)

(b)

Fig. 2. The subgraph: (a) Gui , (b) GCj .

(2) For each clause Cj, 16j6m, we construct the subgraph GCj of G as shown in
Fig. 2(b), where GCj is connected to the three vertices corresponding to the three
literals in clause Cj.

(3) We add all possible edges in GU ′ such that GU ′ forms a complete subgraph, i.e.,
any two vertices of U ′ are adjacent in G.

Note that lj;1; lj;2; lj;3 ∈U ′. Since the subgraphs Gui , 16i6n, and GCj , 16j6m,
are all chordal and the subgraph GU ′ is complete, G is a chordal graph and can be
constructed in polynomial time.
Let f :V →{−1; 1} be an e!cient signed dominating function of G. We discuss

some properties of f as follows. Clearly, for a vertex v of degree 2k, where k is a
positive integer, f must assign k+1 vertices of N [v] values of 1 and k vertices of N [v]
values of −1. Consider each subgraph GCj , 16j6m. Suppose that f(aj)=−1. Then,
f(abj)=f(bj)=f(acj)=f(cj)=f(adj)=f(dj)=f(aej)=f(ej)=1 (since abj; acj;
ad j and aej are vertices of degree 2) and hence f(N [aj])= 8 − 1¿1, a contradic-
tion. Therefore, f(aj)= 1 and similarly, f(bj)=f(cj)= 1. Suppose that f(dj)=−1.
Then, f(ad j)=f(bdj)=f(cdj)= 1 and f(dj) + f(dej) + f(ej)¿−3. As a result,
f(N [dj])¿6 − 3¿1, a contradiction. Hence, f(dj)= 1 and similarly, f(ej)= 1. For
each vertex v of degree 2 in GCj , f(v)=−1 since f(aj)=f(bj)=f(cj)=f(dj)=f(ej)
= 1. Note that f(N [dj])= 1 implies that f(dej)=−1 and then f(N [ej])= 1 implies
that f(pj) + f(qj)= 0. Consider each Gui , 16i6n. Since N [yi;1]=N [yi;2]∪{ui; Kui}
and f(N [yi;1])=f(N [yi;2])= 1, f(ui) + f( Kui)= 0 and hence f(zi)= 1. Note that ui

(respectively, Kui) is adjacent to pj if and only if ui (respectively, Kui) is adjacent to qj,
and for each 16i′6n with i′ 	= i, both ui′ and Kui′ are adjacent to ui (respectively, Kui).
Hence, f(N [ui])= 1 + f(xi;1) + f(yi;1)= 1, which means that f(xi;1) + f(yi;1)= 0.
Moreover, f(yi;1) + f(yi;2) + f(yi;3)= 1 and f(xi;1) + f(xi;2) + f(xi;3)= 1 since
f(N [yi;2])= 1 and f(N [xi;2])= 1, respectively.
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Now, we show that C has a satisfying truth assignment if and only if G has an
e!cient signed dominating function. First, suppose that f is an e!cient signed domi-
nating function of G. Let 16i6n and 16j6m. Since f(pj)+f(qj)= 0, f(dej)=−1
and f(ej)= 1, f(N [pj])= 1 imply that there is exactly one of lj;1; lj;2 and lj;3 whose
function value is −1. Let t :U →{true; false} be de8ned by t(ui)= true if and only if
f(ui)=−1. Since f(ui) + f( Kui)= 0, t(ui) is true if and only if t( Kui) is false. Hence,
t is a one-in-three satisfying truth assignment for C.
Conversely, suppose that C has a satisfying truth assignment. Then, we can identify

an e!cient signed dominating function f of G according to the mention above. In
particular, f(ui)=−1 if ui is assigned true; otherwise, f(ui)= 1.

3. Interval graphs

A graph G=(V; E) is an interval graph if there exists a one-to-one correspon-
dence between V and a family F of intervals such that two vertices in V are adja-
cent if and only if their corresponding intervals overlap [3,13]. We call F an interval
representation of G. S ⊆V is a clique if any two vertices of S are adjacent in G.
A clique is maximal if there is no clique properly containing it as a subset. Gilmore
and HoOman [12] showed that for an interval graph G, its maximal cliques can be
linearly ordered such that for every vertex v of G, the maximal cliques containing v
occur consecutively. We use G=(C1; C2; : : : ; Cs) to denote the interval graph G with s
linearly ordered maximal cliques and call it the clique structure of G (see Fig. 3(c)).
Note that if G is connected, then Ci ∩Ci+1 	= ∅ for any 16i¡s.
The e!cient domination problem on interval graphs can be solved in linear time

using dynamic programming, which based on the forcing property on vertices (i.e., if
we assign 1 to a vertex v, then we have to assign 0 to all vertices in N (v); if we assign
0 to v, then we have to assign 1 to exactly one vertex of N (v) and 0 to the remaining
vertices in N (v)). However, this technique seems not be applied for both the e!cient
minus and signed domination problems on interval graphs because the forcing property
on vertices does not work due to the “neutralization” of values −1 and 1.

(a) (b)

(c) (d)

Fig. 3. (a) A chain interval graph G; (b) an interval representation of G; (c) the clique structure of G; and
(d) the block structure of G.
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In this section, we consider a special class of interval graphs, which we call the class
of chain interval graphs. A chain interval graph G=(C1; C2; : : : ; Cs) is an interval graph
in which Ci−1 ∩Ci ∩Ci+1 = ∅ for any 1¡i¡s (see Fig. 3). It is worth mentioning that
chain interval graphs contain proper ptolemaic interval graphs (i.e., the intersection of
the classes of proper interval graphs and ptolemaic graphs) as a subclass [3]. Without
loss of generality, we assume that G=(C1; C2; : : : ; Cs) is a connected chain interval
graph in the following. By the de8nition, any clique Ci of G, 16i6s, can be partitioned
into three subsets Bi; l=Ci−1 ∩Ci, Bi; r =Ci ∩Ci+1 and Bi;m=Ci\(Bi; l ∪Bi; r), where
C0 =Cs+1 = ∅. We call these subsets blocks and say that Ci contains blocks Bi; l; Bi;m

and Bi; r . Note that block Bi;m might be empty. Let bn(Ci) be the number of non-empty
blocks of Ci.

Remark 3. If s¿2, then both C1 and Cs contain exactly two blocks, i.e., bn(C1)=
bn(Cs)= 2.

Remark 4. For any two consecutive cliques Ci and Ci+1 of G, Bi; r =Bi+1; l. For a
vertex v∈Bi; r , N [v] =Ci ∪Ci+1 =Ci ∪ (Ci+1\Bi+1; l), i.e., N [v] can be partitioned into
Ci and Ci+1\Bi+1; l.

Remark 5. Let Ci be a clique with bn(Ci)= 3. For a vertex v∈Bi;m, N [v] =Ci =Bi; l ∪
Bi;m ∪Bi; r .

Based on the clique structure of G, we can represent G by linearly ordered blocks
B1; B2; : : : ; Bt , t¿s, such that each clique contains either consecutive two or three
blocks. We call this representation the block structure of G and denote it by G=(B1;
B2; : : : ; Bt) (see Fig. 3(d)). Note that B1; B2; : : : ; Bt is a partition of V . We de8ne the
block-number string bs(G) of G to be the string bn(C1)bn(C2) · · · bn(Cs). For exam-
ple, the block-number string of G shown in Fig. 3 is 23222. For convenience, if G
contains only one clique, we de8ne bn(G)= 2. Let L be the language consisting of
the block-number strings of all chain interval graphs. Then, we have the following
lemma immediately.

Lemma 6. L is a regular language and its regular expression is 2 + 2(2 + 3)∗2.

3.1. The e4cient minus domination problem

Let f :V →{−1; 0; 1} be an e!cient minus dominating (EMD for short) function
of G=(B1; B2; : : : ; Bt). We call f a simple EMD function of G if f(Bi)∈{−1; 0; 1}
for all Bi, 16i6t. We will show later that any chain interval graph a!rmatively
admits a simple EMD function. A clique Ci, 16i6s, is P type if bn(Ci)= 2 and Q
type if bn(Ci)= 3. The clique Ci is called a P(a; b) clique if Ci is P type, f(Bi; l)= a
and f(Bi; r)= b, and a Q(a; b; c) clique if Ci is Q type, f(Bi; l)= a; f(Bi;m)= b and
f(Bi; r)= c. Note that C1 and Cs are always a P-type clique by Remark 3. According
to Remarks 4 and 5, respectively, we have the following two lemmas immediately.
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Lemma 7. Let f be an EMD function of G and let Ci and Ci+1 be two consecutive
cliques of G. Then, f(Ci) + f(Ci+1\Bi+1; l)= 1.

Lemma 8. Let f be an EMD function of G and Ci be a Q type clique. Then,
f(Bi; l) + f(Bi;m) + f(Bi; r)= 1.

Lemma 9. Let f be a simple EMD function of G. If s¿2, then C1 and Cs are either
a P(0;1) or P(1;0) clique.

Proof. Let v∈B1; l. Clearly, N [v] =C1 =B1; l ∪B1; r . f(N [v])= 1 implies that either (1)
f(B1; l)= 0 and f(B1; r)= 1, or (2) f(B1; l)= 1 and f(B1; r)= 0. That is, C1 is either
a P(0;1) or P(1;0) clique. Similarly, Cs is either a P(0;1) or P(1;0) clique.

Lemma 10. Let f be a simple EMD function of G and 1¡i¡s. If clique Ci is Q
type, then Ci is either a Q(0;0;1); Q(0;1;0); Q(1;0;0) or Q(1;−1;1) clique.

Proof. By Lemma 8, we have f(Bi; l) + f(Bi;m) + f(Bi; r)= 1. Since f is a sim-
ple EMD function, f(Bi; l); f(Bi;m); f(Bi; r)∈{−1; 0; 1}. We claim that f(Bi; r) 	=−1
and f(Bi; l) 	=−1. Suppose that f(Bi; r)=−1. Then, f(Bi; l) + f(Bi;m)= 2. If Ci+1 is
Q type, then by Lemma 7, f(Bi; l) + f(Bi;m) + f(Bi; r) + f(Bi+1; m) + f(Bi+1; r)= 1.
As a result, f(Bi+1; l) + f(Bi+1; m) + f(Bi+1; r)=−1, which contradicts Lemma 8. In
other words, Ci+1 is P type. By Lemma 7, we have f(Bi+1; r)= 0 and hence Ci+1

is a P(−1;0) clique. According to Lemma 9, i + 1¡s. If Ci+2 is P type, then since
f(Bi+2; r)∈{−1; 0; 1}, f(Bi+1; l)+f(Bi+1; r)+f(Bi+2; r)60, a contradiction to Lemma 7.
If Ci+2 is Q type, then f(Bi+1; l)+f(Bi+1; r)+f(Bi+2; m)+f(Bi+2; r)= 1 by Lemma 7. As
a result, f(Bi+2; l)+f(Bi+2; m)+f(Bi+2; r)= 2, which contradicts Lemma 8. Therefore,
f(Bi; r) 	=−1. Similarly, we have f(Bi; l) 	=−1.

By the above discussion, f(Bi; l); f(Bi; r)∈{0; 1}, f(Bi;m)∈{−1; 0; 1} and f(Bi; l)+
f(Bi;m) + f(Bi; r)= 1. We have the following two cases.
Case 1: f(Bi; r)=0. Either f(Bi; l)=0 and f(Bi;m)= 1, or f(Bi; l)= 1 and f(Bi;m)=0.

That is, Ci is a Q(0;1;0) or Q(1;0;0) clique.
Case 2: f(Bi; r)=1. Either f(Bi; l)=0 andf(Bi;m)=0, or f(Bi; l)=1 andf(Bi;m)=−1.

That is, Ci is a Q(0;0;1) or Q(1;−1;1) clique.

Lemma 11. Let f be a simple EMD function of G and 1¡i¡s. If clique Ci is P
type, then Ci is either a P(0;0); P(0;1) or P(1;0) clique.

Proof. We 8rst claim that f(Bi; r) 	=−1 and f(Bi; l) 	=−1. Suppose that f(Bi; r)=−1.
According to Lemma 10, Ci+1 is not Q type. Hence, Ci+1 is P type and f(Bi; l)=
f(Bi+1; r)= 1 since f(Bi; l) + f(Bi; r) + f(Bi+1; r)= 1 by Lemma 7. That is, Ci and
Ci+1 are P(1;−1) and P(−1;1) cliques, respectively. By Lemma 9, i+1¡s. If Ci+2 is Q
type, then according to Lemma 10, Ci+2 must be a Q(1;0;0) or Q(1;−1;1) clique. As a
result, f(Bi+1; l) + f(Bi+1; r) + f(Bi+2; m) + f(Bi+2; r)= 0, a contradiction to Lemma 7.
In other words, Ci+2 is P type and f(Bi+2; m)= 1 by Lemma 7. Hence, Ci+2 is a P(1;1)
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clique and i+2¡s. Similarly, Ci+3 is P type and f(Bi+3; r)=−1. In other words, Ci+3

is a P(1;−1) clique which is the same as Ci. Continuing this way, we will 8nd that
Cs is either a P(1;−1); P(−1;1) or P(1;1) clique, which contradicts Lemma 9. Therefore,
f(Bi; r) 	=−1. Similarly, we have f(Bi; l) 	=−1.

Next, we claim that Ci cannot be a P(1;1) clique. Suppose that Ci is a P(1;1) clique,
i.e., f(Bi; r)=f(Bi; l)= 1. If Ci+1 is Q type, then f(Bi; l) + f(Bi; r) + f(Bi+1; m) +
f(Bi+1; r)= 1 by Lemma 7. As a result f(Bi+1; l) + f(Bi+1; m) + f(Bi+1; r)= 0, a con-
tradiction to Lemma 8. Hence, Ci+1 is P type. By Lemma 7, we have f(Bi+1; r)=−1,
a contradiction, too.
As mentioned above, Ci may be either a P(0;0); P(0;1) or P(1;0) clique.

Lemma 12. Let f be a simple EMD function of G and 16i¡s.

(1) If Ci is a P(0;0) clique, then Ci+1 is either a P(0;1), Q(0;0;1) or Q(0;1;0) clique.
(2) If Ci is a P(0;1) clique, then Ci+1 is either a P(1;0), Q(1;0;0) or Q(1;−1;1) clique.
(3) If Ci is a P(1;0) clique, then Ci+1 is a P(0;0) clique.
(4) If Ci is a Q(0;0;1) clique, then Ci+1 is either a P(1;0), Q(1;0;0) or Q(1;−1;1) clique.
(5) If Ci is a Q(0;1;0) clique, then Ci+1 is a P(0;0) clique.
(6) If Ci is a Q(1;0;0) clique, then Ci+1 is a P(0;0) clique.
(7) If Ci is a Q(1;−1;1) clique, then Ci+1 is either a P(1;0), Q(1;0;0) or Q(1;−1;1) clique.

Proof. (1) Let Ci be a P(0;0) clique. If Ci+1 is P type, then by Lemma 7, f(Bi; l) +
f(Bi; r) + f(Bi+1; r)= 1 and hence f(Bi+1; r)= 1, i.e., Ci+1 is a P(0;1) clique. If Ci+1

is Q type, then f(Bi; l) + f(Bi; r) + f(Bi+1; m) + f(Bi+1; r) = 1 and hence f(Bi+1; m) +
f(Bi+1; r)= 1. According to Lemma 10, Ci+1 may be a Q(0;0;1) or Q(0;1;0) clique.
(2) Similar to (1).
(3) Let Ci be a P(1;0) clique. If Ci+1 is Q type, then f(Bi; l)+f(Bi; r)+f(Bi+1; m)+

f(Bi+1; r) = 1 by Lemma 7. Note that Bi; r =Bi+1; l. As a result, f(Bi+1; l)+f(Bi+1; m)+
f(Bi+1; r)= 0, a contradiction to Lemma 8. In other words, Ci+1 is exactly P type. It
is not hard to see that Ci+1 is a P(0;0) clique.
(4) Let Ci be a Q(0;0;1) clique. If Ci+1 is P type, then by Lemma 7, f(Bi; l) +

f(Bi;m) +f(Bi; r) +f(Bi+1; r)= 1 and hence f(Bi+1; r)= 0, i.e., Ci+1 is a P(1;0) clique.
If Ci+1 is Q type, then f(Bi; l) + f(Bi;m) + f(Bi; r) + f(Bi+1; m) + f(Bi+1; r)= 1 and
f(Bi+1; m) + f(Bi+1; r)= 0. By Lemma 10, Ci+1 may be a Q(1;0;0) or Q(1;−1;1) clique.
(5) Let Ci be a Q(0;1;0) clique. If Ci+1 is P type, then by Lemma 7, f(Bi; l) +

f(Bi;m) +f(Bi; r) +f(Bi+1; r)= 1 and hence f(Bi+1; r)= 0, i.e., Ci+1 is a P(0;0) clique.
If Ci+1 is Q type, then f(Bi; l) + f(Bi;m) + f(Bi; r) + f(Bi+1; m) + f(Bi+1; r)= 1. As a
result, f(Bi+1; l) + f(Bi+1; m) + f(Bi+1; r)= 0, a contradiction to Lemma 8.
(6) Similar to (5).
(7) Similar to (4).

According to Lemmas 9 and 12, we can create a directed graph H =(VH ; EH ), where
VH = {P(0;0); P(0;1); P(1;0); Q(0;0;1); Q(0;1;0); Q(1;0;0); Q(1;−1;1)} and EH = {→

uv |u; v∈V and
u; v satisfy one of the conditions of Lemma 12}. We add a start node in H such
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Fig. 4. The non-deterministic 8nite state automaton M.
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start state1 state2

Fig. 5. The re8ned deterministic 8nite state automaton M′′.

that there are two edges from start node to P(0;1) and P(1;0). For each edge
→
uv, if

v∈{P(0;0); P(0;1); P(1;0)}, then we label
→
uv with 2; otherwise, we label

→
uv with 3. By

letting P(0;1) and P(1;0) be two termination nodes, H becomes a non-deterministic 8nite
state automaton and we denote it as M. That is, M has a start node and two ter-
mination nodes P(0;1) and P(1;0), and each edge is labeled with a single symbol from
)= {2; 3} (see Fig. 4). In M, each path p from start node to a termination node
speci8es a string str(p) by concatenating the characters of ) that label the edges of
p. Clearly, str(p) is a string accepted by M. Furthermore, M can be reduced into a
deterministic 8nite state automaton M′′ with the minimum states (see Fig. 5) using
the following methods:

(1) Convert M into a deterministic 8nite state automaton M′ (refer to [16, pp. 22–
24]).

(2) Minimize the states of M′ (refer to [16, pp. 65–71]).
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(3) Simplify M′ into M′′ by removing all non-start states of M′ without input
edge.

According to M′′, it is not hard to see that the accepted language of M′′ is 2 +
2(2 + 3)∗2. Hence, we have the following lemma.

Lemma 13. The accepted language of M is 2 + 2(2 + 3)∗2.

According to Lemmas 6 and 13, L is accepted by M. That is, for any chain
interval graph G, we can 8nd a path p=(start; n1; n2; : : : ; nr) from start node to a
termination node nr in M such that str(p) is equal to bs(G). The existence of path p
also implies that G a!rmatively admits a simple EMD function f :V →{−1; 0; 1}
which is de8ned as follows. Let f(Bi; l)= a and f(Bi; r)= b if ni =P(a;b), and let
f(Bi; l)= a, f(Bi;m)= b and f(Bi; r)= c if ni =Q(a; b; c). Furthermore, for each block
Bj of G, we 8rst randomly choose one vertex u of Bj and let f(u)=f(Bj). Then, for
each vertex v∈Bi\{u}, we let f(v)= 0. It is not hard to see that f is a simple EMD
function of G. For example, considering the graph G as shown in Fig. 3, we have
p=(start; P(0;1); Q(1;−1;1); P(1;0); P(0;0); P(0;1)). Then, we can 8nd a simple EMD func-
tion f :V →{−1; 0; 1} of G by letting f(B1)= 0; f(B2)= 1; f(B3)=−1; f(B4)= 1;
f(B5)= 0, f(B6)= 0; f(B7)= 1, f(1)=f(2)=f(6)=f(7)=f(8)=f(9)=0, f(3)=
f(5)=f(10)= 1 and f(4)=−1. Since a simple EMD function is an e!cient minus
dominating function, we have the following theorem.

Theorem 14. Every chain interval graph has an e4cient minus dominating function.

The remaining work is to e!ciently 8nd a path p of G in M such that str(p)= bs(G).
We propose the following algorithm to 8nd it. First of all, according to the clique struc-
ture G=(C1; C2; : : : ; Cs) and M, we construct a directed acyclic graph DAG(G) with
s layers as follows. For simplicity, we use Vi to denote the set of nodes in layer i and
Ei to denote the set of the directed edges −→uv with u∈Vi and v∈Vi+1.

(1) V1 = {P(0;1); P(1;0)}.
(2) Suppose that Vi = {u1; u2; : : : ; uk} for 16i¡s − 1. Then, Ei =

⋃
16j6k {−→ujv|−→ujv is

an edge of M with label bn(Ci+1)} and Vi+1 = {v|−→uv ∈Ei}.
(3) Es−1={−→uv|u∈Vs−1; v∈{P(0;1); P(1;0)} and −→uv is an edge of M} andVs={v|−→uv∈Es}.

For example, considering the graph G of Fig. 3, the DAG(G) is depicted in Fig. 6.
After constructing DAG(G), p can be easily found by starting a node in layer s and
backtracking to node in layer 1. Since s=O(|V |) and |Vi|67 for all i, 16i6s, the
construction of DAG(G) and the 8nding of p can be done in O(|V |) time. Hence, we
have the following theorem.

Theorem 15. The e4cient minus domination problem can be solved in linear time on
chain interval graphs.
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Fig. 6. The directed acyclic graph DAG(G).

3.2. The e4cient signed domination problem

In this subsection, we show that every chain interval graph with no vertex of odd
degree has an e!cient signed dominating function.

Remark 16. Any graph with a vertex of odd degree has no e!cient signed dominating
function.

By Remark 16, the graphs such as trees, cubic graphs and k-regular graphs, where
k is odd, have no e!cient signed dominating function. Therefore, the e!cient signed
domination problem is only considered on the graphs with no vertex of odd degree. In
the following, we assume that G is a connected chain interval graph with no vertex
of odd degree. We still make use of the forcing property on blocks to deal with the
e!cient signed domination problem. However, we consider the size of a block instead
of the function value of a block. Note that for each vertex v of G, the degree of
v is |N (v)|. For a vertex set W , we de8ne odd(W )= 1 if |W | is odd; otherwise,
odd(W )= 0.

Remark 17. For every vertex v of G, odd(N [v])= 1.

Let B1; B2; : : : ; Bt be the block structure of G and os(G) be the string odd(B1)odd(B2)
· · ·odd(Bt). A clique Ci of G is called an S(a; b) clique if bn(Ci)= 2, odd(Bi; l)= a
and odd(Bi; r)= b, and an L(a; b; c) clique if bn(Ci)= 3, odd(Bi; l)= a, odd(Bi;m)= b and
odd(Bi; r)= c. By Remarks 4 and 17, we have the following lemma.

Lemma 18. For any two consecutive cliques Ci and Ci+1 of G, odd(Ci ∪ (Ci+1\
Bi+1; l))= 1.

By Remarks 5 and 17, we have the following lemma.
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Lemma 19. Let bn(Ci)= 3. Then, odd(Bi; l ∪Bi;m ∪Bi; r)= 1.

Lemma 20. If s¿2, then C1 and Cs are either an S(0;1) or S(1;0) clique.

Proof. By Remark 3, bn(C1)= bn(Cs)= 2. Let v∈B1; l. By the block structure of G,
we have N [v] =B1; l ∪B1; r and B1; l ∩B1; r = ∅. Hence, according to Remark 17, we
have either odd(B1; l)= 0 and odd(B1; r)= 1, or odd(B1; l)= 1 and odd(B1; r)= 0, which
means that C1 is either an S(0;1) or S(1;0) clique. Similarly, Cs is either an S(0;1) or
S(1;0) clique.

Lemma 21. For each clique Ci, 1¡i¡s, if bn(Ci)= 3, then Ci is either an L(0;0;1);
L(0;1;0); L(1;0;0) or L(1;1;1) clique.

Proof. By Lemma 19, we have odd(Bi; l ∪Bi;m ∪Bi; r)= 1. Note that Bi;1; Bi;m and Bi; r

is a partition of Ci. Hence, Ci is either an L(0;0;1); L(0;1;0); L(1;0;0) or L(1;1;1) clique.

Lemma 22. For each clique Ci, 1¡i¡s, if bn(Ci)= 2, then Ci is either an S(0;0); S(0;1)
or S(1;0) clique.

Proof. We only show that Ci cannot be an S(1;1) clique. Suppose that Ci is an S(1;1)
clique. Clearly, bn(Ci+1) is either 2 or 3. In the case of bn(Ci+1)= 3, Ci+1 must be
either an L(1;0;0) or an L(1;1;1) clique according to Lemma 21. As a result, we have
odd(Ci ∪ (Ci+1\Bi+1; l))= 0, a contradiction to Lemma 18. In the case of bn(Ci+1)= 2,
we have odd(Ci ∪Bi+1; r)= 1 by Lemma 18, which means that odd(Bi+1; r)= 1. That
is, Ci+1 is an S(1;1) clique. Continuing this way, we will 8nd that Cs is an S(1;1) clique,
which contradicts to Lemma 20. In other words, Ci is not an S(1;1) clique. Hence, Ci

is either an S(0;0); S(0;1) or S(1;0) clique.

Lemma 23. Let 16i¡s.

(1) If Ci is an S(0;0) clique, then Ci+1 is either an S(0;1), L(0;0;1) or L(0;1;0) clique.
(2) If Ci is an S(0;1) clique, then Ci+1 is either an S(1;0), L(1;0;0) or L(1;1;1) clique.
(3) If Ci is an S(1;0) clique, then Ci+1 is an S(0;0) clique.
(4) If Ci is an L(0;0;1) clique, then Ci+1 is either an S(1;0), L(1;0;0) or L(1;1;1) clique.
(5) If Ci is an L(0;1;0) clique, then Ci+1 is an S(0;0) clique.
(6) If Ci is an L(1;0;0) clique, then Ci+1 is an S(0;0) clique.
(7) If Ci is an L(1;1;1) clique, then Ci+1 is either an S(1;0), L(1;0;0) or L(1;1;1) clique.

Proof. In the following, we just show statements (1) and (3) because the others can
be proved in a similar way.
(1) Let Ci be an S(0;0) clique. If bn(Ci+1)= 2, then by Lemma 18, we have odd(Ci ∪

Bi+1; r)= 1 and hence odd(Bi+1; r)= 1. That is, Ci+1 is an S(0;1) clique. If bn(Ci+1)= 3,
then we have odd(Ci ∪Bi+1; m ∪Bi+1; r)= 1 and hence odd(Bi+1; m ∪Bi+1; r)= 1. That is,
Ci+1 is an L(0;0;1) or L(0;1;0) clique.
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Fig. 7. The 8nite state automaton N.

(3) Let Ci be an S(1;0) clique. If bn(Ci+1)= 2, then by Lemma 18, we have odd(Ci ∪
Bi+1; r)= 1 and hence odd(Bi+1; r)= 0. That is, Ci+1 is an S(0;0) clique. If bn(Ci+1)= 3,
then we have odd(Ci ∪Bi+1; m ∪Bi+1; r)= 1 and hence odd(Bi+1; m ∪Bi+1; r)= 0. As a
result, odd(Bi+1; l ∪Bi+1; m ∪Bi+1; r)= 0, a contradiction to Lemma 19.

By Lemmas 20 and 23, we can create a non-deterministic 8nite state automaton N
as shown in Fig. 7, where S(0;1) and S(1;0) are termination nodes. It is interesting that
N is equivalent to M. Moreover, each S(a; b) node of N corresponds to a P(a; b) node
of M and each L(a; b; c) node corresponds to a Q(a; b; c) node except L(1;1;1) corresponds
to Q(1;−1;1). As discussed in the previous subsection, there is a simple EMD function
f for G=(B1; B2; : : : ; Bt). It is not hard to see that for each block Bi of G, if f(Bi)= 0,
then the size of Bi must be even (i.e., odd(Bi)= 0); otherwise, the size of Bi must be
odd (i.e., odd(Bi)= 1). This fact implies that f can be easily modi8ed into an e!cient
signed dominating function of G as follows:

• If f(Bi)= 0, then |Bi|=2k and hence we assign +1 to k vertices in Bi and −1 to
the remaining k vertices.

• If f(Bi)= 1, then |Bi|=2k +1 and hence we assign +1 to k +1 vertices in Bi and
−1 to the remaining k vertices.

• If f(Bi)=−1, then |Bi|=2k + 1 and hence we assign −1 to k + 1 vertices in Bi

and +1 to the remaining k vertices.

In other words, every chain interval graph G with no vertex of odd degree has an
e!cient signed dominating function, which can be found just according to os(G), in-
stead of using the method similar to the one of 8nding the e!cient minus dominating
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function of G. Because, from N and M, we can 8nd that the number of the consec-
utive ones in os(G) is 2k + 1 (i.e., odd) and the function values of the corresponding
blocks are +1;−1;+1;−1; : : : ;+1 (totally 2k + 1 values). Hence, we can easily de-
termine the function value of each block in G just from os(G) and then assign the
value of each vertex in this block using the above method. Considering the graph G
of Fig. 3 for an example, we have os(G)= 0111001. Then, according to the method
described above, we can 8nd an e!cient signed dominating function f of G such that
f(B1)= 0, f(B2)= 1, f(B3)=−1, f(B4)=f(B5)= 0 and f(B6)= 1. Hence, we have
f(1)= 1; f(2)=−1; f(3)= 1; f(4)=−1; f(5)= 1; f(6)= 1; f(7)=−1; f(8)= 1;
f(9)=−1 and f(10)= 1.

Theorem 24. For every chain interval graph G with no vertex of odd degree, G has
an e4cient signed dominating function f. Furthermore, f can be found in linear
time.

4. Trees

According to Remark 16, trees have no e!cient signed dominating function since
they contain leaves. In [2], Bange et al. proposed a linear-time algorithm for solving
the e!cient domination problem on trees. In the following, we will show the e!cient
minus domination problem is equivalent to the e!cient domination problem on trees.

Lemma 25. If a tree T has an e4cient minus dominating function f, then f(v)¿0
for every vertex v of T .

Proof. Suppose that f is an e!cient minus dominating function of T and there is a
vertex u in T with f(u)=−1. For convenience, we consider T as a rooted tree with
root u. For each vertex v in T , let P(v) be the parent of v and C(v) be the set of all
children of v. Clearly, f(N [v])=f(v) + f(P(v)) + f(C(v))= 1. Note that if v is a
leaf of T , then f(v)¿0; otherwise we have f(N [v])60, a contradiction. Since u is
the root and f(u)=−1, we have f(C(u))= 2, which means that there are at least two
children of u, say x1 and y1, with f(x1)=f(y1)= 1 and f(C(x1))=f(C(y1))= 1.
Then, f(C(x1))= 1 implies that there is at least a child of x1, say x2, with f(x2)= 1
and f(C(x2))=−1; f(C(x2))=−1 implies that there is at least a child of x2, say x3,
with f(x3)=−1 and f(C(x3))= 1; f(C(x3))= 1 implies that there is at least a child of
x3, say x4, with f(x4)=f(x1) and f(C(x4))=f(C(x1)). In this way, since T is 8nite,
we will 8nally see that there is at least a leaf xl of T whose (f(xl); f(C(xl))) is either
(1; 1); (1;−1) or (−1; 1). Since xl is a leaf and C(xl)= ∅, however, (f(xl); f(C(xl)))
is either (0; 0) or (1; 0), which leads to a contradiction. Hence, f(v)¿0 for every
vertex v of T .

According to Lemma 25, we have the following theorem immediately.

Theorem 26. The e4cient minus domination problem is equivalent to the e4cient
domination problem on trees.
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5. Conclusions

When restricted to (proper) interval graphs, many NP-complete problems are solvable
in polynomial or even linear time. However, we still do not know whether the e!cient
minus and signed domination problems are polynomially solvable because the forcing
property on vertices and blocks cannot be applied. It is worth mentioning that chain
interval graphs is the 8rst and largest class of graphs which we 8nd so far such that
every chain interval graph has an e!cient minus dominating function and every chain
interval graph with no vertex of odd degree has an e!cient signed dominating function.
In graph theory, it is interesting to look for another class of graphs possessing such
properties.
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