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Sequential patterns refer to the frequently occurring
patterns related to time or other sequences, and have
been widely applied to solving decision problems. For
example, they can help managers determine which
items were bought after some items had been bought.
However, since fuzzy sequential patterns described by
natural language are one type of fuzzy knowledge
representation, they are helpful in building a prototype
fuzzy knowledge base in a business. Moreover, each
fuzzy sequential pattern consisting of several fuzzy
sets described by the natural language is well suited
for the thinking of human subjects and will help to
increase the flexibility for users in making decisions.
Additionally, since the comprehensibility of fuzzy rep-
resentation by human users is a criterion in designing
a fuzzy system, the simple fuzzy partition method is
preferable. In this method, each attribute is partitioned
by its various fuzzy sets with pre-specified member-
ship functions. The advantage of the simple fuzzy par-
tition method is that the linguistic interpretation of
each fuzzy set is easily obtained. The main aim of this
paper is exactly to propose a fuzzy data mining tech-
nique to discover fuzzy sequential patterns by using
the simple partition method. Two numerical examples
are utilized to demonstrate the usefulness of the pro-
posed method.

1. Introduction

Data mining is the exploration and analysis of data in
order to discover meaningful patterns (Berry & Linoff,
1997). Thus knowledge acquisition can be easily

achieved for users by checking these patterns discovered
from databases, and association rule is an important type
of knowledge representation. Agrawal et al. (Agrawal,
Imielinski, & Swami, 1993) initially proposed a method
to find association rules, later proposing the well-known
Apriori algorithm (Agrawal, Mannila, Srikant, Toivonen,
&Verkamo, 1996). In addition to association rules, se-
quential patterns are another important type of knowl-
edge representation, and effective algorithms (i.e. Apri-
oriSome and AprioriAll) for mining sequential patterns
were proposed by Agrawal and Srikant (1995). In addi-
tion, sequential patterns have been widely applied to
solve decision problems. For example, they can help
managers determine which items were bought after some
items had (already) been bought (Han & Kamber, 2001),
or realize browsing orders of homepages in a web site
(Myra, 2000).

Sequential pattern mining is the mining of frequently
occurring patterns related to time or other sequences (Han &
Kamber, 2001), where a sequence is an ordered list of
itemsets (Agrawal & Srikant, 1995). Specially, if there are
k itemsets (k � 1) in a frequent sequence whose support is
larger than or equal to the user-specified minimum support,
then we call it a frequent k-sequence. Moreover, a sequen-
tial pattern is a frequent sequence but it is not contained in
another sequence (Agrawal & Srikant, 1995). For example,
a 2-sequence �{Banana} , {Apple, Orange}� may represent
items Apple and Orange being bought together after item
Banana had been bought, where {Banana} and {Apple,
Orange} are itemsets. Whereas �{Banana} , {Apple, Or-
ange}� is not contained in the 1-sequence �{Banana, Apple,
Orange}� since the latter sequence is shorter than the former
sequence.

However, since fuzzy sequential patterns described by
natural language are one type of fuzzy knowledge represen-
tation, they are helpful to build a prototype fuzzy knowledge
base in business. Moreover, fuzzy sequential patterns de-
scribed by the natural language are well suited for the
thinking of human subjects and will help to increase the
flexibility for users in making decisions. Actually, each

Nomenclature K, number of partitions in each quantitative attribute;
k, length of a fuzzy sequence; d, degree of a given relation, where d � 1;
AK,im

xm , im-th linguistic value of K fuzzy partitions defined in quantitative
attribute xm, 1 � im � K; �K,im

xm , membership function of AK,im

xm ; n, total
number of customers; cr, r-th customer, where 1 � r � n; �r, number of
consecutive transactions ordered by transaction-time for cr; �, total number
of frequent fuzzy grids; tp

�r�, p-th transaction corresponding to cr, where t p
�r�

� �t p1
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�r�), and 1 � p � �r; Lj, j-th frequent fuzzy grid, where 1
� j� �.
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fuzzy sequential pattern is composed of several fuzzy sets
that can be described by the natural language. For example,
a fuzzy sequence �A2,1

Product 1, A2,2
Product 2� discovered from a

transaction database in summer may represent that large
purchase amounts of product 2 were bought by customers
after they had bought small purchase amounts of product 1,
where A2,1

Product 1 and A2,2
Product 2 are fuzzy sets defined in pur-

chase amounts of product 1 (i.e., Product 1) and purchase
amounts of product 2 (i.e., Product 2), respectively. In other
words, a fuzzy sequence expresses the temporal relation
between purchase behaviors described by fuzzy sets. In
addition, if one customer bought product 1 on August 1, and
bought product 2 on August 6, then we say that the corre-
sponding transaction record supports �A2,1

Product 1, A2,2
Product 2�.

Since the comprehensibility of fuzzy representation by
human users is a criterion in designing a fuzzy knowledge-
based system (Ishibuchi et al., 1999), easy linguistic inter-
pretations of fuzzy sets must be taken into account. The
simple fuzzy partition method is thus preferable (Ishibuchi
et al., 1999). In this method, each attribute is partitioned by
its various fuzzy sets with pre-specified membership func-
tions. For example, the m-th axis denoted by xm is parti-
tioned by 2, 3, 4 linguistic values with linguistic interpre-
tations as shown in Figures 1–3, respectively. For example,
A3,1

x1 and A3,3
x2 are interpreted as “small” and “large”, respec-

tively. That is, the simple fuzzy partition method provides a
comprehensible expression for interpreting fuzzy sets.

The main aim of this paper is to propose a fuzzy data
mining technique to discover fuzzy sequential patterns by
using the simple partition method. The first phase is to find
purchase behaviors (e.g., A2,1

Product 1, A2,2
Product 2) that frequently

occurred for a period of time, and the second phase is to
discover fuzzy sequential patterns by analyzing the tempo-
ral relation between those purchase behaviors (e.g.,
�A2,1

Product 1, A2,2
Product 2� or �A2,2

Product 2, A2,1
Product 1�) found in the first

phase.

The rest of this paper is organized as follows. The simple
fuzzy partition method is introduced in Section 2. The
determinations of purchase behaviors that frequently oc-
curred (i.e., frequent fuzzy grids) and fuzzy sequential pat-
terns are presented in Section 3 in detail. The framework of
the proposed method consisting of two phases is also illus-
trated in this section. The real implementation of the pro-
posed method is described in Section 4. In Section 5, two
numerical examples are used to demonstrate the usefulness
of the proposed method. We end this paper with discussions
and conclusions in Section 6.

2. Simple Fuzzy Partition Method

The concepts of a linguistic variable were proposed by
Zadeh (1976), who initially proposed the fuzzy sets (Zadeh,
1965). A linguistic variable is a variable whose values are
linguistic terms or sentences in a natural language. We view
both quantitative and categorical attributes, which are used
to describe each sample data, as linguistic variables (Zadeh,
1976; Chen & Jong, 1997; Zimmermann, 1996; Pedrycz &
Gomide, 1994). For example, the values of the linguistic
variable “Purchase amount of Product 1” may be “medium”
or “very close to 50.” Here, “medium” or “very close to 50”
are called linguistic values. Then, each linguistic variable
can be partitioned by its linguistic values with pre-specified
membership functions, so-called the simple fuzzy partition
method. Simple fuzzy grids or grid partitions in a pattern
space (Ishibuchi , Nozaki, Yamamoto, & Tanaka, 1995;
Ishibuchi et al, 1999; Jang & Sun, 1995) are thus generated.

The simple fuzzy partition method has been widely used
in pattern recognition and fuzzy reasoning. For example,
there are the applications to classification rule discovery for
pattern classification problems (Ishibuchi et al, 1995; Ishi-
buchi et al, 2001; Hu, Tzeng, & Chen, 2002; Ishibuchi et al,
1999; Ravi & Zimmermann, 2000), and to the fuzzy rule
generation for control problems (Wang & Mendel, 1992;
Homaifar & McCormick, 1995; Jang, 1993). In addition,
several fuzzy approaches for partitioning a pattern space
were discussed by Sun (1994) and Bezdek (1981). From the
above-mentioned studies, we can find that it should be quite
feasible to discover useful fuzzy knowledge from business
databases by utilizing the simple fuzzy partition method.
Moreover, as we have mentioned above, the simple fuzzy
partition method provides a comprehensible expression to
interpret fuzzy sets. Additionally, data mining techniques

FIG. 3. K � 4 for xm.
FIG. 1. K � 2 for xm.

FIG. 2. K � 3 for xm.
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can ease the knowledge acquisition bottleneck in building
prototype knowledge base systems (Hong, Wang, Wang, &
Chien, 2000). Fuzzy data mining techniques using the sim-
ple fuzzy partition method are thus helpful to build a com-
prehensibly prototype fuzzy knowledge base in a business.

In the simple fuzzy partition method, K (K � 2, 3, 4,…)
various linguistic values are defined in each quantitative
attribute. K is also pre-specified before executing the pro-
posed method. It is clear that if K is very small (e.g., K � 2),
then the resultant partition is too coarse; otherwise (e.g., K
� 10), the resultant partition is too fine. It is also suggested
that K should not exceed 9, since it is difficult for us to
simultaneously judge or distinguish from the items whose
number is larger than 9 (Ravi & Zimmermann, 2000).

Triangular membership functions, which are usually
used for the linguistic values, are the default value in our
method. In fact, Pedrycz (1994) had pointed out the useful-
ness and effectiveness of the triangular membership func-
tions in the fuzzy modeling. It is noted that, in addition to
the simple fuzzy partition method, decision-makers can also
specify membership functions and the number of partitions
in each attribute depending on professional knowledge they
have or subject perception.

Specifically, we use AK,im

xm to denote a candidate 1-dim
fuzzy grid. And, �K,im

xm (x) is defined as follows:

�K,im
xm �x� � max{1 �x � aim

K /bK, 0} (1)

where

aim
K � mi � �ma � mi� � �im � 1�/�K � 1� (2)

bK � �ma � mi�/�K � 1� (3)

where ma is the maximum value of attribute domain, and mi
is the minimum value.

If we partition both x1 and x2 into three fuzzy partitions,
then a pattern space is divided into 3 � 3 2-dim fuzzy grids,
as shown in Figure 4. For the shaded 2-dim fuzzy grid
shown in Figure 4, we use linguistic values, A3,1

x1 � A3,3
x2 (i.e.

small AND large), to represent it. In this paper, each fuzzy

grid is treated as a purchase behavior. The next important
task is how to use these candidate 1-dim fuzzy grids to
generate frequent fuzzy sequences and fuzzy sequential
patterns. The framework of the proposed method is further
described in following section.

3. Determine Frequent Fuzzy Grids and Fuzzy
Sequential Patterns

In this section, the concrete meanings of frequent fuzzy
grids and fuzzy sequential patterns are described in detail.
At first, the computational steps of the proposed method are
briefly introduced as follows.

After candidate 1-dim fuzzy grids have been generated,
we must determine how to find frequent fuzzy grids, fre-
quent fuzzy k-sequences (k � 1) and fuzzy sequential pat-
terns from those candidate 1-dim fuzzy grids. Frequent
fuzzy grids with a small dimension, say m, are used to
construct candidate (m � 1)-dim fuzzy grids accompanied
by a fuzzy support. A candidate (m � 1)-dim grid can be
determined to be frequent or not by comparing its fuzzy
support with the user-specified minimum fuzzy support
(min FS). At the end of phase I, each frequent fuzzy grid,
say Lj, can be transformed into a frequent fuzzy 1-sequence
Lj. Frequent fuzzy grid may stand for purchase behaviors
that frequently occurred for a period of time.

We define that a fuzzy sequence is an ordered list of
frequent fuzzy grids, and the length of a fuzzy sequence is
the number of frequent fuzzy grids in the fuzzy sequence.
That is, a fuzzy sequence expresses the temporal relation
between frequent fuzzy grids. Thus, if there are k fuzzy
grids (k � 1) in a fuzzy sequence, then we call it a fuzzy
k-sequence. For example, �A2,1

Product 1, A2,2
Product 2� is a fuzzy

2-sequence.
The main purpose of phase II is to discover fuzzy se-

quential patterns by analyzing the temporal relation between
those frequent grids found in phase I. In phase II, frequent
fuzzy sequences with a shorter length, say k, are used to
construct candidate fuzzy sequences with a longer length
(i.e. fuzzy (k � 1)-sequences) accompanied by a fuzzy
support. A candidate fuzzy (k�1)-sequence can also be
determined to be frequent or not by comparing its fuzzy
support with the min FS used in phase I. At the end of phase
II, all fuzzy sequential patterns are generated from those
frequent fuzzy sequences.

From the above-mentioned operations, the framework
for discovering fuzzy sequential patterns is illustrated in
Figure 5. Below, the Apriori algorithm is briefly introduced
in Subsection 3.1 since the concept of support is originated
from this well-known algorithm. The determinations of
frequent fuzzy 1-sequences and fuzzy sequential patterns
are described in Subsections 3.2 and 3.3, respectively.

3.1 The Apriori Algorithm

Association rules are one type of knowledge representa-
tion, having been widely applied to analyze market baskets

FIG. 4. Both attributes x1 and x2 are partitioned into three partitions.
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to help managers realize which items are likely to be bought
at the same time (Han & Kamber, 2001, Berry & Linoff,
1997). The Apriori algorithm proposed by Agrawal et al.
(1996) is an influential algorithm that can be used to find
association rules. In this algorithm, all frequent itemsets are
found from databases in the first phase. A candidate itemset
is frequent if its support is larger than or equal to the
user-specified minimum support. Generally, a frequent
itemset means that this set is useful for decision makers. In
the second phase, frequent itemsets are used to generate
association rules.

Example 1. Any set of fruits, say {Apple, Orange}, sold
in one supermarket is a candidate itemset. The support of
{Apple, Orange} is computed by dividing the number of
transactions that buy apples and oranges by the total number
of transactions. That is, if Apple and Orange were bought at
the same time in one transaction, then this transaction record
supports {Apple, Orange}. If the support of {Apple, Or-
ange} is larger than or equal to the user-specified minimum
support, then {Apple, Orange} is a frequent itemset. This
means that “Apple and Orange are likely to be bought
together” frequently occurred.

Furthermore, the larger minimum support is specified by
users, the smaller number of frequent itemsets will be gen-
erated. Therefore, if the user-specified minimum support is
set to zero, then all itemsets will be frequent. Additionally,
the Apriori property (Han & Kamber, 2001) for mining
association rules shows that any subset of a frequent itemset
must also be frequent. This property can be also applied to
show that any superset (i.e., sequence of length above k) of

an infrequent k-sequence is not frequent (Han & Kamber,
2001).

Example 2. From the Apriori property, if {Banana, Ap-
ple, Orange} is frequent, then {Banana} , {Apple} , {Or-
ange} , {Banana, Apple} , {Banana, Orange} and {Apple,
Orange} must be frequent. �{Banana} , {Apple, Orange}� is
an infrequent 2-sequence if either �{Banana}� or {Apple,
Orange} is infrequent.

3.2 Frequent Fuzzy 1-Sequences

In phase I, the main work is to generate frequent fuzzy
grids, and then transform those grids to frequent fuzzy
1-sequences. Now, given a candidate l-dim (l � d) fuzzy
grid AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl , the degree to which
t p

�r� belongs to this fuzzy grid can be computed as follows
(Ishibuchi et al., 2001; Hu, Chen, & Tz, 2002) :

�AK,i1

x1 �AK,i2

x2 � . . . �AK,il�1

xl�1 �AK,il

xl �tp
�r��

� �K,i1
x1 �tP1

�r�� � �K,i2
x2 �tP2

�r�� � . . . � �K,il�1

xl�1 �tPl�1

�r� � � �K,il
xl �tPl

�r�� (7)

where “ � ” is a fuzzy intersection operator, namely the
algebraic product (Zimmermann, 1996; Hu et al., 2002). It
should be noted that in comparison with the other fuzzy
intersection operators such as the minimum operator or the
drastic product, the algebraic product “gently” performs the
fuzzy intersection. To check whether this fuzzy grid is
frequent or not, we define its fuzzy support, FS�AK,i1

x1 � AK,i2

x2

� . . . � AK,il�1

xl�1 � AK,il

xl ), as follows:

FS�AK,i1

x1 	 AK,i2

x2 	 . . . 	 AK,il�1

xl�1 	 AK,il

xl �

� �
r�1

n

�AK,i1

x1 �AK,i2

x2 � . . . �AK,il�1

xl�1 �AK,il

xl �cr�/n

��
r�1

n

max
p�1 . . .

ar ��
r�1

n

�A
K,i1

x1 �A
K,i2

x2 �
. . .

�A
K,il�1

xl�1 �A
K,il

xl �tp
�r��� 	n (8)

where �AK,i1

x1 �AK,i2

x2 �. . . � AK,il�1

xl�1 �AK,il

xl (cr) is the degree to which cr

supports AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl . Since sequen-
tial pattern mining mainly analyzes the customer behaviors,
the fuzzy support is obtained by computing
�AK,i1

x1 �AK,i2

x2 �. . .� AK,il�1

x2 �AK,il

xl (cr). If FS�AK,i1

x1 � AK,i2

x2 � . . . �

AK,il�1

xl�1 � AK,il

xl ) is larger than or equal to the user-specified
minimum fuzzy support (i.e. min FS), then AK,i1

x1 �
AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl is a frequent l-dim fuzzy grid.
The fuzzy support also indicates the degree of importance of
one fuzzy grid. Of course, if the user-specified minimum
fuzzy support is set to zero, then all l-dim fuzzy grid (1 � l
� d) will be frequent. Actually, AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1

� AK,il

xl is a fuzzy subset and can be represented as a Zadeh
fuzzy notation (Zimmermann, 1996; Pedrycz & Gomide,
1998):

FIG. 5. Framework of the proposed method.
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AK,i1
x1 	 AK,i2

x2 	 . . . 	 AK,il�1

xl�1 	 AK,il
xl

� �
r�1

n

�AK,i1

x1 �AK,i2

x2 � . . . �AK,il�1

xl�1 �AK,il

xl �cr�/cr (9)

It is clear that AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il�1

xl � AK,i1

x1 �
AK,i2

x2 � . . . � AK,il�1

xl�1 holds. From Eqs. (8) and (9), we can
observe that if a m-dim fuzzy grid, say AK,i1

x1 � AK,i2

x2 � . . . �
AK,im�1

xm�1 � AK,im

xm , that participates in the construction of a
frequent l-dim fuzzy grid, say AK,i1

x1 � AK,i2

x2 � . . . � AK,im�1

xm�1

� AK,im

xm � AK,im�1

xm�1 � . . . � AK,il�1

xl�1 � AK,il

xl , then that m-dim
fuzzy grid must also be frequent since min FS � FS�AK,i1

x1 �
AK,i2

x2 � . . . � AK,im�1

xm�1 � AK,im

xm � . . . � AK,il�1

xl�1 � AK,il

xl ) �
FS�AK,i1

x1 � AK,i2

x2 � . . . � AK,im�1

xm�1 � AK,im

xm ) holds. That is, any
subset of a frequent fuzzy grid must also be frequent.
Finally, AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl can be trans-
formed into a frequent fuzzy 1-sequence denoted by �AK,i1

x1

� AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl .
Example 3. Any two fuzzy grids in 
A3,2

x1 � A3,1
x2 , A3,2

x1 �
A3,3

x3 , A3,1
x2 � A3,3

x3 } can be used to generate A3,2
x1 � A3,1

x2 � A3,3
x3

since A3,2
x1 � A3,1

x2 � A3,2
x1 � A3,1

x2 � A3,3
x3 , A3,2

x1 � A3,3
x3 � A3,2

x1 �
A3,1

x2 � A3,3
x3 , and A3,1

x2 � A3,3
x3 � A3,2

x1 � A3,1
x2 � A3,3

x3 hold. If A3,2
x1

� A3,1
x2 � A3,3

x3 is frequent, then A3,2
x1 � A3,1

x2 , A3,2
x1 � A3,3

x3 and
A3,1

x2 � A3,3
x3 are also frequent. Therefore, the above-men-

tioned fuzzy grids will be transformed into �A3,2
x1 � A3,1

x2 �,
�A3,2

x1 � A3,3
x3 �, �A3,1

x2 � A3,3
x3 �, and �A3,2

x1 � A3,1
x2 � A3,3

x3 �, respec-
tively.

3.3 Fuzzy Sequential Patterns

Based on frequent fuzzy 1-sequence found in phase I, the
next step for us is to find frequent fuzzy k-sequences (2 � k
� �). As we have mentioned in the previous section, each
frequent fuzzy grid, say Lj, can be transformed into a
frequent fuzzy 1-sequence denoted by Lj. The fuzzy support
of a fuzzy k-sequence is the average degree of total cus-
tomers who support this sequence. Here, we take a fuzzy
k-sequence L1, L2,. . ., Lk, which may represent L1, L2,. . .,
Lk being bought sequentially, to be an example to compute
its fuzzy support. For the r-th customer (i.e., cr) with �r

transactions, there are �r Ck (�r � k) different combinations
�t s1

�r�, t s2

�r�, . . . , t sk

�r�) (1 � s1 � s2 � . . . � sk � �r) ordered
by transaction-time. Since �t s1

�r�, t s2

�r�, . . . t sk

�r�) supports �L1,
L2 , . . . , Lk�, the degree FS(�L1, L2, . . . , Lk�r) to which cr

supports L1, L2, . . . , Lk is described as follows:

FS��L1, L2, . . . ,Lk�r�

� max
(ts1

(r), ts2
(r), . . . , tsk

(r))

[�L1�ts1
�r�� � �L2�ts2

�r�� � . . . � �Lk�tsk
�r��],

for �rCk different �ts1
�r�, ts2

�r�, . . . , tsk
�r�� (10)

where �Lk�t sk

�r�� represents the degree which t sk

�r� belongs to
Lk, and can be computed by Eq. (7). Of course, if �r � k,
then FS�L1, L2, . . . , Lk�r � 0.

Example 4. Assume that the number of transactions of c2

is �2 � 3 (i.e., t 1
�2�, t 2

�2�, and t 3
�2�), and all possible combina-

tions of transactions ordered by transaction-time is �t1
�2�, t2

�2��,
�t1

�2�, t3
�2��, and �t2

�2�, t3
�2��. Let L1 and L2 be A3,2

Product 2 and A3,2
Product 3,

respectively, FS��A3,2
Product 2, A3,2

Product 3�)2 (i.e., k � 2) is ob-
tained by computing max
�L1�t 1

�2�� � �L2�t 2
�2��, �L1�t1

�2�� �
�L2�t 3

�2��, �L1�t 2
�2�� � �t 3

�2��} since each combination may sup-
port �A3,2

Product 2, A3,2
Product 3� and �2 � k. However, if the number

of transactions of c1 is �1 � 1, then FS��A3,2
Product 2, A3,2

Product 3�)1

is equal to zero since �1 � k.
The fuzzy support FS(�L1, L2, . . . , Lk�) of �L1, L2, . . . ,

Lk� is further described as follows:

FS��L1, L2, . . . , Lk�� � �
r�1

n

FS��L1, L2, . . . , Lk�r�/n (11)

Example 5. Following Example 4, if the total number of
customers is 2 (i.e., n � 2), then FS��A3,2

Product 2, A3,2
Product 3�) �

�FS��A3,2
Product 2, A3,2

Product 3�)1 � FS��A3,2
Product 2, A3,2

Product 3�)2]/2. The
fuzzy support also indicates the degree of importance of one
fuzzy sequence.

If FS�L1, L2, . . . , Lk� is larger than or equal to the
aforementioned min FS, then �L1, L2, . . . , Lk� is a frequent
fuzzy k-sequence. From Eqs. (10) and (11), it is clear that
FS(�L1, L2, . . . , Lk�1�) � FS(�L1, L2, . . . , Lk�) since FS(�L1,
L2, . . . , Lk�1�r) � FS(�L1, L2, . . . , Lk�r) (1 � r � n) holds.
In addition, any fuzzy (k�1)-sequence, say �L1, L2, . . . ,
Lk�1�, cannot be frequent if fuzzy k-sequence �L1, L2, . . . ,
Lk� is infrequent since FS(�L1, L2, . . . , Lk�1�) � FS(�L1,
L2, . . . , Lk�) � min FS holds.

Example 6. �A2,1
Product 1, A2,2

Product 2� is not frequent if either
�A2,1

Product 1� or �A2,2
Product 2� is not frequent since FS��A2,1

Product 1,
A2,2

Product 2�r) � FS�A2,1
Product 1�r) � min FS and FS��A2,1

Product 1,
A2,2

Product 2�r) � FS��A2,2
Product 2�r) � min FS hold. In other words,

if �A2,1
Product 1, A2,2

Product 2� is a frequent sequence, then �A2,1
Product 1�

and �A2,2
Product 2� are frequent.

As for �A2,1
x1 , A2,2

x1 , A2,1
x1 � A2,2

x1 �, it can be generated by
using any two fuzzy sequences in 
�A2,1

x1 , A2,2
x1 �, �A2,1

x1 , A2,1
x1 �

A2,2
x1 �, �A2,2

x1 , A2,1
x1 � A2,2

x1 �}. If �A2,1
x1 , A2,2

x1 , A2,1
x1 � A2,2

x1 � is
frequent, then �A2,1

x1 , A2,2
x1 �, �A2,1

x1 , A2,1
x1 � A2,2

x1 �, and �A2,2
x1 , A2,1

x1

� A2,2
x1 � must be also frequent.

As we have mentioned above, a sequential pattern is a
frequent sequence but it is not contained in another se-
quence. Formally, a frequent z1-sequence, say a, denoted by
�La,1, La,2, . . . , La,z1� is contained in another frequent z2-
sequence, say b, denoted by �Lb,1, Lb,2, . . . , Lb,z2�, if z1
� z2 and there exist integers 1 � j1 � j2 � . . . � jz1 � z2
such that La,1 � Lb,j1, La,2 � Lb,j2, . . . , La,z1 � Lb,jz1. Then,
a is not a sequential pattern but b is if it is not contained in
the other frequent sequences. A detailed example is shown
as follows.

Example 7. The 2-sequence �{Banana} , {Apple}� de-
noted by a is contained in �{Banana} , {Apple, Orange}�
since {Banana} � {Banana} and {Apple} � {Apple, Or-
ange} . Because {Banana} � {Banana} and {Apple} �
{Apple,} , �{Banana} , {Apple}� is also contained in �{Ba-
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nana} , {Apple} , {Orange}�. From the aforementioned
definition, we can find that a is not contained in the 1-se-
quence �{Banana, Apple, Orange}� denoted by b since the
latter sequence (i.e., b with length 1) is shorter than the
former sequence (i.e., a with length 2).

Similarly, we define that a fuzzy sequential pattern is a
frequent fuzzy sequence, but it is not contained in any other
frequent fuzzy sequence. That is, not all frequent fuzzy
sequences are desirable. For measuring the importance of a
fuzzy sequence, in addition to the fuzzy support, the amount
or type of information contained in it is the other criterion.
Formally, a frequent fuzzy z1-sequence, say a, denoted by
�La,1, La,2, . . . , La,z1� is contained in another frequent fuzzy
z2-sequence, say b, denoted by �Lb,1, Lb,2, . . . , Lb,z2�, if z1
� z2 and there exist integers 1 � j1 � j2 � . . . � jz1 � z2
such that Lb,j1 � La,1, Lb,j2 � La,2, . . . , Lb,jz1 � La,z1. Then,
a is not a fuzzy sequential pattern but b is if it is not
contained in the other frequent fuzzy sequences. In com-
parison with b, it seems that a is not valuable for decision
makers.

Example 8. Assume that �La,1, La,2� � �A2,1
Product 1,

A2,2
Product 1� (i.e., z1 � 2) and �Lb,1, Lb,2, Lb,3� � �A2,1

Product 1,
A2,2

Product 1 � A2,1
Product 2, A2,1

Product 1 � A2,2
Product 2� (i.e., z2 � 3) are

frequent fuzzy sequences. �A2,1
Product 1, A2,2

Product 1� is not a fuzzy
sequential pattern, since z1 � z2 and there exist j1 � 1 and
j2 � 2 such that Lb,j1 � La,1 (i.e., A2,1

Product 1 � A2,1
Product 1) and

Lb,j2 � La,2 (i.e., A2,2
Product 1 � A2,1

Product 2 � A2,2
Product 1). That is,

�A2,1
Product 1, A2,2

Product 1� is contained in �A2,1
Product 1, A2,2

Product 1 �
A2,1

Product 2, A2,1
Product 1 � A2,2

Product 2�. There is no doubt that the
information contained in the latter sequence (i.e., �A2,1

Product 1,
A2,2

Product 1 � A2,1
Product 2, A2,1

Product 1 � A2,2
Product 2�) is more than that

contained in the former sequence (i.e., �A2,1
Product 1, A2,2

Product 1�).
We note that �A2,1

Product 1, A2,2
Product 1 � A2,1

Product 2, A2,1
Product 1 �

A2,2
Product 2� is a fuzzy sequential pattern if it is not contained in

the other frequent fuzzy sequences.
Example 9. In this example, we demonstrate the possible

application of fuzzy sequential pattern. We assume that
�A2,2

Product 2, A2,1
Product 1� is a fuzzy sequential pattern. If product 1

is orange juices, and product 2 is apple juices, then a piece
of useful information extracted from this pattern demon-
strates that small purchase amounts of orange juices are
likely to be bought by customers next time after they bought
large purchase amounts of apple juices. This information
can help decision makers (e.g., retailers) plan marketing
strategy. For example, those customers, who have ever
bought large purchase amounts of apple juices, may be
attracted to buy more orange juice on sale.

4. Implementation of the Proposed Method

Based on the framework illustrated in Section 3, we
present the real implementation of the proposed method in
detail. As we have mentioned above, the first phase is to find
frequent fuzzy sequences, and the second phase is to dis-
cover fuzzy sequential patterns by those frequent fuzzy
sequences. Phases I and II are described in Sections 4.1 and
4.2, respectively.

4.1 Phase I: Frequent Fuzzy 1-Sequence Mining

Table FGTTFS is used to generate frequent fuzzy grids,
and consists of the following substructures:

(a) Fuzzy Grids table (FG): FG is a two-valued matrix. In
FG, each row represents a fuzzy grid, while each col-
umn represents a linguistic value AK,im

xm .
(b) Transaction table (TT): each column represents tp

�r�,
while each element records the membership degree
which t p

�r� belongs to the corresponding fuzzy grid.
(c) Column FS: stores the fuzzy support corresponding to

the fuzzy grid in FG.

An initial tabular FGTTFS is shown in Table 1 as an
example. From Table 1, we can see that there are two
transaction records, t 1

�1� and t 2
�1� (i.e., �1 � 2), corresponding

to customer 1, and two quantitative attributes x1 and x2 in a
given database relation. Each attribute is partitioned into 2
partitions (i.e., K � 2). We can see that each element of FG
is assigned to 0 or 1. Thus, we can apply Boolean operations
on FG[u] � (FG[u,1], FG[u,2], FG[u,3], FG[u,4]) and
FG[v] � (FG[v,1], FG[v,2], FG[v,3], FG[v,4]) (i.e., u-th row
and v-th row of FG). For example, if we apply the OR
operation on two rows, say FG[1] � (1, 0, 0, 0) and FG[3]
� (0, 0, 1, 0), then (FG[1] OR FG[3]) � (1, 0, 1, 0)
corresponding to a candidate 2-dim fuzzy grid A2,1

x1 � A2,1
x2 ,

is generated. Then, FS�A2,1
x1 � A2,1

x2 ) � TT[1] � TT[3] �
max
�2,1

x1 �t 11

�1�� � �2,1
x2 �t12

�1��, �2,1
x1 �t 21

�1�� � �2,1
x2 �t 22

�1��} is obtained
to compare with the min FS. If A2,1

x1 � A2,1
x2 is frequent, then

the data (i.e. FG[1] OR FG[3], TT3[1] � TT3[3], and FS(A2,1
x1

� A2,1
x2 )) will be inserted to corresponding data structures

(i.e., FG, TT, and FS).
In the Apriori algorithm, two frequent (l � 1)-itemsets

are joined to be a candidate l-itemset (3 � l � d), and these
two frequent itemsets share (l � 2) items Agrawal et al.,
1993; Jang & Sun, 1995). Similarly, a candidate l-dim fuzzy
grid, say AK,i1

x1 � AK,i2

x2 � . . . � AK,il�1

xl�1 � AK,il

xl , is also derived

TABLE 1. An initial table FGTTFS for an example.

Fuzzy grid

FG TT

FSA2,1
x1 A2,2

x1 A2,1
x2 A2,2

x2 t1
(1) t2

(1)

A2,1
x1 1 0 0 0 �2,1

x1 (t11
(1)) �2,1

x1 (t21
(1)) FS(A2,1

x1 )
A2,2

x1 0 1 0 0 �2,2
x1 (t11

(1)) �2,2
x1 (t21

(1)) FS(A2,2
x1 )

A2,1
x2 0 0 1 0 �2,1

x2 (t12
(1)) �2,1

x2 (t22
(1)) FS(A2,1

x2 )
A2,2

x2 0 0 0 1 �2,2
x2 (t12

(1)) �2,2
x2 (t22

(1)) FS(A2,2
x2 )
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by joining two frequent (l–1)-dim fuzzy grids (e.g., AK,i1

x1 �
AK,i2

x2 � . . . � AK,il�2

xl�2 � AK,il

xl and AK,i1

x1 � AK,i2

x2 � . . . � AK,il�2

xl�2

� AK,il�1

xl�1 ), and these two frequent grids share a frequent (l
� 2)-dim fuzzy grid (i.e., AK,i1

x1 � AK,i2

x2 � . . . � AK,il�2

xl�2 ). For
example, we can use two frequent fuzzy grids A3,2

x1 � A3,1
x2

and A3,2
x1 � A3,3

x3 to generate the candidate 3-dim fuzzy grid
A3,2

x1 � A3,1
x2 � A3,3

x3 because A3,2
x1 � A3,1

x2 and A3,2
x1 � A3,3

x3 share
the same 1-dim fuzzy grid A3,2

x1 .
However, A3,2

x1 � A3,1
x2 � A3,3

x3 can also be generated by
joining A3,2

x1 � A3,1
x2 with A3,1

x2 � A3,3
x3 since A3,2

x1 � A3,1
x2 � A3,3

x3

is a subset of A3,1
x2 � A3,3

x3 , and A3,2
x1 � A3,1

x2 and A3,1
x2 � A3,3

x3

share A3,1
x2 . This means that we must select one of many

possible combinations to avoid redundant computations. To
resolve this problem, we consider that if there exist l inte-
gers number e1, e2, . . . , el�1, el where 1 � e1 � e2 � . . . �
el�1 � el � d, such that FG[u, e1] � FG[u, e2] � . . . �
FG[u, el�2] � FG[u, el�1] � 1 and FG[v, e1] � FG[v, e2]
� . . . � FG[v, el�2] � FG[v, el] � 1, where FG[u] and
FG[v] correspond to individual frequent (l � 1)-dim fuzzy
grids, then FG[u] and FG[v] can be merged to generate a
candidate l-dim fuzzy grid. It should be noted that any two
1-dim fuzzy grids defined in the same attribute cannot be
simultaneously contained in a candidate l-dim fuzzy grid (l
� 2). Thus (1, 1, 0, 0) or (0, 0, 1, 1) are invalid. We describe
the detailed procedure of phase I as follows.

Algorithm: The proposed method for discovering fuzzy
sequential patterns (phase I)

Input: a. A specified database;
b. Minimum fuzzy support.

Output: Frequent fuzzy 1-sequences (i.e., frequent fuzzy
grids)

Method:
Step 1. Perform the simple fuzzy partition method
Step 2. Scan the database and then construct the initial

FGTTFS
Step 3. Generate frequent fuzzy grids

3-1. Generate frequent 1-dim fuzzy grids
Set l � 1 and eliminate the rows of initial FGTTFS corre-
sponding to candidate 1-dim fuzzy grids that are not fre-
quent.

3-2. Generate frequent l-dim fuzzy grids
Set l � 1 to l. If there is only one frequent (l � 1)-dim fuzzy
grid, then go to phase II.
For two unpaired rows, FGTTFS[u] and FGTTFS[v] (u 
v), corresponding to frequent (l � 1)-dim fuzzy grids do
Compute (FG[u] OR FG[v]) corresponding to a candidate
l-dim fuzzy grid c.

3-2-1. Examine the validity of c
If any two 1-dim fuzzy grid defined in the same attribute,
then discard c and skip Steps 3-2-2, 3-2-3 and 3-2-4. That is,
c is invalid.

3-2-2. If any two 1-dim fuzzy grids defined in the
same attribute for c, then discard c and skip
Steps 3-2-3 and 3-2-4.

3-2-3. Examine whether or not FG[u] and FG[v] share
(l � 2) 1’s

If there exist integers 1 � e1 � e2 � . . . � el�1 � el � d
such that FG[u, e1] � FG[u, e2] � . . . � FG[u, el�2] �
FG[u, el�1] � 1 and FG[v, e1] � FG[v, e2] � . . . � FG[v,
el�2] � FG[v, el] � 1, then compute (TT[e1] ( TT[e2] � . . . �
TT[el]) and fuzzy support denoted by fs of c.

3-2-4. Examine the fuzzy support of the newly gener-
ated candidate fuzzy grid Insert (FG[u] OR
FG[v]) to FG, (TT[e1] ( TT[e2] � . . . � TT[el])
to TT and fs to FS when fs is larger than or
equal to min FS; otherwise, discard c.

End
3-3. Check whether any frequent l-dim fuzzy grid is

generated or not
If any frequent l-dim fuzzy grid is generated, then go to Step
3-2; otherwise go to phase II. It is noted that the final
FGTTFS stores only frequent fuzzy grids.

4.2 Phase II: Fuzzy Sequential Pattern Mining

Table FSEFS is used to generate fuzzy sequences and
consists of two substructures including the fuzzy sequences
table (FSE) and the column FS. FSE is an integer matrix and
each row represents a fuzzy sequence, while each column
represents a frequent fuzzy grid. FSE can allow us to easily
determine which fuzzy sequence is generated and which
frequent fuzzy grids are contained in this sequence.

We assume that the initial FSEFS is generated as Table
2, where we can see that four frequent fuzzy 1-sequences
are generated. By using the asymmetric aggregation opera-
tor � for FSE[u] and FSE[v] (i.e., FSE[u] � FSE[v] or
FSE[v] � FSE[u]), we can obtain a candidate fuzzy se-
quence. FSE[u] � FSE[v] is computed as follows:

FSE[u, j] Q FSE[v, j]

� �
FSE[u, j] � 1, if 0 �FSE[v, j] � FSE[u, j],

FSE[u, j]  0
1, if FSE[u, j] � FSE[v, j]
0, if 0 � FSE[u, j] � FSE[v, j]

�
(12)

Example 10. (2, 1, 0, 0) corresponding to a candidate
fuzzy 2-sequence �A2,1

x1 , A2,2
x1 � is generated by FSE[1] �

FSE[2] (i.e. (1, 0, 0, 0) � (0, 1, 0, 0)) in Table 2, since

TABLE 2. Table FSEFS for an example.

Fuzzy
sequence

FSE

FSA2,1
x1 A2,2

x1 A2,1
x2 A2,1

x1 � A2,1
x2

�A2,1
x1 � 1 0 0 0 FS(�A2,1

x1 �)
�A2,2

x1 � 0 1 0 0 FS(�A2,2
x1 �)

�A2,1
x2 � 0 0 1 0 FS(�A2,1

x2 �)
�A2,1

x1 � A2,1
x2 � 0 0 0 1 FS(�A2,1

x1 � A2,1
x2 �)
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FSE[2, 1] � FSE[1, 1], FSE[1, 2] � FSE[2, 2], FSE[1, 3]
� FSE[2, 3] � FSE[1, 4] � FSE[2, 4] � 0. The frequent
fuzzy grid corresponding to the largest number (i.e., 2) in
FSE[1] � FSE[2] is the first item (i.e. first occurrence) of
this sequence, the frequent fuzzy grid corresponding to the
next-to-the-largest number (i.e., 1) is the second item (i.e.,
second occurrence) of this sequence, and so on. If �A2,1

x1 ,
A2,2

x1 � is frequent, then corresponding data (i.e., FSE[1] �

FSE[2] and FS��A2,1
x1 , A2,2

x1 �) will be inserted to correspond-
ing data structures (i.e., FSE and FS).

A candidate fuzzy k-sequence (k � 3) can be derived by
joining two frequent fuzzy (k � 1)-sequences, and these two
sequences share a frequent fuzzy (k � 2)-sequence. For
example, we can use two frequent fuzzy sequences, say
�A2,1

x1 , A2,2
x1 � and �A2,1

x1 , A2,1
x1 � A2,1

x2 �, to generate a candidate
fuzzy 3-sequence �A2,1

x1 , A2,2
x1 , A2,1

x1 � A2,1
x2 � because �A2,1

x1 , A2,2
x1 �

and �A2,1
x1 , A2,1

x1 � A2,1
x2 � share the same fuzzy 1-sequence

�A2,1
x1 �. Actually, another candidate fuzzy 3-sequence �A2,1

x1 ,
A2,1

x1 � A2,1
x2 , A2,2

x1 � can be generated.
However, �A2,1

x1 , A2,2
x1 , A2,1

x1 � A2,1
x2 � can also be generated

by combining �A2,1
x1 , A2,2

x1 � with �A2,2
x1 , A2,1

x1 � A2,1
x2 � since �A2,1

x1 ,
A2,2

x1 � and �A2,2
x1 , A2,1

x1 � A2,1
x2 � share �A2,2

x1 �. To resolve this
problem, we consider that that if there exist (k � 2) (k � 3)
integers numbers e1, e2, . . . , ek�3, ek�2 where 1 � e1,
e2, . . . , ek�2 � �, such that FSE[u, e1] � FSE[v, e1] � 2,
FSE[u, e2] � FSE[v, e2] � 3, . . . , FSE[u, ek�3] � FSE[v,
ek�3] � k � 2 and FSE[u, ek�2] � FSE[v, ek�2] � k � 1,
where FSE[u] and FSE[v] correspond to individual frequent
fuzzy (k � 1)-sequences, then we can employ (FSE[u] �

FSE[v]) and (FSE[v] � FSE[u]) to generate various candi-
date fuzzy k-sequences.

Example 11. FSE[u] � FSE[v] � (1, 0, 0, 2) (i.e., �A2,1
x1

� A2,1
x2 , A2,1

x1 �) � (0, 1, 0, 2) (i.e., �A2,1
x1 � A2,1

x2 , A2,2
x1 �) � (2,

1, 0, 3) (i.e., �A2,1
x1 � A2,1

x2 , A2,1
x1 , A2,2

x1 �) can be obtained since
there exist (3 � 2) (i.e., k � 3) integers numbers e1 � 3 such
that FG[u, 4] � FG[v, 4] � 2. As we mentioned above,
FSE[v] � FSE[u] � (0, 1, 0, 2) � (1, 0, 0, 2) � (1, 2, 0,
3) (i.e., �A2,1

x1 � A2,1
x2 , A2,2

x1 , A2,1
x1 �) can be also obtained.

However, for FSE[u] � (2, 1, 0, 0) (i.e., �A2,1
x1 , A2,2

x1 �) and
FSE[v] � (0 , 2, 0, 1) (i.e., �A2,2

x1 , A2,1
x1 � A2,1

x2 �), (2, 1, 0, 0)
� (0 , 2, 0, 1) is invalid since FSE[u, j]  FSE[v, j] (j � 1,
2, 3, 4).

Additionally, we can observe that if a candidate fuzzy
k-sequence is generated by FSE[u] � FSE[v], then FSE[u]
� FSE[v] must contain k positive and consecutive positive
integer numbers (i.e., 1, 2, . . . , k � 1, k). For example, (1,
2, 3, 0) contain 3 various integer numbers (i.e., 1, 2, 3). We
describe the detailed procedure of phase II as follows.

Algorithm: The proposed method for discovering fuzzy
sequential patterns (phase II)

Input: a. Frequent fuzzy 1-sequences (initial FSEFS)
b. Minimum fuzzy support.

Output: Fuzzy sequential patterns
Method:
Step 0. Initialization
Set 1 to k.

Step 1. Generate frequent fuzzy k-sequences (2 < k
< �)

Set k � 1 to k. If there is only one frequent fuzzy (k
� 1)-sequence, then go to Step 2. For two unpaired rows,
FSEFS[u] and FSEFS[v] (u &neq; v), corresponding to
frequent fuzzy (k � 1)- sequences do

1-1. Examine the validity of FSE[u] ( FSE[v] If there
exist (k � 2) integers numbers e1, e2, . . . , ek�3, ek�2

where 1 � e1, e2, . . . , ek�2 � �, such that FSE[u,
e1] � FSE[v, e1] � 2, FSE[u, e2] � FSE[v, e2] �
3, . . . , FSE[u, ek�3] � FSE[v, ek�3] � k � 2 and
FSE[u, ek�2] � FSE[v, ek�2] � k � 1, then compute
FSE[u] � FSE[v] and FSE[v] � FSE[u] to generate
candidate fuzzy k-sequences s� and s�, respectively

1-2. Examine the fuzzy support of the newly generated
fuzzy sequences
Insert FSE[u] � FSE[v] or FSE[v] � FSE[u] to
FSE, and FS(s�) or FS(s�) to FS when FS(s�) or
FS(s�) is larger than or equal to min FS.

End
Step 2. Check whether or not any frequent fuzzy k-

sequence is generated
If any frequent fuzzy k-sequence is generated, then repeat

by going to Step 1, else go to Step 3.
Step 3. Find fuzzy sequential patterns

For any two rows of FSEFS, say FSE[u] and FSE[u], if
the fuzzy sequence corresponding to FSE[u] is contained in
the fuzzy sequence corresponding to FSE[v] by using the
method introduced in Subsection 3.3, then eliminate
FSE[u]. It is noted that the final FSEFS stores only fuzzy
sequential patterns.

The analysis of the computational complexity is some-
what difficult. We roughly analyze the proposed method in
the worst case (i.e., minimum fuzzy support � 0) since an
appropriate minimum fuzzy support is determined by deci-
sion makers. As we have mentioned above, the smaller
minimum fuzzy support is specified by users, the larger
number of frequent fuzzy 1-sequences will be generated. It
is thus clear that the more frequent fuzzy 1-sequences are
generated, the more computational steps will be used in
phase I. For example, in Figure 4, there are 15 possible
frequent fuzzy grids (i.e., 6 1-dim grids and 9 2-dim grids)
in the worst case. It is also clear that 15 is larger than 31
� 32. In a similar manner, if each of the d quantitative
attributes is partitioned into K linguistic values, then the
total number of frequent fuzzy grids would be larger than K1

� K2 � . . . � K
d

in the worse case. That is, it is possible
that the number of processing computational steps in phase
I will increase exponentially for databases with high degree.
If let � be equal to K1 � K2 � . . . � Kd, then C2

� iterations
of the for-loop in Step 1 of phase II would be performed.

In the following section, two numerical examples are
utilized to demonstrate the usefulness of the proposed
method.
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5. Numerical Examples

The main purpose of this section is to show the useful-
ness of the proposed method. Two possible applications
relating to analyze purchase behaviors are demonstrated as
follows: one to analyze general purchase behaviors, and the
other to analyze purchase behaviors of one group.

A. Analysis of General Purchase Behaviors

In a supermarket or a mart, a table named BOUGHT with
10 transactions is extracted from transaction databases as
shown in Table 3, where the asterisk denotes that one
product was not purchased in that transaction. We can see
that �1 � 2, �2 � 3, �3 � 1, �4 � 3, �5 � 1.

There are nine quantitative attributes, and each quantita-
tive attribute ranging from zero to twenty is partitioned into
three linguistic values (i.e., K � 3), which are similar to
partitions depicted in Figure 2, by the simple fuzzy partition
method. Therefore, fuzzy subsets defined in individual par-
titions can be linguistically interpreted, such as for the
product m (m � 1 . . . 9):

A3,1
Product m : small

A3,2
Product m : medium

A3,3
Product m : large

Then, we employ the proposed method to find fuzzy se-
quential patterns from BOUGHT by specifying min FS to
be 0.20. The detailed computation process is omitted for
simplicity. At the end of phase II, 10 fuzzy sequential
patterns with individual fuzzy supports can be discovered
(i.e., �A3,2

Product 5� with 0.20, �A3,1
Product 9� with 0.20, �A3,2

Product 2 �
A3,2

Product 3� with 0.29, �A3,1
Product 3 � A3,2

Product 9� with 0.20, A3,2
Product 3

� A3,2
Product 7� with 0.30, �A3,2

Product 2, A3,2
Product 3� with 0.21,

�A3,2
Product 3, A3,1

Product 3� with 0.22, �A3,2
Product 7, A3,1

Product 3� with 0.20,
�A3,2

Product 7, A3,2
Product 9� with 0.20, and �A3,3

Product 7, A3,2
Product 9� with

0.21). It is suggested that decision makers should pay more
attention on those patterns with larger fuzzy support.

The aforementioned patterns can help decision makers
plan marketing strategies. For example, �A3,2

Product 3, A3,1
Product 3�

and �A3,2
Product 7, A3,1

Product 3� demonstrate that small purchase
amounts of product 3 are likely to be bought by customers
next time after they bought medium purchase amounts of
product 3 or medium purchase amounts of product 7. Those
customers, which can be found from databases by a query
language such as SQL, may be attracted to buy more prod-
uct 3 on sale. Decision makers should further analyze the
possible reasons why small purchase amounts of product 3
are likely to be bought.

Another interesting patterns are �A3,2
Product 2, A3,2

Product 3� and
�A3,2

Product 3, A3,1
Product 3�. That is, we find that �A3,2

Product 2, A3,2
Product 3,

A3,1
Product 3� is not generated. Those customers who bought

medium purchase amounts of product 2 may feel that me-
dium purchase amounts of product 3 can sufficiently satisfy
their requirement. Maybe, they can be also attracted to buy
more product 3 on sale. It is possible that A3,3

Product 3 will be
generated in the next pattern mining by performing an
appropriate marketing strategy.

B. Analysis of Purchase Behaviors of One Group

It is possible that one group is very significant for a
business. The analysis of purchase behaviors of one group is
thus meaningful. If we treat Table 3 as transaction records
of one group, say a group of high salary (GHS), then a new
table sorted by transaction time for GHS is generated as
shown in Table 4. It is also reasonable that we view GHS as
customer 1 such that �1 � 10. Each quantitative attribute
ranging from zero to twenty is still partitioned into three
linguistic values. Then, we employ the proposed method to
find fuzzy sequential patterns from BOUGHT by specifying
min FS to be 0.90.

At the end of phase II, 4 fuzzy sequential patterns with
individual fuzzy supports can be found (i.e., �A3,2

Product 2 �
A3,2

Product 3, A3,2
Product 5� with 0.90, �A3,2

Product 2 � A3,2
Product 3, A3,3

Product 7�
with 0.90, �A3,2

Product 2, A3,3
Product 7, A3,2

Product 5 � A3,2
Product 7� with 0.90,

and �A3,2
Product 2, A3,3

Product 7, A3,2
Product 5, A3,1

Product 3� with 0.90). Deci-
sion-makers should make use of these patterns to plan
appropriate marketing strategies for GHS. The possible
analysis of fuzzy sequential patterns is omitted here.

TABLE 3. Table BOUGHT sorted by transaction time for each customer.

Record
Transaction

time Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 Product 9

t1
(1) 04/10/02 * * 5 * * * * * *

t2
(1) 05/11/02 * * * * * * * * 8

t1
(2) 04/12/02 6 10 9 * * * * * *

t2
(2) 04/25/02 * * 8 * * * 14 * *

t3
(2) 06/01/02 * * 1 9 * 12 6 * 6

t1
(3) 05/02/02 * 8 7 * 10 * 9 * *

t1
(4) 04/05/02 * * 15 * * * 12 * *

t2
(4) 04/29/02 * 6 * 10 * * 10 * *

t3
(4) 06/02/02 * * 4 * * * * * 12

t1
(5) 05/20/02 * * * * * * * * 5

668 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2003



6. Discussions and Conclusions

As we have mentioned above, the main aim of this paper
is to propose a fuzzy data mining technique to discover
fuzzy sequential patterns by using the simple partition
method. The first phase is to find purchase behaviors that
frequently occurred for a period of time (i.e., frequent fuzzy
grids), and the second phase is to discover fuzzy sequential
patterns by analyzing the temporal relation among those
purchase behaviors found in the first phase. Two numerical
examples can demonstrate the usefulness and possible ap-
plications of the proposed method. Several improvements or
suggestions of the proposed method are discussed as fol-
lows. Some issues are left for future works.

The rough analysis of the computational complexity in
the worst case is described in Section 4. Since it is possible
that the number of processing computational steps in phase
I will increase exponentially for databases with high degree,
the computational time and the storage requirement will be
enlarged. The usefulness of the proposed method for data-
bases with high degree is more or less deteriorated. There-
fore, it is possible to remove the unimportant attributes to
reduce the dimensions. In reducing the feature space dimen-
sions, several feature selection methods can be used such as
the principal component analysis (Sharma, 1996), which is
a useful multivariate analysis technique. Additionally, var-
ious linguistic interpretations of a fuzzy set can be obtained
by linguistic hedges (Zimmermann, 1991, 1996; Ishibuchi
& Nii, 2001; Pedrycz & Gomide, 1998) for AK,im

xm such as
“very AK,im

xm ” denoted by �AK,im

xm �� or “more or less AK,im

xm ”
denoted by �AK,im

xm �� as follows:

�AK,im
xm �� � very AK,im

xm � �AK,im

xm �2 (13)

�AK,im
xm �� � more or less AK,im

xm � �AK,im

xm �1/2 (14)

The membership functions of �AK,im

xm �� and �AK,im

xm �� can be
stated as ��K,im

xm (x)]2 and ��K,im

xm (x)]1/2, respectively. There-
fore, there are three different linguistic terms defined in each
partition, such as AK,im

xm , “very AK,im

xm ” and “more or less AK,im

xm .”
Therefore, there are 3K different linguistic values defined in
xm. It is possible that the proposed method uses these
linguistic values simultaneously to discover fuzzy sequen-

tial patterns. We believe that such extensions will make
fuzzy sequential patterns to be more versatile and more
useful for users.

As we have mentioned in Section 2, the decision makers
can subjectively determine the number, locations and
shapes of fuzzy sets in each quantitative attribute depending
on their preferences, past experiences, or prior knowledge.
The advantage is that the fuzzy sequential patterns are more
comprehensible for the decision-makers. That is, it is not
necessary to provide methods to find general or optimal
parameter specifications (i.e., number, locations, and
shapes) of membership functions in each quantitative at-
tribute.
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