
ELSEVIER

Information
Processing
Letters

Information Processing Letters 48 (1993) 67-72

An incremental LL(1) parsing algorithm

Wuu Yang *

Department of Computer and Information Science, National Chiao-Tung lJnil,ersity, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, ROC

Communicated by D. Cries

Received 21 April 1993

Revised 12 July 1993 and 10 August 1993

Abstract

Given a parse tree for a sentence xzy and a string Z, an incremental parser builds the parse tree for the sentence
xZy by reusing as much of the parse tree for xzy as possible. The incremental LL(1) parsing algorithm in this paper
makes use of a break-point table to identify reusable subtrees of the original parse tree in building the new parse
tree. The break-point table may be computed from the grammar.

Key words: Design of algorithms; Incremental parsing; Language-based editor; Language processors; Parsing

1. Introduction

Due to the improvement in hardware and soft-
ware, language-based editors are becoming in-
creasingly feasible and increasingly capable.
These editors check the syntax and semantics of a
program and provide immediate feedback to the
user when the program is entered into the sys-
tem. An important component of these editors is
an incremental parser that builds a new parse
tree for a modified program.

Given a parse tree for a sentence xzy and a
string 2, an incremental parser builds the parse
tree for the sentence xZy by reusing as much of
the parse tree for xzy as possible. A “cut” opera-

* This work was supported in part by National Science Coun-
cil, Taiwan, R.O.C. under grant NSC 82-0113-E-009-265-T.

tion breaks the parse tree into a sequence of
trees. After replacing z with 5, the resulting
sequence of the trees are pasted together.

Fig. l(a) depicts the parse tree for the expres-
sion “id + id + id” (the grammar is shown in Fig.
4). Suppose that the first “ +” sign is replaced by
“ * “, resulting in the expression “id * id + id”.

The tree is cut at the right relatives of the left-
most id node and of the leftmost “ + ” node (the
right relatives of a symbol represent the parse
stack immediately after that symbol is matched;
we define the term formally in the next section).
At this point, there are four trees, as shown in
Fig. l(b). The first tree is the main parse tree for
the prefix “id . . . “. The second and the third
trees are generated when the “ +” sign is parsed.
The last tree is for the suffix “. . . id + id”. Since
the first “ +” sign is replaced by “ * “, the second
and the third trees are discarded. A tree consist-

0020-0190/93/$06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved
SSDI 0020-0190(93)E0151-9

68 W Yang/Information Processing Letters 48 (1993) 67-72

ing of a single “ * ” node is inserted between the
first and the fourth trees. The resulting three
trees have to be pasted together.

The main parse tree can be reused without
change. The second tree, which consists of a
single token “ * “, is parsed with the conventional

parsing steps, given the parse stack with Y and X
on top. At this point, only two trees remain, as
shown in Fig. l(c). The nonterminal on top of the
parse stack, T, (the subscripts are used to distin-
guish different occurrences of a symbol), does not
match the root of the second tree, E. In order to

paste the two trees together, T, E, and the next
input token id are used to index into a break-point
table to find the break point, which is T,. This
means that subtree T2 of the second tree may be
reused. The second tree is cut at T, and its right
relative, X2. Tree T, is then pasted to the main
tree at node T,. Similarly, tree X, is pasted to
the main tree at X,. The resulting parse tree is
shown in Fig. l(d). Note that trees T2 and X2

have been reused.
We present an incremental LL(1) parsing algo-

rithm. The crux of the algorithm lies in the use of

(a) id + id + id

F R id

(b)

(d) id * id + id

Fig. 1. An example parse tree for the incremental parser. Subscripts distinguish different occurrences of a symbol.

W. Yang/Information Processing Letters 48 (1993) 67-72 69

the break-point table to identify reusable sub-
trees. The next section presents the incremental
LL(1) parsing algorithm. The third section dis-
cusses related work.

2. An incremental LL(1) parsing algorithm

We consider only LL(1) grammars. We first
define some terminology. A symbol denotes ei-
ther a terminal or a nonterminal. N denotes
either a node of the parse tree or the symbol at
that node. We use (Y or /3 to denote a (possibly
empty) string of symbols. A cut of a tree at a
node N splits the tree into two trees: One is the
subtree rooted at N; the other is the original tree
with N’s descendants removed. Note that cutting
a tree at a leaf node still results in two trees; one
of the trees consists of a single leaf node. The
right relatives of a node N consist of the siblings
of N that are to the right of N and the right
relatives of the parent of N. If N is a terminal
node, N’s right relatives, from left to right, repre-
sent the contents of the parse stack immediately
after the terminal at node N is matched during
parsing.

Now consider all the trees except the main
parse tree in the sequence. Since trees that derive
null strings are not reused, they are discarded.
Then f replaces the trees that derive z; each
symbol of Z represents a tree by itself. The trees
are grafted onto the main parse tree. The situa-
tion is drawn in Fig. 2, where N is the root of the

second tree.
To graft a tree to the main parse tree, the

root, the leftmost terminal leaf of the tree, and
the “attach” point in the main parse tree are
examined. Specifically, in Fig. 2, consider grafting
the tree rooted at node N to the main parse tree
at node M, where M corresponds to the symbol
on the top of the parse stack. If nodes M and N
contain the same symbol, tree N is simply pasted
at node M.

Set FIRST of a symbol N consists of all the
terminals a such that N +* ap, where p is a
string of symbols. If N +* F (where F is the null
string), then E E FIRST(N). Set FOLLOW of a
symbol N consist of all the terminals a such that
S +* aNa@ where S is the start symbol of the
grammar and (Y and p are strings of symbols. The
computation of sets FIRST and FOLLOW is
described in [l].

Suppose nodes M and N contain different
symbols. Let a be the leftmost terminal leaf of
the N tree. If a E FIRST(M), consider the stems

from M to a and from N to a, where the stem is
defined as follows.

Definition. The stem from a symbol M to a
terminal a is the sequence of symbols on the path
from M to the leftmost a in the parse tree for
M +* a@. If a P FIRST(M) then stem(M, a) = F.

Given a parse tree for a sentence xzy and a Note that stem(M, a) is unique, since LL(1)
string Z that replaces z, the parse tree is cut at grammars are deterministic. If no symbol can
the right relatives of the rightmost symbol of x appear on both stem(M, a) and stem(N, a), the
and at the right relatives of the rightmost symbol usual parsing steps are performed, using M as
of z. If x is a null string, the tree is cut at the the symbol on the top of the parsing stack and a

root. If z is E, the associated cut operations will
not be performed. Cutting yields a sequence of
trees. The first tree in the sequence, the main

parse tree, is for the prefix “x . . . “. The parse
stack corresponding to the main parse tree con-
sists of the right relatives of the rightmost symbol

of x.

main

& &L.a

Fig. 2. The incremental parser attempts to graft the small subtrees on the right to the main parse tree on the left.

70 W. Yang/Information Processing Letters 48 (I 993) 67-72

as the look-ahead symbol. If some symbol ap-
pears on both stem(M, a) and stem(N, a), we say
that the two stems “overlap”. When two stems
overlap, they must share a common segment from
bottom up, since LL(1) grammars are determinis-
tic. Let the break point be (the symbol of) the
“highest” node in the overlapped segment. The
break points, which may be computed from the
grammar, indicate reusable subtrees.

the overlapped segment of stem(N, a) and
stem(M, a).

(2) If a E FIRST(N), a @FIRST(M), M may
derive E, and a E FOLLOW(M), then
BP[M, N, a] = N.

(3) If a E FIRST(N), a P FIRST(M), and ei-
ther A4 may not derive E or a E FOLLOW(M),
then BP[M, N, a] = error.

(4) If a P FIRST(N) then BP[M, N, a] is a
don’t-care entry.

Definition. BP is the break-point table. Suppose
that M and N are nonterminals and a is a
terminal.

(1) If a E FIRST(N) n FIRST(M), then
BP[M, N, al is the symbol of the highest node on

Let X = BP[M, N, a], which is not an error
nor a don’t-care entry. Tree N is cut at X and
X’s right relatives, resulting in a sequence of
trees. Tree N and all the trees that derive the

Algorithm: inc-parse(nain , i)
/* main is the parse tree for the string xzy . z is replaced by I. */
cut the main tree at the right relatives of the last symbols of x and z
remove all trees that derive the null strings
replace all trees that derive a symbol of z with I, each symbol of? being a tree by itself.
let S be the stack of the remaining trees, excluding the main tree (the leftmost tree is on the top)
the parsing stack consists of the right relatives of the last symbol of x in the main tree
repeat

let M be the symbol on the top of the parsing stack
pop a tree from the S stack, the root of which is denoted by N
let a be the leftmost leaf terminal of the N tree
if A4 = N then pop M from the parsing stack
else if M is a terminal node then

ifM = a then

pop M from the parsing stack
cut the N tree at the right relatives of a
remove the N tree and all trees that derive the null strings
push the remaining trees onto the S stack (the leftmost tree is on the top)

else error
else /* M is a nonterminal node */

if N is a nonterminal symbol and BP [M , N, a] = error then error

else if N is a nonterminal symbol and N + BP [M, N, a] then

1etX beBP[M,N,a]
cut the N tree at X and the right relatives of X
remove the N tree and all trees that derive the null strings
push the remaining trees onto the S stack (the leftmost tree is on the top)

elseifP[M,a]=YtYz...Yk then
pop M from the parsing stack
push Yk, . . , Y2, Y 1 onto the parsing stack

else error

until M is the end-of-file marker

Fig. 3. The incremental parsing algorithm.

W. Yang /Information Processing Letters 48 (1993) 67-72 71

null strings are then discarded. The remaining
trees represent the input that must be parsed.
Note that the root of the leftmost tree in the
remaining trees is X. Call this leftmost tree the
X tree. Suppose a E FIRST(M). Since X E
stem(M, a), tree X will be reused during the
parsing of a with M as the symbol on the top of
the stack. On the other hand, when a E

FIRST(M), M must derive F given a as the
look-ahead terminal symbol. In either case, the
usual parsing steps are performed.

Fig. 3 is a recast of the incremental parsing
algorithm. In Fig. 3, P is the LL(1) parsing table.
In addition to the parse stack, a stack S is main-
tained of the trees that need to be grafted to the
main parse tree. Stack S represents the input to
the incremental parser.

Fig. 4 shows an example grammar and table
BP. The unspecified entries in the table are
don’t-care entries. The table is used to parse the
example in Fig. 1 incrementally.

The incremental parser contains the parse tree
and table BP in addition to the traditional LL(1)
parsing table. Table BP contains m2n entries,
where m is the number of nonterminals and II is
the number of terminals in the grammar. We
conjecture that most entries in the BP table are
either error or don’t-care entries. For instance,
63 out of the 7.5 entries of table BP in Fig. 4 are
such entries.

Consider the parse trees for x, 5, and y. The
parse tree for x can be reused directly. There-
fore, we save all the efforts of parsing x. The
parse trees for 5 are actually a sequence of termi-

nals, which is exactly what a traditional parser
needs to process. The cut operations at a node’s
right relatives can be implemented efficiently with
a threaded-tree structure similar to that used in
[4,5]. At most one set of cut operations is per-
formed for each terminal in the trees for y.
However, each set of cut operations identifies a
subtree that can be reused. As long as the sub-
tree is large enough, the efforts spent in cutting
can be offset by the efforts saved by reusing the
subtree. Grammars for practical programming
languages are designed with modularization in
mind. This implies that syntactic structures are
likely to limit the propagation of changes. For
instance, changes within a statement will not af-
fect the integrity of the following statements,
though the relationship between the statements
might be changed. Therefore, we conjecture that
reused subtrees are quite substantial, and most
parts of the trees for y can be reused.

In case the grammar is ambiguous, the con-
flicts during the construction of table BP are
resolved in the same way as they are resolved
during the construction of the parsing table. The
resulting table BP is consistent with the parsing
table in that a sentence in the language will have
the same parse tree whether the tree is produced
by a conventional parser or by the incremental
parser.

We conclude this section with a formula to

compute the stems. Given a nonterminal M and
a terminal a such that a E FIRST(M),

stem(M, a> = (M} U stem(Q, a) where there is a
production M + aQP, E E FIRST(a), a $L

(a) the grammar
E +-TX

(b) the BP table

terminal = id terminal = + terminal = *

X+-E
x ++E
T +FY

Y+E

Y +*T

Fjid

Fig. 4. An example grammar and the associated BP table

72 W. Yang /Information Processing Letters 48 (I 993) 67-72

FIRST(u), and a E FIRST(Q). (The notation
{M} u stem(Q, a) means to append M to the
front of the sequence stem(Q, a).>

3. Related work

The algorithm presented in this paper is moti-
vated by the Magpie environment [81 and the
Galaxy system [3]. The incremental LL(1) parsing
algorithm in Magpie uses nonterminals, as well as
terminals, as look-ahead symbols. It does not use
a break-point table to identify reusable subtrees.
An earlier version of our incremental parsing
algorithm also used nonterminals as look-ahead
symbols, but we found that that approach led to
an unnecessarily complicated formulation of the
algorithm. Galaxy uses recursive descent to re-
parse the parse tree in which changes have been
marked by an incremental scanner. The incre-
mental parser in that system does not use tables
to guide parsing and to identify reusable subtrees.
Instead, it simply tries different alternatives when
a rule does not match the input. Furthermore,
the incremental parser in Galaxy can process only
a limited class of grammars, due to a limitation in
the backtracking mechanism. By contrast, our
break-point table can identify reusable subtrees.
The incremental parsing in [4,5] discusses incre-
mental LR parsing methods. The systems in [2,6,7]

handle incremental changes to programs (mainly)
with structure editors. Structure editors avoid the
problem of incremental parsing by requesting a
user to explicitly identify the modified syntactic
structures.

References

111

121

[31

141

[51

161

[71

[81

A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles,
Techniques, and Tools (Addison-Wesley, Reading, MA,
1986).
L.V. Atkinson, J.J. McGregor and SD. North, Context
sensitive editing as an approach to incremental compila-
tion, Comput. J. 24 (1981) 222-229.
J.F. Beetem and A.F. Beetem, Incremental scanning and
parsing with Galaxy, IEEE Trans. Software Engineering 17
(1991) 641-651.
C. Ghezzi and D. Mandrioli, Incremental parsing, ACM
Trans. Programming Language Systems 1 (1979) 58-70.
C. Ghezzi and D. Mandrioli, Augmenting parsers to sup-
port incrementality, J. ACM 27 (1980) 564-579.
R. Medina-Mora and P.H. Feiler, An incremental pro-
gramming environment, IEEE Trans. Software Engineering
7 (1981) 472-482.
S.P. Reiss, An approach to incremental compilation, in:
Proc. SIGPLAN 84 Symp. on Compiler Construction, Mon-
treal, Canada, 1984; ACM SIGPLAN Notices 19 (1984)
144-151.
M.D. Schwartz, N.M. Delisle and V.S. Begwani, Incre-
mental compilation in Magpie, in: Proc. SIGPLAN 84
Symp. on Compiler Construction, Montreal, Canada, 1984;
ACM SIGPLAN Notices 19 (1984) 122-131.

