

Available online at www.sciencedirect.com

PHYSICA ()

Physica C 388-389 (2003) 559-560

www.elsevier.com/locate/physc

Magnetic field dependence of the low-temperature specific heat of MgCNi₃

J.-Y. Lin a,*, H.D. Yang b, C.-Q. Jin c

^a Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
^b Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
^c Institute of Physics, Center for Condensed Matter Physics and Beijing High Pressure Research Center, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, PR China

Abstract

The specific heat of a superconductor carries crucial signatures of its order parameter. The newly discovered superconductor $MgCNi_3$ is predicted to be unstable to ferromagnetism, and the symmetry of its order parameter symmetry is of current interest. To shed light on this issue, we have measured the low-temperature specific heat of $MgCNi_3$ in H. Careful analysis of the data suggests that $\gamma(H) \propto H$. Together with other physical properties, the results imply that $MgCNi_3$ is a moderate-coupling BCS superconductor.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: MgCNi₃; Specific heat; Order parameter; The mixed state

The newly discovered superconductivity in MgCNi₃ has been a surprise [1]. MgCNi₃ can be regarded as fcc Ni with only one quarter of Ni replaced by Mg and with C sitting on the octahedral sites. With the structure so similar to that of ferromagnetic Ni, there has been theoretical speculation that MgCNi3 is with strong ferromagnetic fluctuations [2]. To be compatible with the magnetic fluctuations, there is a possibility that MgCNi₃ has p-wave order parameter. The magnetic field dependence of $\gamma(H)$ is sensitive to the symmetry of the order parameter [3]. For a gapped superconductor, $\gamma(H)$ is expected to be proportional to H where γ is the linear coefficient of C with respect to T. For nodal superconductivity, $\gamma(H) \propto H^{1/2}$ is predicted. It is therefore of interest to study C of MgCNi₃ in detail. In this paper, the magnetic field dependence of C is analyzed.

The MgCNi₃ sample was prepared based on the procedure described in [1]. The X-ray diffraction pattern revealed the nearly single phase of MgCNi₃ structure. It

is well known that $T_{\rm c}$ significantly depends on the real carbon content in the nominal MgCNi₃ [1]. Magnetization, specific heat, and resistivity measurements all showed a superconducting onset at about 7 K in the present sample. The resistivity transition width is less than 0.5 K, while thermodynamic $T_{\rm c}$ determined from C(T) is 6.4 K. C(T) was measured using a ³He thermal relaxation calorimeter from 0.6 to 10 K with magnetic fields H up to 8 T.

The results of the specific heat measurements were reported in [4] in detail. $\Delta C/\gamma_n T_c = 1.97$ is estimated from the anomaly at T_c . This indicates a moderate-coupling superconductivity within the BCS context. Fig. 1 shows C/T vs. T^2 at low T in magnetic fields. To figure out $\gamma(H)$, the data was extrapolated to T=0 for $H \geqslant 4$ T as indicated by the straight lines in Fig. 1. The low field data suffer contamination from the paramagnetic contribution of the impurities, and $\gamma(H)$ can only be obtained through the attempts of the fitting. For the approximation, consider $C(T,H) \simeq C(T,H=0) + \gamma(H)T + C_m(T,H)$, where C_m is the paramagnetic contribution and assumed to be in the Schottky form. If we take the zero-field data between 2.5 and 4.5 K as C(T,H=0) (to

^{*}Corresponding author. Fax: +886-3-572-0728. E-mail address: ago@cc.nctu.edu.tw (J.-Y. Lin).

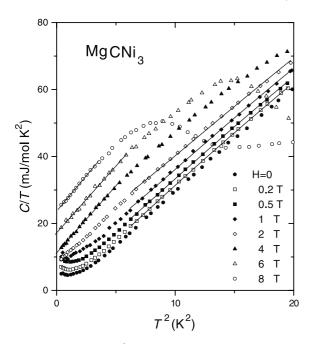


Fig. 1. C(T,H)/T vs. T^2 of MgCNi₃ for H=0–8 T. The solid lines are either to extrapolate γ in high fields or to represent the fits mentioned in the text for low field data.

avoid the magnetic contribution at low temperatures), $\gamma(H)$ can be estimated by fitting C(T,H) in this temperature range. The resulting $\gamma(H)$ with $H \leq 2$ T is shown in Fig. 2 together with the high field γ obtained as mentioned above.

Linearity of γ can be clearly seen in high H from Fig. 2, while a nonlinear $\gamma(H)$ at low H is likely as suggested by the fits. $\gamma(H)$ tends to revert to be linear at high H as suggested in Fig. 2. The nonlinearity in low H can be attributed to the flux line interactions [5]. The linear γ , together with the full superconducting gap and other evidences reported in [4], suggests a s-wave order parameter in MgCNi₃. It is noted that other form of C_m would lead to slightly different results for low field γ and could bring γ more close to the linearity. Fitting with other forms of C_m will be reported elsewhere.

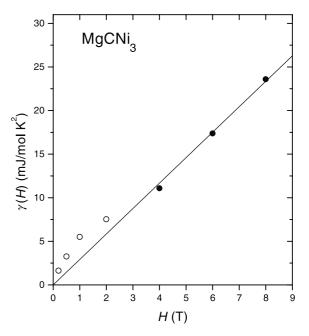


Fig. 2. $\gamma(H)$ obtained from either extrapolation (high field) or fitting (low field).

Acknowledgements

This work was supported by National Science Council, Taiwan, Republic of China under contract nos. NSC90-2112-M-009-025 and NSC90-2112-M-110-012.

References

- [1] T. He, Q. Huang, A.P. Ramirez, K.A. Regan, N. Rogado, M.A. Hayward, M.K. Hass, J.S. Slusky, K. Inumaru, H.W. Zandbergen, N.P. Ong, R.J. Cava, Nature 411 (2001) 54.
- [2] H. Rosner, R. Weht, M.D. Johannes, W.E. Pickett, E. Tosatti, Phys. Rev. Lett. 88 (2001) 027001.
- [3] For a brief, see H.D. Yang, J.-Y. Lin, J. Phys. Chem. Solid 62 (2001) 1861.
- [4] J.-Y. Lin, P.L. Ho, H.L. Huang, P.H. Lin, Y.-L. Zhang, R.-C. Yu, C.-Q. Jin, H.D. Yang, cond-mat/0202034.
- [5] A.P. Ramirez, Phys. Lett. A 211 (1996) 59.