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Abstract

For an n-by-n matrix A and an elliptic disc E in the plane, we show that the sum of the
number of common supporting lines and the number of common intersection points to E
and the numerical range W(A) of A should be at least 2n+ 1 in order to guarantee that E
be contained in W(A). This generalizes previous results of Anderson and Thompson. As an
application, our result is used to verify a special case of the Poncelet property conjecture.
© 2003 Elsevier Science Inc. All rights reserved.
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Let A be an n-by-n (complex) matrix and let E be a closed elliptic disc in the
plane. The purpose of this paper is to answer the question: How many common
supporting lines with some common intersection points toE and the numerical range
W(A) of A are needed in order to guarantee that E be contained in W(A)? Recall
that the numerical range W(A) of A is the set {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} in the
plane, where 〈·, ·〉 denotes the usual inner product in Cn. For properties of numerical
ranges, a good reference is [4, Chapter 1]. The motivation of this problem comes
from two results, one old and another more recent. In the early 1970s, Anderson
obtained that ifW(A) is contained in the closed unit disc D (D = {z ∈ C : |z| < 1})
andW(A) ∩ �D has more than n points, thenW(A) = D (cf. [10, p. 507]). Through
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an affine transformation, this can be easily extended to the setting with D replaced
by any closed elliptic disc E (cf. [7, Theorem 4.12]). More recently, in a similar
vein Thompson [12] proved that if �W(A) contains an arc of an ellipse with positive
length, then E ⊆ W(A). The main result of this paper is a generalization of these
two results to their sharpest form:

Theorem. Let A be an n-by-n matrix (n � 2) and let E be a closed elliptic disc in
the plane. Assume thatW(A) andE have l (�1) common supporting linesL1, . . . , Ll
with m (0 � m � l) of the intersections Lk ∩W(A) ∩ E nonempty. If l +m �
2n+ 1, then E ⊆ W(A). In this case, the number 2n+ 1 is sharp and the two foci
of �E are the eigenvalues of A.

Note that the result of Anderson and that of Thompson follow from this theorem
by letting l = m = n+ 1.

The original idea of the proof by Anderson, though never published, is to consider
W(A) as the convex hull of the Kippenhahn curveC(A) ofA (see below) and then ap-
ply Bézout’s theorem (cf. [6, Theorem 3.1]). In recent years, two more proofs for his
result appeared in the literature. One is by Dritschel and Woerdeman [1, Theorem 5.8],
based on their canonical decomposition and radial tuples for numerical contractions.
Another is due to the second author (cf. [11, Lemma 6]); it depends on a classical
theorem of Riesz and Fejér on nonnegative trigonometric polynomials. The original
proof of Thompson’s result is lengthy; the one in [12, Section 5] by the referee is again
based on the Kippenhahn curve and Bézout’s theorem. Our theorem can also be proved
in this fashion. In the main text below, we adopt a proof in which the fundamental
theorem of algebra is used in place of Bézout’s theorem, while in the appendix we give
the one based on Bézout’s theorem.

We start with a brief review of Kippenhahn’s result. For any n-by-nmatrixA, con-
sider the homogeneous degree-n polynomial pA(x, y, z) = det(x ReA+ y ImA+
zIn), where ReA = (A+ A∗)/2 and ImA = (A− A∗)/(2i) are the real and imag-
inary parts of A, respectively, and In denotes the n-by-n identity matrix. The Kip-
penhahn curve C(A) of A is the curve dual to the algebraic curve determined by
pA(x, y, z) = 0 in the complex projective plane CP2, that is, C(A) consists of all
points [u, v,w] in CP2 such that ux + vy + wz = 0 is a tangent line topA(x, y, z) =
0. As usual, we identify the point (x, y) in C2 with [x, y, 1] in CP2 and identify
any point [x, y, z] in CP2 such that z /= 0 with (x/z, y/z) in C2. Thus, in partic-
ular, the plane R2 (identified with C) sits in CP2 by way of the identification of
the point (a, b) of R2 (or a + bi of C) with [a, b, 1] in CP2. The algebraic curve
p(x, y, z) = 0 in CP2, where p is a homogeneous polynomial, can be dehomog-
enized to yield the curve p(x, y, 1) = 0 in C2 and, conversely, an algebraic curve
q(x, y) = 0 in C2 can be homogenized to a curve in CP2 with equation obtained by
simplifying q(x/z, y/z) = 0. A result of Kippenhahn says that the numerical range
W(A) is the convex hull of the real points of C(A) (cf. [5, p. 199]). Note that, as
proved in [2, Theorem 1.3], if x0u+ y0v + z0w = 0 is a supporting line of W(A),
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then det(x0 ReA+ y0 ImA+ z0In) = 0. Since the dual ofC(A) is the original curve
pA(x, y, z) = 0, we infer, in particular, that every supporting line ofW(A) is tangent
to C(A).

We are now ready for the proof of our theorem.

Proof. For the ease of exposition, we first show that in our assertions the elliptic
disc E may be assumed to be the unit disc D. Indeed, we first apply a translation
followed by a rotation (with respect to the origin) to transform E to an elliptic
disc with boundary given by (u2/a2)+ (v2/b2) = 1. Another affine transforma-
tion (u, v) �→ (u/a, v/b) then transforms the latter to the unit disc D. Since sup-
porting lines are preserved under such transformations, we may apply one more
rotation, if necessary, to ensure that none of the l transformed supporting lines
to D is horizontal.

If

f (u, v) = (a1u+ b1v + c1, a2u+ b2v + c2)

(aj , bj and cj are real for j = 1, 2 and a1b2 /= b1a2) denotes the affine transforma-
tion of R2 obtained from the composite of the above, then we have f (E) = D. Let
f (A) denote the matrix

(a1 ReA+ b1 ImA+ c1In)+ i(a2 ReA+ b2 ImA+ c2In).

It can be easily verified that f (W(A)) = W(f (A)). Hence in the proof below
for the assertion on the supporting lines, we may replace the matrix A by f (A) and
the elliptic disc E by D, and assume that none of the supporting lines Lk to D is
horizontal. As for the assertion on the foci, though they are in general not preserved
by affine transformations, we may argue as follows. Let B be a 2-by-2 matrix whose
numerical range isE. If we can show that pf (B) is a factor of pf (A), then by a simple
computation we have that pB is a factor of pA. Since the foci of �E are eigenvalues
of B, they are zeros of the polynomial pB(−1,−i, z). We then infer from above that
the foci are also zeros of pA(−1,−i, z), and hence they are eigenvalues of A. In this
situation, we have

W(f (B)) = f (W(B)) = f (E) = D

and thus f (B) is unitarily equivalent to[
0 2
0 0

]
.

Hence, in the following, we may assume that

B =
[

0 2
0 0

]
.

Then W(B) = D and pB(x, y, z) = z2 − x2 − y2.
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To prove that pB is a factor of pA, let pA = pBq + r , where q is a homogeneous
polynomial of degree n− 2 and r(x, y, z) = p1(x, y)z+ p2(x, y) with

p1(x, y) =
n−1∑
j=0

ajx
n−j−1yj = xn


 1

x

n−1∑
j=0

aj

(y
x

)j (1)

and

p2(x, y) =
n∑
j=0

bjx
n−j yj = xn


 n∑
j=0

bj

(y
x

)j . (2)

If x0u+ y0v = 1 is a common nonhorizontal supporting line to W(A) and E (=
D), then pA(x0, y0,−1) = pB(x0, y0,−1) = 0 and hence r(x0, y0,−1) = 0. This
yields p1(x0, y0) = p2(x0, y0) or

1

x0

n−1∑
j=0

aj

(
y0

x0

)j
=

n∑
j=0

bj

(
y0

x0

)j
. (3)

Here x0 /= 0 since x0u+ y0v = 1 is assumed to be nonhorizontal. If, moreover,
x0u+ y0v = 1 intersects W(A) and E at some common point (u0, v0), then either
(u0, v0) lies on C(A) or there are two distinct points, say, (u1, v1) and (u2, v2) of
C(A) that lie on x0u+ y0v = 1. In the former case, u0x + v0y = 1 is tangent to the
curve pA(x, y,−1) = 0 at (x0, y0) by the definition of the Kippenhahn curve. Since
the equation of the tangent line is also given by

�pA
�x

(x0, y0,−1)(x − x0)+ �pA
�y

(x0, y0,−1)(y − y0) = 0,

we infer that

u0
�pA
�y

(x0, y0,−1) = v0
�pA
�x

(x0, y0,−1). (4)

In the latter case, the two lines ujx + vjy = 1 (j = 1, 2) are both tangent to
pA(x, y,−1) = 0 at (x0, y0). The nonuniqueness of the tangent line implies that

�pA
�x

(x0, y0,−1) = �pA
�y

(x0, y0,−1) = 0

and therefore (4) also holds. A similar (even easier) argument shows that

u0
�pB
�y

(x0, y0,−1) = v0
�pB
�x

(x0, y0,−1). (5)

Some computations with (4) and (5) which take into account that pB(x0, y0,−1) = 0
yield

u0

(
− �p1

�y
+ �p2

�y

)
= v0

(
− �p1

�x
+ �p2

�x

)
at (x0, y0).
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Letting ψ(y) = (1 − v0y)/u0 (here u0 /= 0 by the nonhorizontality of x0u+
y0v = 1), we may consider the polynomial p̃j (y) = pj (ψ(y), y) in y, j = 1, 2.
Then we have p̃1(y0) = p̃2(y0) and p̃′

1(y0) = p̃′
2(y0). The quotient rule gives

(
p̃1(y)

ψ(y)n

)′
(y0) =

(
p̃2(y)

ψ(y)n

)′
(y0).

Carrying out the calculations by making use of the second expressions for p1 and
p2 in (1) and (2), we obtain

− a

x2
0

n−1∑
j=0

aj

(
y0

x0

)j
+ b

x0

n−1∑
j=0

jaj

(
y0

x0

)j−1

= b

n∑
j=0

jbj

(
y0

x0

)j−1

, (6)

where

a = ψ ′(y0) = − v0

u0
and b =

(
y

ψ(y)

)′
(y0) = u0

(1 − v0y0)2
.

Let the l common supporting lines Lk to W(A) and E(= D) be u cos θk +
v sin θk = 1, where 0 � θk < 2π for k = 1, . . . , l, with the m common intersection
points (cos θk, sin θk), k = 1, . . . , m. Since Lk is not horizontal, we have cos θk /= 0.
In this case, x0 = cos θk, y0 = sin θk and y0/x0 = tan θk for each k = 1, . . . , l, and
u0 = cos θk , v0 = sin θk , a = − tan θk and b = sec3 θk for k = 1, . . . , m. Thus (3)
and (6) become

sec θk

n−1∑
j=0

aj tanj θk =
n∑
j=0

bj tanj θk (7)

and

tan θk

n−1∑
j=0

aj tanj θk + sec2 θk

n−1∑
j=0

jaj tanj−1 θk

= sec θk

n∑
j=0

jbj tanj−1 θk, (8)

respectively. If we let

p(λ) = (1 + λ2)


n−1∑
j=0

ajλ
j




2

−

 n∑
j=0

bjλ
j




2

,
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then p(tan θk) = 0 and

p′(tan θk)= 2 tan θk


n−1∑
j=0

aj tanj θk




2

+ 2(1 + tan2 θk)


n−1∑
j=0

aj tanj θk




×

n−1∑
j=0

jaj tanj−1 θk


−2


 n∑
j=0

bj tanj θk




 n∑
j=0

jbj tanj−1 θk




= 2


n−1∑
j=0

aj tanj θk


 sec θk


 n∑
j=0

jbj tanj−1 θk




− 2


 n∑
j=0

bj tanj θk





 n∑
j=0

jbj tanj−1 θk


 = 0,

where the second equality follows from (8) and the third from (7). This shows that
each tan θk, k = 1, . . . , l, is a zero of p with the first m having multiplicity at least
two. Assume first that all the tan θk are distinct. Since the degree of p is at most
2n and l +m � 2n+ 1, this implies, by the fundamental theorem of algebra, that
p is identically zero. Hence (1 + λ2)(

∑n−1
j=0 ajλ

j )2 and (
∑n
j=0 bjλ

j )2 are equal

polynomials. If
∑
j ajλ

j and
∑
j bjλ

j are not identically zero, then i is a zero of

(1 + λ2)(
∑
j ajλ

j )2 with odd multiplicity and hence of (
∑
j bjλ

j )2. But this is
impossible since the latter has no such zeros. Hence we must have p1 = 0 and
p2 = 0, and therefore r = 0 or pB is a factor of pA.

We still have to deal with the case when some of the tan θk are equal. If tan θi0 =
tan θi1 , thenu cos θi0 + v sin θi0 = ±1 are both common supporting lines toW(A) and
E. We will proceed as in the preceding paragraphs and only give a sketch of the
arguments instead of going into all the details. Letting x0 = cos θi0 and y0 = sin θi0 ,
we obtainpA(x0, y0,±1) = pB(x0, y0,±1) = 0 and hence r(x0, y0,±1) = 0, which
yields p1(x0, y0) = ±p2(x0, y0). This shows that p1(x0, y0) = p2(x0, y0) = 0 or

n−1∑
j=0

aj tanj θi0 =
n∑
j=0

bj tanj θi0 = 0.

Therefore, tan θi0 is a zero of the polynomials a(λ) ≡ ∑n−1
j=0 ajλ

j and b(λ) ≡∑n
j=0 bjλ

j and hence also a zero of p of multiplicity at least two. If, in addition,
x0u+ y0v = 1 and x0u+ y0v = −1 intersect W(A) and E at the common point
(u0, v0) ≡ (cos θi0 , sin θi0) and (−u0,−v0), respectively, then, as before, we would
obtain p̃′

1(y0) = ±p̃′
2(y0) and, therefore, p̃′

1(y0) = p̃′
2(y0) = 0. Thus both sides of

(6) are zero. Since
∑
j aj tanj θi0 = 0, we derive from (8) that

n−1∑
j=0

jaj tanj−1 θi0 =
n∑
j=0

jbj tanj−1 θi0 = 0.
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So tan θi0 is a zero of both a(λ) and b(λ) with multiplicity at least two, and hence
a zero of p of multiplicity at least four. Finally, assume that only one of the lines
x0u+ y0v = ±1 intersects W(A) and E at a common point, say, x0u+ y0v = 1 at
the point (u0, v0). Since p(λ) = (1 + λ2)a(λ)2 − b(λ)2, a direct calculation shows
that

p′′(λ)= 2a(λ)2 + 8λa(λ)a′(λ)+ 2(1 + λ2)a(λ)a′′(λ)+ 2(1 + λ2)a′(λ)2

− 2b(λ)b′′(λ)− 2b′(λ)2.

From our assumptions, we have already had a(tan θi0) = b(tan θi0) = 0. More-
over, (8) and a(tan θi0) = 0 yield

sec2 θi0

n−1∑
j=0

jaj tanj−1 θi0 = sec θi0

n∑
j=0

jbj tanj−1 θi0 .

From these, we obtain p′′(tan θi0) = 0. Thus tan θi0 is a zero of p of multiplicity
at least three. We conclude that in all cases p has at least l +m zeros, counting
multiplicity, and may infer as in the previous case when all tan θk are distinct that
pB is a factor of pA. Passing to dual curves, we have C(B) ⊆ C(A). Hence E =
W(B) ⊆ W(A) as desired.

To show that the number 2n+ 1 is sharp, let E = D and, for n � 2 and n � l �
2n, let P be an l-gon with vertices a1, . . . , al and the l sides [aj , aj+1], j = 1, . . . , l
(al+1 ≡ a1), tangent to E at bj . Here if l = 2, then P is interpreted as two par-
allel lines tangent to E. Let m = 2n− l and let A be the n-by-n diagonal matrix
diag(b1, . . . , bm, am+2, am+4, . . . , am+2(n−m)). Then W(A) and E have l common
supporting lines, namely, the ones determined by the l sides of P , and m common
intersection points b1, . . . , bm. But obviously, E is not contained in W(A). �

As an application of our theorem, we use it to verify a special case of the Poncelet
property conjecture proposed in [3, Conjecture 5.1]. Recall that an n-by-n matrix
A is said to be in class Sn if A is a contraction (‖A‖ � 1), has no eigenvalue with
unit modulus and satisfies rank(In − A∗A) = 1. In [3], we initiated the study of the
numerical ranges of matrices in Sn and conjectured that such numerical ranges can
be characterized by the so-called “Poncelet property”. Our next corollary confirms
this conjecture for ellipses. Such numerical ranges have also been studied by Mirman
[8,9]. In his proof of the Poncelet theorem [8, Theorems 10a and 10b], he also ver-
ified the assertion in our corollary. Our present proof based on Anderson’s theorem
seems more concise.

Corollary. Let E be a closed elliptic disc contained in D. Then E is the numerical
range of some matrix A in Sn if and only if it has the property that for any point λ
in �D there is an (n+ 1)-gon interscribing between �D and �E and having λ as a
vertex. In this case, A is unique up to unitary equivalence.
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Proof. The necessity was proved in [3, Theorem 2.1]. To prove the sufficiency, let
P be any of the asserted (n+ 1)-gons with v1, . . . , vn+1 as its tangent points to �E.
By [3, Theorem 3.1], there is a matrix A in Sn such that W(A) is circumscribed
about by P with v1, . . . , vn as tangent points. Thus E and W(A) have n+ 1 com-
mon supporting lines with n common intersection points. Hence E ⊆ W(A) by our
theorem. To prove that E = W(A), let λ1 = λ′

1 be an arbitrary point in �D. We draw
successively from λj (resp., λ′

j ), j = 1, . . . , n+ 1, a supporting line to �E (resp.,
�W(A)), which is to intersect �D at λj+1 (resp., λ′

j+1). Let λj = exp(iθj ) (resp.,
λ′
j = exp(iθ ′

j )) with θ1 = θ ′
1 and 0 � θ1 < θ2 < · · · < θn+2 = θ1 + 2π (resp., 0 �

θ ′
1 < θ ′

2 < · · · < θ ′
n+2 = θ ′

1 + 2π). Since E ⊆ W(A), it is easily seen that θj � θ ′
j

for all j and, moreover, if θj0 > θ ′
j0

for any j0, then θk > θ ′
k for all k � j0. We

infer from θn+2 = θ ′
n+2 that θj = θ ′

j for all j . Thus �E and �W(A) have the same
circumscribing (n+ 1)-gons with vertices on �D. Since E and W(A) are both the
intersection of the polygonal regions determined by such polygons, we conclude that
E = W(A). The uniqueness of A follows from [3, Theorem 3.2]. �

Appendix

In this appendix, we give a proof of our theorem based on Bézout’s theorem.
Although the argument is shorter, it does require some basic knowledge of algebraic
curve theory on the readers’ part. Our presentation of Bézout’s theorem and its rele-
vant notions is based on [6, Chapter 3]. Let us begin by quoting:

Bézout’s theorem ([6, Theorem 3.1]). If C and D are two algebraic curves of
degrees m and n, respectively, in the complex projective plane CP2 which have no
common component, then the total sum of the intersection multiplicity IP (C,D) over
all intersection points P of C and D is equal to mn.

Here, the degree of an algebraic curve p(x, y, z) = 0 is just the degree of the
homogeneous polynomial p. The intersection multiplicity IP (C,D) of the curves C
and D at a point P is defined to be infinity if P lies on a common component of C
and D, and a nonnegative integer otherwise, which is nonzero precisely when P is
in C ∩D. The properties for IP (C,D) are given in [6, Theorem 3.18].

Another needed result is the following proposition.

Proposition ([6, Proposition 3.22]). Let C andD be algebraic curves and P a point
in CP2. Then IP (C,D) = 1 if and only if P is a nonsingular point of C and D and
the tangent lines to C and D at P are distinct.

The point [a, b, c] of the curve p(x, y, z) = 0 in CP2 is said to be nonsingular if
at least one of the quantities �p/�x, �p/�y and �p/�z is nonzero at [a, b, c].

We are now ready for the proof of our theorem via Bézout’s theorem.
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Proof. We only need to prove that E ⊆ W(A). Let L be any of the common sup-
porting lines L1, . . . , Ll of W(A) and E, and let P be the tangent point of L with
�E. We have several cases to consider.

(I) P is not in W(A). Since L is tangent to C(A), it corresponds, by duality, to
an intersection point L∗ of the dual curves C(A)∗ and �E∗. Hence IL∗(C(A)∗,
�E∗) � 1 by the definition of the intersection multiplicity.

(II) P is inW(A) and lies on C(A). In this case, the intersection point L∗ of C(A)∗
and �E∗ has a common tangent line P ∗. Hence IL∗(C(A)∗, �E∗) � 2 by the
Proposition.

(III) P is in W(A) but not on C(A). This implies that L is tangent to C(A) at two
other points Q and R. We have two further cases to consider:

(1) Q and R are in two distinct components, say, C1 and C2 of C(A). Then C∗
1 and

C∗
2 are components of C(A)∗ and

IL∗(C(A)∗, �E∗) � IL∗(C∗
1 , �E

∗)+ IL∗(C∗
2 , �E

∗) � 1 + 1 = 2,

where the first inequality follows from one of the properties of the intersection
multiplicity [6, Theorem 3.18 (v)].

(2) Q and R lie on the same component, say, C of C(A). In this case, the point L∗
on C∗ has at least two tangent lines Q∗ and R∗ to C(A)∗. Thus L∗ is a singular
point of C(A)∗ and we deduce from Proposition that IL∗(C(A)∗, �E∗) � 2.

In all the cases considered above, IL∗(C(A)∗, �E∗) is at least as large as the
amount (1 or 2) contributed by the supporting line L to the sum l +m. Hence if
l +m � 2n+ 1, then

∑
j IL∗

j
(C(A)∗, �E∗) � 2n+ 1. Since the degrees of C(A)∗

and �E∗ are n and 2, respectively, Bézout’s theorem implies that C(A)∗ and �E∗
have common components. We infer from the irreducibility of the ellipse �E∗ that
�E∗ is a component of C(A)∗. Hence �E is a component of C(A) as required. �

Note added in proof

The Poncelet property conjecture [3, Conjecture 5.1], of which our Corollary is
a special case, has since been shown to be false by Mirman in his upcoming paper
“UB-matrices and conditions for Poncelet polygon to be closed”.
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