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Thermophoretic deposition e"ciency in a cylindrical tube
taking into account developing (ow at the entrance region
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Abstract

This study investigates the e3ect of developing (ow in a circular tube on the thermophoretic particle
deposition e"ciency using the critical trajectory method numerically. When both (ow and temperature are
fully developed (combined fully developed), present results agree with previous theories for the long tube
where the (ow temperature approaches that of the wall. When the (ow is fully developed and temperature is
developing, it is found that only near the thermal entrance region (or temperature jump region) of the tube the
deposition e"ciency is slightly higher than the combined fully developed case ((ow and temperature), while
the deposition e"ciency remains the same for the long tube. When both (ow and temperature are developing
(or combined developing), the deposition e"ciency is about twice that of the combined fully developed case
for the long tube and is much higher near the entrance of the tube. Non-dimensional equations are developed
empirically to predict the thermophoretic deposition e"ciency in combined developing and combined fully
developed cases under laminar (ow conditions.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermophoresis is a physical phenomenon in which aerosol particles move toward the direction
of decreasing temperature when subjected to a thermal gradient. Many previous investigators have
studied thermophoresis-related subject such as thermophoretic coe"cient (Brock, 1962; Derjaguin,
Rabinovich, Storozhilova, & Shcherbina, 1976; Talbot, Cheng, Schefer, & Willis, 1980), thermo-
phoretic deposition in tube (ow (Nishio, Kitani, & Takahashi, 1974; Walker, Homsy, & Geyling, 1979;
Batchelor & Shen, 1985; Montassier, Boulaud, Stratmann, & Fissan, 1990; Montassier, Boulaud,

∗ Corresponding author. Tel.: +886-3-573-1880; fax: +886-3-572-7835.
E-mail address: cjtsai@cc.nctu.edu.tw (C.-J. Tsai).

0021-8502/03/$ - see front matter ? 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0021-8502(03)00023-5

mailto:cjtsai@cc.nctu.edu.tw


570 J.-S. Lin, C.-J. Tsai / Aerosol Science 34 (2003) 569–583

Nomenclature

B dynamic mobility B= C=3��dp

C slip correction factor
Cd drag coe"cient
Cm momentum exchange coe"cient
Cp speciHc heat capacity at constant pressure
Cs thermal slip coe"cient
Ct temperature jump coe"cient
dp diameter of the particles
D particle di3usity
Dt tube diameter
kg gas thermal conductivity
kp particle thermal conductivity
Kth thermophoretic coe"cient
L tube length
mp particle mass
Peg gas Peclet number (um · r20)=(� · L)
Pr gas Prandtl number
r0 tube radius
rc critical radial position
R radial coordinate
R dimensionless radial coordinate r=r0
Rc dimensionless critical radial position rc=r0
Re Reynolds number
Rep particle Reynolds number
Q volumetric (ow rate
T gas temperature
Te gas temperature at tube entrance
Tm mixing-cup temperature
Tw wall temperature
∇̃T temperature gradient
um average gas velocity
U gas velocity (z-component)
V gas velocity (r-component)
Ṽ th thermophoretic velocity
z+ dimensionless axial coordinate z=(r0Re Pr)
Z axial coordinate
Z dimensionless distance from the entry Z = z=(0:05DtPeg)

Greek letters

� thermal di3usivity kg=(�Cp)
�1 thermophoretic parameter �1 = Pr Kth=(Te − Tw)=Tw
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� thermophoretic deposition e"ciency
� ∗ dimensionless temperature Tw=(Te − Tw)
� mean free path of air
� air dynamic viscosity
v kinematic viscosity
� gas density
�p particle density
! particle relation time != �pd2

pC=18�

& Renoux, 1991; Shimada, Seto, Okuyyama, 1994; Stratmann, Otto, & Fissan, 1994; Zoulalian &
Albiol, 1995; Chiou, 1996; Romay, Takagaki, Pui, & Liu, 1998), thermophoretic deposition in a
plate-to-plate thermal precipitator (Tsai & Lu, 1995). The experimental data of Tsai and Lu (1995)
suggested that the equation of thermophoretic coe"cient proposed by Talbot et al. (1980) is accurate.

The thermophoretic velocity can be calculated as

Ṽ th =−"Kth

T
∇̃T; (1)

where Kth is the thermophoretic coe"cient deHned by Talbot et al. (1980) as

Kth =
2CsC

(1 + 3Cm(2�=dp))
×
(

kg=kp + Ct(2�=dp)
1 + 2(kg=kp) + 2Ci(2�=dp)

)
: (2)

For complete accommodation, the reasonable values of Cm, Cs and Ct are 1.14, 1.17 and 2.18,
respectively (Talbot et al., 1980; Montassier et al., 1991).

Previous theories on thermophoretic deposition e"ciency in laminar tube (ow, listed in Table 1,
are restricted to fully developed (ow only. These equations are applicable for a long tube where
gas temperature approaches that of the wall. Also shown in Table 1 for comparison are predicted
equations of the present study. In previous theories, Walker et al. (1979) and Batchelor and Shen

Table 1
Theoretical expressions of thermophoretic deposition e"ciency for a long tube where the temperature
of hot gas has approached the tube wall temperature

Walker et al. (1979) �=
Pr Kth

Tw
(Te − Tw)

Batchelor and Shen (1985) �= Pr Kth

(
Te − Tw

Te

)(
1 + (1− Pr Kth)

(
Te − Tw

Te

))

Stratmann et al. (1994) �= 1− exp

(
−0:845

(
Pr Kth + 0:025

Tw=(Te − Tw) + 0:28

)0:932)

This study (fully developed (ow)∗ �f = 0:783�0:94
1

(developing (ow)∗ �d = 0:549�0:48
1

∗The thermophoretic parameter �1 is deHned as �1 = Pr Kth
Te − Tw

Tw
.
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Fig. 1. Critical particle trajectory.

(1985) considered particle transport due to convection and thermophoresis only, thermal di3usivity
of particle was neglected. Such an assumption is valid only when the dimensionless deposition
parameter for laminar di3usion, $ ($ = DL=Q), is much less than 0.0001 (Hinds, 1999). Walker
et al. (1979) developed two models, one for a short tube, and another for a su"ciently long tube
where the gas temperature approaches that of the tube wall. For the short tube, Walker et al. solved
the particle transport equation analytically and developed an equation as a function of Pr Kth, � ∗
and z=Peg. In the case of the long tube, they solved the particle transport equation by a particle
trajectory method and found that the thermophoretic deposition e"ciency is a function of Pr Kth and
� ∗ (see Table 1). Batchelor and Shen (1985) also found that deposition e"ciency for a long tube
is a function of Pr Kth and � ∗. The predicted thermophoretic deposition e"ciency of Batchelor and
Shen (1985) agrees well with Walker et al. (1979) only when Pr Kth =1. However, when Pr Kth and
Te=Tw are small, the predicted thermophoretic deposition e"ciency does not agree well with Walker
et al. (1979).

Stratmann et al. (1994) utilized the extended SIMPLER algorithm developed by Patankar (1980)
to calculate thermophoretic deposition e"ciency and a non-dimensional thermophoretic deposition
model was developed neglecting thermal di3usion as shown in Table 1.

From the above discussion, it can be seen that the entrance (ow e3ect on particle deposition
e"ciency in tube (ow has rarely been investigated. Recently, Fan, Cheng, and Yeh (1996) found
that the gas collection e"ciency of an annular di3usion denuder is higher for developing (ow than
fully developed (ow. Since the highest temperature gradient and uniform velocity near the wall occur
at the entrance of a tube where both (ow and temperature are developing, thermophoretic deposition
in the entrance region may be enhanced and is the objective of this study.

In this study, the critical particle trajectory method is used to obtain its thermophoretic deposition
e"ciency assuming that particle di3usion is negligible. The critical particle trajectory is shown in
Fig. 1. A particle starting at the critical radial position, rc, at the entrance will deposit just at
the end of the tube of length L. When (ow is fully developed, an analytical temperature Held is
available and the particle equations of motion can be solved to obtain the critical radial position and
the thermophoretic deposition e"ciency. However, when both (ow and temperature are developing,
there is no analytical equation for the temperature Held. In this study, we found that developing
velocity Held simulated numerically by the SIMPLE algorithm (Patankar, 1980) was not accurate.
Therefore, the analytical velocity distribution developed by Sparrow, Lin, and Lundgren (1964)
was used to calculate the developing temperature proHle numerically, and then the critical particle
trajectory and deposition e"ciency was obtained by solving the particle equations of motion.
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2. Present method for calculating the thermophoretic deposition e�ciency

2.1. Velocity and temperature pro7les

In laminar (ow, the entry length for the velocity proHle to become fully developed is given by
Incropera and De wit (1996) as(

z
Dt

)
dep

∼= 0:05Re (3)

and the entry length for the temperature proHle to become fully developed is (Kays & Crawford,
1980) (

z
Dt

)
dep

∼= 0:05Re Pr = 0:05Peg: (4)

As a result, the temperature is fully developed earlier than velocity when Pr¡ 1. If the thermal
entrance length is much shorter than the total tube length, one can assume that the temperature is
fully developed. In fully developed (ow, the velocity proHle is parabolic and can be written as

u(r) = 2um

[
1−

(
r
r0

)2]
: (5)

For a developing (ow, the two-dimensional developing velocity Held in the tube was derived by
Sparrow et al. (1964) as

u
um

= != 2(1− R2) +
∞∑
i=1

4
(2
i

[
J0((iR)
J0((i)

− 1
]
e−(2

i Z
∗
; (6)

where

(1 = 5:13562; (i+1 = (i + �; i = 1; 2; 3 : : : ;

Z∗ =
z∗"
umr20

;

z =
∫ z∗

0
$ dz∗;

$=

∫ 1
0 (2!− 1:5!2)(@!=@X ∗)R dR

(@!=@R)1 +
∫ 1
0 (@!=@R)2R@R

:

Eq. (6) was used to calculate the developing temperature Held for developing (ow numerically by
solving the following 2-D cylindrical energy equation:

u
@T
@z

+ v
@T
@r

= �
(
1
r
@T
@r

+
@2T
@r2

+
@2T
@z2

)
(7)
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with boundary conditions

T (r; 0) = Te; T (r0; z) = Tw;
@T
@r

(0; z) = 0: (8)

For a fully developed (ow and assuming all relevant physical properties are constant, Eq. (7) can
be non-dimensionalized as

(1− r2+)
@�
@z+

=
@2�
@r2+

+
1
r+

@�
@r+

; (9)

where

�=
Tw − T
Tw − Te

; r+ =
r
r0

; z+ =
z=r0
Re Pr

:

When the temperature is fully developed, or when the dimensionless distance Z is greater than the
dimensionless thermal entry length, the dimensionless temperature proHle (Tw − T )=(Tw − Tm) is
invariant in the axial direction, and is a function of radial coordinate only. The fully developed
temperature proHle is obtained by solving Eq. (9) analytically and is given (Skelland, 1974) as

Tw − T
Tw − Tm

=

∑j=∞
j=1 Bj-j(r+) exp(−�2

j z+)∑j=∞
j=1 (−4Bj=�2

j )(d-j=dr+)r+=1 exp(−�2
j z+)

; (10)

where

r+ =
r
r0

; z+ =
z=r0
Re Pr

;

-j(r+) =
i=∞∑
i=0

�jiri+; �ji = 0; for i¡ 0;

�ji = 1 for i = 0; �ji =−�2
j (�i−2 − �i−4)=i2;

�j = 4(j − 1) + 8
3 j = 1; 2; 3; : : : ;

Bj = (−1) j−1 × 2:84606�2=3
j

−Bj

2

(
d-j

dr+

)
r+=1

= 1:01276�−1=3
j :

For a developing temperature proHle, the analytical solution of Eq. (9), Graetz’s problem, is
(Skelland, 1974)

Tw − T
Tw − Te

=
j=∞∑
j=1

Bj-j(r+) exp(−�2
j z+): (11)

We have compared the dimensionless developing temperature proHle of Eq. (11) with that described
in Grigull and Tratz (1965) for the fully developed (ow and found both proHles agree very well.
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In the numerical simulation of developing temperature for developing (ow at the entrance of a
tube, the Hnite volume method and SIMPLE algorithm were used. In the test run, the number of
grid points in the computational domain was either 4000 (100 in the axial direction ×40 in radial
direction), 12,000 (200 in the axial direction ×60 in radial direction) or 24,000 (300 in the axial
direction ×80 in radial direction). The numerical results showed that the number of grid of 12,000
is accurate enough and was adopted in the further study. The grid spacing is Hner near the wall
and inlet where temperature gradients in radial direction are expected to be larger. In the simulation,
the in(uence of radial (uid velocity and temperature-dependent (uid properties on thermophoretic
deposition e"ciency was accounted for.

2.2. Particle trajectory and corresponding thermophoretic deposition e9ciency

Particle equations of motion were solved to obtain the particle trajectory and thermophoretic
deposition e"ciency. In cylindrical coordinates, the particle equations of motion in the z (radial)
and r (axial) directions are

d2z
dt2

= Cd
Rep
24

(u− dz=dt)
!

; (12)

d2r
dt2

= Cd
Rep
24

(v− dr=dt)
!

+
Vth

Bmp
; (13)

where Cd is the drag coe"cient, which was proposed by Rader and Marple (1985) as

Cd =
24
Rep

(1 + 0:0916Rep); Rep ¡ 5; (14)

Cd =
24
Rep

(1 + 0:158Re2=3p ); 5¡Rep ¡ 1000: (15)

In order to calculate the thermophoretic deposition e"ciency, one needs to know the critical radial
position of particle trajectory, rc. For the combined fully developed case, the analytical equation,
Eq. (A.6), written in the appendix is solved to obtain rc and the corresponding e"ciency. For the
case of fully developed (ow and developing temperature, the particle equations of motion have to
be solved numerically by the fourth-order Runge–Kutta method. For the combined developing case,
the particle equations of motion of Eqs. (12) and (13) were integrated numerically by means of
the fourth-order Runge–Kutta method. As the particle equations of motion are integrated through the
domain of interest, the initial velocity at the entrance is taken equal to the average gas (ow velocity.
The new particle position and velocity after a small time increment is calculated by numerical
integration. The procedure is repeated until the particle hits the tube wall or leaves the calculation
domain.

After obtaining the critical radial position, rc, the e"ciency of thermophoretic deposition for fully
developed (ow is calculated in the following equation assuming the particle concentration is uniform
at the inlet:

�f =

∫ r0
rc
2um

(
1− r2

r20

)
2�r dr

um�r20
= 1− 2

(
rc
r0

)2
+
(
rc
r0

)4
(16)
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For the combined developing case, besides assuming uniform particle concentration, the velocity
proHle is known to be uniform at the entrance of the tube, and the deposition e"ciency can be
calculated as

�d = 1−
(
rc
r0

)2
: (17)

3. Results and discussion

3.1. Thermophoretic deposition e9ciency for fully developed T- and V-7eld

The (uid and particle properties used in the calculation were estimated at the averaged temper-
ature of inlet gas and tube wall. Fig. 2 compares the thermophoretic deposition e"ciency of the
present study and previous theories at a (ow rate of 5 1=min for the pipe geometry described in
the experiment of Romay et al. (1998). The tube length is 0:905 m, tube diameter is 0:0049 m and
the Reynolds number of the gas (ow equals to 1423 which is in the laminar (ow region. The thermal
conductivity is 6:0 W=(m K) for NaCl particle (Romay et al., 1998). Fig. 2 shows that the deposi-
tion e"ciency of submicron particle agrees well with the prediction of Stratmann et al. (1994) and
Batchelor and Shen (1985) for the long tube, the deviation is smaller than 2%. It can be seen that
the thermophoretic deposition e"ciency increases at Hrst with an increasing inlet gas temperature
and decreasing particle size, but when particle size is further decreased to 0.05 and 0:03 �m, the
thermophoretic deposition e"ciency remains almost the same (Fig. 2).

In Fig. 3, the deposition e"ciency calculated by the expression of Stratmann et al. (1994) (see
Table 1) is compared with the present study. It shows that the present theory is in very good
agreement with the expression of Stratmann et al.
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Fig. 2. Comparison of theoretical deposition e"ciency with previous theories in laminar tube (ow.
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(ow.

3.2. Thermophoretic deposition e9ciency for fully developed :ow but developing temperature

When the (ow is fully developed, the temperature could still be developing when there is a sudden
temperature jump in the tube wall. The speciHc problem is as follows: The gas enters with a uniform
particle concentration and temperature Te and (ow through a tube with a wall temperature equal to Te.
At some distance far enough downstream such that the (ow is fully developed, the wall temperature
is decreased suddenly to Tw, which is di3erent from Te. This creates a “temperature jump” and
the temperature Held will start to develop from there. The developing temperature gradient in the
radial direction is higher near the position of temperature jump, and the deposition e"ciency is then
expected to be higher than in the fully developed case.

Fig. 4 shows that accumulated thermophoretic deposition e"ciency calculated for the developing
temperature case is higher than for the fully developed temperature case when the dimensionless
distance from the entry, Z , is less than 5.0. Z is deHned as Z = z=(0:05DtPeg), where z is the
distance from the position of temperature jump, and 0:05DtPeg is the thermal entry length. It can
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Fig. 5. Dimensionless temperature proHle as a function of dimensionless radial and axial coordinates.

be seen that the deposition e"ciency increases from zero at the position of temperature jump, and
approaches an asymptotic limit after Z is greater than about 5.0, when the temperature of hot gas
approaches that of the tube wall. After Z becomes greater than 5.0, the deposition e"ciencies for
both cases are the same. Fig. 4 also shows that when � ∗ is higher (Te is close to Tw), the deviation
of the deposition e"ciency between developing temperature case and fully developed temperature
case is smaller. For example, at Z =0:25 and when � ∗ equals 2.70, the deviation is 37%; and when
� ∗ equals 5.14, the deviation is 20%.

3.3. Thermophoretic deposition e9ciency for developing :ow and developing temperature

Fig. 5 illustrates the e3ect of developing (ow on the temperature distribution of a tube when
� ∗ equals 2.7. In order to make sure the simulated temperature Held is correct, a fully developed
velocity proHle was Hrst used to simulate the developing temperature Held numerically, which is
then compared with Graetz’s analytical solution, Eq. (11). Good agreement seen in Fig. 5 indicates
that the present simulation is accurate. The simulated developing temperature proHle based on the
developing (ow proHle (Eq. (6)) shows that the temperature gradient close to the tube wall is higher
than the case when the (ow is fully developed, as depicted in Fig. 5.

Fig. 6 shows the accumulated thermophoretic deposition e"ciency for a tube at di3erent Z posi-
tions with Pr Kth = 0:31 and � ∗ = 5:14 based on di3erent numbers of grid points. As the resolution
of the (ow improves beyond 12,000, the deposition e"ciency curves do not change appreciably.
Therefore, 12,000 grids were used in the subsequent simulation.

Fig. 7 shows the e3ect of the developing velocity on the accumulated thermophoretic deposition
e"ciency at di3erent � ∗ values. It can be seen that the deposition e"ciency approaches an asymptotic
limit when the hot gas temperature is close to the tube wall, after Z is greater than about 5.0. For



J.-S. Lin, C.-J. Tsai / Aerosol Science 34 (2003) 569–583 579

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6          7T
he

rm
op

ho
re

tic
 d

ep
os

iti
on

 e
ffi

ci
en

cy
PrK th = 0.31

14.5

4,000
12,000
24,000

Z

�* =

Fig. 6. Accumulated thermophoretic deposition e"ciency of aerosol particles using di3erent numbers of grids, combined
developing case.

0

5

10

15

20

25

0       1        2       3        4       5       6       7        8       9

7.2

14.5

PrKth = 0.31

T
he

rm
op

ho
re

tic
 d

ep
os

iti
on

 e
ffi

ci
en

cy
, %

Z

Flow & temperature fully developed

Flow & temperature developing �* =

�* =
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the combined developing case, the limiting value for the thermophoretic deposition e"ciency of an
inHnite long tube is higher than the combined fully developed case. For example, when Pr Kth equals
0.31 and � ∗ equals 2.7, the deposition e"ciencies are 19.3% and 9.8%, respectively. Table 2 gives
a list of the critical radial position and the corresponding accumulated thermophoretic deposition
e"ciency of the combined developing and combined fully developed cases when Pr Kth = 0:31 and
� ∗=2:7. It shows that the critical radial position of the combined developing case is larger than that
of the combined fully developed case indicating that the inward radial velocity tends to increase rc
and reduce deposition e"ciency. And the e3ect of inward radial velocity is larger than the increase
of thermal gradient near the inlet on the position of rc. However, since both the (ow velocity
and particle concentration are uniform at the tube entrance for the combined developing case, the
resulting deposition e"ciency is larger than the combined fully developed case in which the velocity
and hence the particle (ux is almost zero near the wall.
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Table 2
Accumulated thermophoretic deposition e"ciency of combined developing
case and combined fully developed case at di3erent positions of a tube

Combined developing Combined fully developed

Z Rc E3. (%) Rc E3. (%)

0.06 0.9698 5.96 0.9689 0.37
0.12 0.9610 7.64 0.9561 0.74
0.25 0.9504 9.67 0.9373 1.48
0.50 0.9378 12.05 0.9132 2.76
1.00 0.9253 14.39 0.8836 4.81
2.00 0.9119 16.85 0.8534 7.38
3.00 0.9051 18.08 0.8691 8.40
4.00 0.9011 18.80 0.8333 9.34
4.95 0.8990 19.19 0.8304 9.64
6.00 0.8982 19.32 0.8288 9.80
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Fig. 8. Thermophoretic deposition e"ciency as a function of thermophoretic parameter �1 in laminar fully developed (ow
and developing (ow.

3.4. Empirical equation of thermophoretic deposition e9ciency for the case of a long tube

The thermophoretic deposition e"ciency is a unique function of the dimensionless parameter �1.
Fig. 8 shows this relationship; correlation equations are also indicated.
It can be seen from Eq. (A.6) in the appendix that particle transport due to combined con-

vection and thermophoresis depends on three parameters, the product of the Prandtl number and
thermophoretic coe"cient, Pr Kth, the dimensionless temperature (Te − Tw)=Te and the gas Peclet
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number Peg. The thermophoretic deposition e"ciency is shown not to depend on the gas Peclet
number by Walker et al. (1979), but only on the thermophoretic parameter �1, which is

�1 = Pr Kth
Te − Tw

Tw
: (18)

In this study, the empirical equation for the combined fully developed is found to be

�f = 0:783�0:94
1 ; 0:007¡�1 ¡ 0:19 (19)

and for the combined developing case, the empirical equation is found to be

�d = 0:549�0:48
1 ; 0:006¡�1 ¡ 0:15: (20)

Fig. 8 also shows that the correlation equation Hts the present numerical results very well.

4. Conclusion

This study investigates the e3ect of developing (ow and temperature of a cylinder tube on the
thermophoretic deposition e"ciency. It is found that by taking into account the e3ect of developing
(ow at the entrance region, a higher deposition e"ciency is obtained than that of fully developed
(ow. Although the developing temperature gradients in the radial direction of developing temperature
proHles are higher than those of fully developed temperature proHles at the entrance of a tube or the
position of temperature jump, the increase of deposition e"ciency is almost negligible for a long
tube, if the (ow is fully developed. However, when both (ow and temperature are developing, the
deposition e"ciency is signiHcantly higher than the case of fully developed (ow in which the (uid
velocity, and hence the particle (ux is zero near the wall. Equations are also developed empirically
to predict the thermophoretic particle deposition e"ciency in both the combined developing and
combined fully developed cases under laminar (ow conditions.
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Appendix A. Derivation of equation for the combined fully developed case

Assuming steady, laminar (uid (ow in a circular tube, thermophoretic velocity Vth(r; z) in the
radial direction is a function of r and z, and the particle equations of motion, Eqs. (10) and (11),
can be simpliHed as

dr
dt

= Vth(r; z); (A.1)

dz
dt

= u(r) = 2um

[
1−

(
r
r0

)2]
: (A.2)
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The critical particle trajectory can be calculated by∫ r0

rc

dr
Vth(r; z)

=
∫ L

0

dz
u(r)

: (A.3)

The temperature gradient in the radial direction can be found by the energy equation as

1
r

d
dr

(
r
dT
dr

)
=

2um
�

(
dTm

dz

)[
1−

(
r
r0

)2] Tw − T
Tw − Tm

: (A.4)

The mixing-cup temperature distribution is a function of z only and is given by Incropera and
De wit (1996) as

Tm(z)− Tw

Tin − Tw
= exp

(
−�Dthz

�QCp

)
; (A.5)

where h= (NuD × kg)=Dt , NuD (Nusselt number) =3:66 for the constant wall temperature condition.
Combining Eq. (A.5) and the invariant fully developed temperature proHle, Eq. (7), Eq. (A.4)

can be solved analytically to obtain the temperature gradient, and the corresponding thermophoretic
velocity can be obtained as the product of two functions: g(r) and h(z), where g(r) depends on r
while h(z) depends on z only. Further separation of variable of Eq. (A.3) results in the following
dimensionless analytical equation which can be solved to obtain the dimensionless critical radial
position, Rc:∫ 1

Rc

f(R) dR=−Pr Kth ln
(
Tw

Te
+
(
Te − Tw

Te

)
exp
(−3:66�L

umr20

))
; (A.6)

where

f(R) =
1− R2

0:903R− 0:0136R2 − 1:323R3 + 0:355R4 + 0:581R5 − 0:248R6

and Rc = rc=r0 is the dimensionless critical radial position. Once Rc is obtained, the particle ther-
mophoretic deposition e"ciency can be calculated.
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