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Abstract

We present a theoretical study of the spin-dependent electron scattering from screened impurities in III–V semiconductor quantum wells.

The effective one band Hamiltonian and the Rashba spin-orbit interaction are used. We calculated the Mott scattering cross-section and the

Sherman function for two-dimensional electrons spin-polarized parallel to the z-axis (direction of structure growth). We have found a large

spin-dependent asymmetry in the elastic cross-section for electrons scattered from impurities in CdTe/InSb/CdTe symmetrical

semiconductor quantum wells. The Sherman function amplitude for repulsive impurities in CdTe/InSb/CdTe quantum wells is predicted

to be about 0.01
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Transport of spin-polarized electrons in two-dimensional

(2D) semiconductor structures attracts a great interest since

a new branch of semiconductor electronics (so called

spintronics) starts to utilize electron spin in semiconductors

[1]. The extra degree of freedom provided by the electron

spin opens up a new field for device research. Yet, electron

spin dynamics in semiconductor heterostructures is best

studied by optical experiments. There is much to be done to

develop a proper understanding of spin dependent electron

transport in nano-scopic semiconductor systems.

In this paper, we investigate the spin-dependent elastic

scattering in semiconductor quantum wells in the presence

of the spin–orbit interaction. In the absence of magnetic

impurities, the main source of the spin-dependent scattering

processes at low temperatures is the spin–orbit coupling to

local defects. Unlike most of the theoretical simulations of

2D electron scattering processes from the impurities that

have been conducted in the first Born approximation, we

calculate the electron elastic cross section exactly by means

of partial waves method. Our results demonstrate a large

left-right scattering asymmetry for different location of the

impurities in a narrow gap semiconductor symmetric

quantum wells.

We consider electrons in semiconductor heterostructures

and use the approximate one electron band effective

Hamiltonian for the electron envelop wave functions [2,3]

Ĥ ¼ Ĥ0 þ V̂imðrÞ ð1Þ

In Eq. (1) H0 is the Hamiltonian of the system without

impurities

Ĥ0 ¼ 2
"2

2
7r

1

mðE; rÞ

� �
7r þ VðrÞ2 i7rbðrÞ·½s £ 7r�;

and V̂imðrÞ is the scattering potential, 7r stands for the

spatial gradient, mðE; rÞ is the energy and position

dependent electron effective mass E is the electron energy,

VðrÞ is the confinement potential of the well, and bðrÞ is the

spin-orbit coupling parameter in the Rashba spin–orbit

interaction [2–4].

The impurity potential consists of two parts

VimðrÞ ¼ VcðrÞ þ VsoðrÞ;

where VcðrÞ is the Coulomb potential of the charged

impurity and VsoðrÞ describes the spin–orbit interaction

with the impurity

VsoðrÞ ¼ iaðE; rÞ7VcðrÞ·½ŝ £ 7r�;

where aðE; rÞ is taken from Ref. [2].

In a semiconductor quantum well we denote by z the

direction perpendicular to the well interface and r ¼ ðx; yÞ is
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the position vector parallel to the interface. Here we

consider III–V semiconductor symmetric quantum wells

of thickness L and assume that an isolated impurity is

located with a distance d from the center of the well ðz ¼ 0Þ

and the unscreened Coulomb potential of the impurity is

given by

Vc0ðrÞ ¼
Ze2

4p1s½r
2 þ ðz 2 dÞ2�1=2

; ð2Þ

where 1s is the permittivity of the system and Z is the charge

of the impurity. For most of III–V quantum wells we can

neglect the image potential.

For systems with a sharp discontinuity in the conduction

band edge between the quantum well (material 1) and the

barrier region (material 2) the potential can be presented as

VðrÞ ¼

0; 2
L

2
# z #

L

2
;

V0; lzl .
L

2
;

8>><
>>: ð3Þ

Following Ref. [5] we present the solution of the

confinement problem with the Hamiltonian Ĥ0 as

Cðr; zÞ ¼ csðrÞwnðzÞ;

where n labels the eigen-energies En in the normal direction,

and s ¼ ^1 is the quantum number related to the spin states.

In this work, we consider only the intrasubband elastic

scattering for the electrons in the first subband of the

quantum well. First we consider the ground state (the first

sub-band with n ¼ 1) of z-direction. The wave function of

this ground state has the form

w1ðzÞ ¼

A cos kz; lzl #
L

2
;

B expð2mzÞ; lzl .
L

2
;

8>><
>>: ð4Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðEÞE1

p
=";

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2ðEÞðV0 2 E1Þ

p
=";

and E ¼ Er þ E1 consists of the r and z direction motion

energies correspondingly. Due to the symmetry of the well

spin-spliting of the electron spectrum does not occur [2,3]

and from the Ben Daniel–Duke boundary conditions [6] in

z-direction we obtain a spinless transcendental equation

tan½kðEr;E1ÞL=2� ¼
m1ðEÞmðEr;E1Þ

m2ðEÞkðEr;E1Þ
: ð5Þ

Eq. (5) gives us the eigen-energy in z-direction in an implicit

form. The wave function w1ðzÞ (after proper normalization),

we substitute in the three-dimensional Schrödinger equation

with the Hamiltonian (1) and integrate out the z coordinate

by taking the average

Ĥr ¼
ðþ1

21
dzwp

1ðzÞĤw1ðzÞ:

After the averaging the quasi 2D Schrödinger equation in

the polar coordinates r ¼ ðr;fÞ is given by the form

1

r

›

›r
r
›

›r

� �
2

1
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›2

›f2
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›
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þ k2

" #
csðrÞ

¼ 0

ð6Þ

where

~VcðrÞ ¼
Ze2 ~mðEÞ

2p1s"
2
£
ð1

0

dq

1ðqÞ
J0ðqrÞ

ðþ1

21
dzlw1ðzÞl

2
e2qlz2dl

;

~WðrÞ ¼2
Ze2 ~mðEÞ

2p1sr"
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;

k2 ¼
2 ~mðEÞEr

"2
;

1

~mðEÞ
¼

1

m1ðEÞ

ð
z#

L
2

��� ��� dzlw1ðzÞl
2
þ

1

m2ðEÞ

ð
z$

L
2

��� ��� dzlw1ðzÞl
2
;

JnðxÞ is the Bessel function,

1ðqÞ ¼ 1þ
q

f

q

is the 2D dielectric function, and

q
f
¼

e2m1ðEfÞ

2p"21s

1þEf

d

dE
ln½m1ðEÞ�

� ����
Ef

�

is the 2D Thomas–Fermi screening constant, and Ef is the

Fermi energy of the system. Due to the radial symmetry of

the potentials ~VcðrÞ and ~WðrÞ the method of partial waves is

convenient for our description and we can present the wave

function as the following [7]

csðrÞ ¼
Xl¼þ1

l¼21

Rs
l ðrÞe

ilfxs
:

where l is the orbital momentum number and xs is a spin

function upon which the Pauli matrix vector operates. The

Schrödinger equation for the radial wave function becomes

1

r

d

dr
r

d

dr

� �
2

l2

r2
2 ~VcðrÞþ sl ~WðrÞþ k2

" #
Rs

l ðrÞ ¼ 0:

In the variable phase approach [7] the phase function ds
l ðrÞ

at the point r determines the phase shift produced by the part

of the potential contained within the cycle of a radius r:

The scattering phase shift for the total potential is equal to
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the asymptotic value

ds
l ¼ lim

r!1
ds

l ðrÞ:

The phase function satisfies the following differential

equation

dds
l ðrÞ

dr
¼2

p

2
r½ ~VcðrÞ2 sl ~WðrÞ�£ ½cos ds

l ðrÞJlðkrÞ

2 sin ds
l ðrÞNlðkrÞ�

2 ð7Þ

with the boundary condition

ds
l ð0Þ ¼ 0: ð8Þ

The Mott scattering cross-section for electrons spin-

polarized parallel to the z-axis can be expressed in terms of

the incident electron spin-polarization Pi as

sðuÞ ¼ IðuÞ½1þSðuÞPi�; ð9Þ

where IðuÞ is the differential cross-section for an unpolar-

ized incident electron

IðuÞ ¼ lf ðuÞl2 þ lgðuÞl2;

where u is the scattering angle between initial ðkiÞ and final

ðkf Þ wave vectors and

SðuÞ ¼
f pðuÞgðuÞþ f ðuÞgpðuÞ

lf ðuÞl2 þ lgðuÞl
ð10Þ

is the Scherman function for 2D electrons.

The complex 2D scattering amplitude

FsðuÞ ¼ ½f ðuÞ þ szgðuÞ�x
s
;

is discussed in Ref. [4] in terms of the scattering phase

shifts. The Sherman function is an important characteristic

of the spin-dependent scattering [8]. It presents the left-right

asymmetry in the scattering cross-section for initially

polarized electron beams and the average polarization of

unpolarized electrons after scattering and, for instance, in

the anomalous Hall effect the Hall angle is proportional to

the Sherman function at the Fermi energy shell [9]. The

phase shifts were obtained by the numerical solution of Eq.

(7) with the initial condition Eq. (8) and used in Eqs. (9) and

(10) to calculate the cross-section and the Sherman function.

Our calculation shows that the convergence criteria on the

cross-section (the maximum net error is less than 1024) can

be reached by taking the necessary number lll # 70 of

partial waves.

Fig. 1 shows the example of angle dependencies of the

elastic scattering cross-section for 2D electrons scattered

from an impurity in different locations for the symmetrical

CdTe/InSb/CdTe quantum well. The results demonstrate

the fast declination of the cross section at large angle with

the increasing distance between the well center and the

impurity. The exact numerical solution allows as to

calculate the spin-polarization effects and the Sherman

function of CdTe/InSb/CdTe quantum well with impurities.

In Fig. 2 we present the Sherman function obtained. The

insert presents the maximum amplitude with different

impurity location. The left-right asymmetry in the Sherman

function indicates that the spin–orbit interaction can

provide a recognizable spin-dependent scattering in the

system. The asymmetry differs in the magnitude for

impurities with opposite charges (smaller for attractive

impurity) and it is significantly lager than it was calculated

for the spin-dependent elastic scattering in the bulk [9]. This

difference is attributed to the influence of the 2D

confinement and screening on the elastic scattering

processes in quantum wells [5,12].

In conclusion we have presented the theoretical study of

the spin-dependent elastic scattering of 2D electrons from

the screened Coulomb centers in semiconductor quantum

Fig. 1. The scattering cross-sections for a screened repulsive ðZ ¼ 1Þ

impurity located in the center and well edge of a 20 nm wide

CdTe/InSb/CdTe quantum well with Er ¼ 0:04 eV: The structure par-

ameters are from: Refs. [10,11].

Fig. 2. The Sherman function for a screened repulsive ðZ ¼ 1Þ impurity

located in the center and well edge of a 20 nm wide CdTe/InSb/CdTe

quantum well with Er ¼ 0:04 eV:
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wells. The one electron band effective Hamiltonian and

the Rashba model of the spin-orbit interaction allowed us to

calculate the left-right asymmetry in the electron scattering

cross-section. We have calculated the Sherman function

with different locations of doped impurities centers in

CdTe/InSb/CdTe symmetrical quantum wells. The ampli-

tude of the Sherman function for CdTe/InSb/CdTe quantum

well is predicted to reach about 0.01 that is possible to detect

with the anomalous Hall effect measurement at zero

magnetic field. This effect is potentially useful in integrated

electron spin-polarization devices based on semiconductor

heterostructures. It also can be used as a tool of

determination of spin coupling parameters in III–V narrow

gap semiconductor heterostructures. Our model can be used

as the starting point for more detailed calculations.

Experimental investigations should be conducted to verify

our theory predictions.
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