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We study the quantum dynamics of a Morse oscillator under an intense field with three differ-
ent frequencies: (1) one much higher than the dissociation energy from an excited state, (2) one
resonant with the dissociation energy from an excited state, and (3) an intermediate one. The
calculations were performed by using the momentum-space Fourier-grid Hamiltonian method. The
high-frequency stabilization and harmonic-generation spectra are shown. The laser frequencies dis-

cussed are currently experimentally available.
PACS number(s): 33.80.Wz, 33.90.+h

Recent theoretical studies showed that atoms under a
very strong high-frequency field will be relatively stable
against ionization [1]. But the predicted frequency lead-
ing to stabilization is much higher than the ionization
potential [2]. This kind of laser frequency required for
stabilization for systems prepared in the atomic ground
states is not available in current laser sources. Inciden-
tally, the dissociation dynamics of a diatomic molecule
under intense laser shows similar characteristics of atomic
strong-field phenomena [3]. It would be interesting to
study the corresponding molecular stabilization against
dissociation with the currently available laser sources.
The present study is oriented along this line. Another in-
teresting phenomenon of current atomic physics study is
the high-order harmonic-generation effect in strong fields
[4]. There are many reports on harmonic generation for
atoms, but few for molecules [5].

In a previous study of strong-field effects on a one-
dimensional hydrogen atom, we explored the advantages
of the momentum-space representation for treating the
nonperturbative time-dependent problem [6]. We de-
velop here the Fourier-grid Hamiltonian method [7] in
momentum space (p-FGH). It preserves the excellent
properties of momentum-space representation, and more
importantly, the number of grid points required to reach
excellent accuracy is significantly reduced. The p-FGH
method associated with complex scaling and Floquet the-
ory has been used by Yao and Chu in studying the stabil-
ity of C1” in 193-nm intense laser fields [8]. In this study,
we integrate the time-dependent Schrodinger equation
for a driven Morse oscillator directly in momentum space
with the Fourier grid. The system has many bound states
in addition to the continuum instead of the single-bound-
state system such as Cl™ [9]. Also, the pulse shape to
model the experimental source is considered.

The purposes of this article are threefold: (1) First,
we study the stabilization of an excited Morse oscilla-
tor. With the parameters of HF molecule and prepared
in the lowest 14th vibrational state, the current ArF ex-
cimer 193-nm laser provides the ratio of photon energy
to dissociation energy at 5.6. It satisfies the criterion of
high-frequency stabilization and can be examined exper-
imentally. We choose this initial state because the exci-
tation of the HF molecule from the 14th vibrational state
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has been studied before [10]. (2) Second, we study the
multiphoton dissociation from the same state but with
1074- and 532-nm wavelength lasers. From this study we
can examine the frequency effects on stabilization. (3)
Finally, we study the high-order harmonic generations in
both cases.

With the current short-wavelength ir and excimer laser
sources, the dipole approximation is adequate. The
model Hamiltonian of a Morse oscillator with dipole mo-
ment d; in the electromagnetic field can be written as

_ p2 —a(z—=z0)\2 dA 4

H—%—G—D(l—exp ) - (1)
where D is the dissociation energy, x¢ is the equilibrium
nuclear separation, m is the reduced mass, and A is the
vector potential. For HF molecular vibrational states,
the physical parameters are D = 0.225, zo = 1.7329, o =
1.1741, d; = 0.31, and m = 1744.7 (atomic units are used
throughout the paper). The Morse potential supports 24
bound states.

To give a simple interpretation for the high-frequency
stabilization, consider the Morse oscillator in the in-
tense sinusoidal field E(t) = E,,sin(wt). It has been
shown that the Schréodinger equation under the Kramers-
Henneberger frame is in the following form [1,11]:

i(8/0t) %) = (p*/2m)|¥) + V(= + a(t)) %), (2)

where
a(t) = (Bm/mw?)sin(wt) = aosin(wt). 3)
So V(z + a(t)) is periodic and can be written in Fourier

series form:
n=+oco

V(z+a(t) = Y Valagz)e ™" (4)
In the high-frequency regime, the n # 0 terms in Eq. (4)
oscillate rapidly and can be neglected in the zeroth-order
approximation. In Fig. 1 we show the field-deformed po-
tential Vp(ap;x) at a fixed intensity for both 1074-nm
and 193-nm cases. The dissociation limit of the 1074-
nm case decreases about 35% while the potential curve
for the 193-nm case is almost unchanged. This illustrates
that the high-frequency case is relatively stable compared
to the low-frequency one.

We then choose a laser pulse with electric field

E(t) = Epsin(wt)sin®(nt/T). (5)
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The relationship between the electric field and vector po-
tential is given by
E(t) = —(94/0t). 0)
The Schrédinger equation
i(9/0t)|¢) = H|y) (7)
in p-FGH formalism can be written as
) k2 1«
0 _ ke 1 N —i(ku—ku)z;
i ¥(ka) = SE0(ka) + ‘Zl V(s)e (k)
=

d1 A(t)k B
——~m—“1/)(ku), pw=1,2,...,N. (8)

In this calculation, only 128 (=N) grid points were
used [12]. The range of z; is from 0 to 8 a.u. and of
momentum k&, is —50.3 to +50.3 spaced evenly. Diago-
nalization of the unperturbed Schodinger equation gives
24 bound states and 104 discretized pseudocontinuum
states. The first 21 calculated bound-state level ener-
gies agree with the exact energy levels up to the eighth
decimal places. The 24th bound-state energy is accurate
up to the fourth decimal place. To ensure the reliability
of the time-dependent p-FGH calculation, we also make
a test on an analytically known case [13]. Consider the
time-dependent Hamiltonian of a driven harmonic oscil-
lator:

H = (p*/2) + 3Q°2° — qA - p, (9)
where the electric field E(t) = E,,sin(wt) and its rela-
tionship with A(t) are described in Eq. (6). The transi-

tion probability from ground state to excited state |n) is
given by the Poisson distribution

Posn =€ 70" /n!, (10)
where
2
q2 ® i gy 1
= t
7=59 /_oo E(t)e (11)

We integrate the Schrédinger equation by p-FGH with
the Bulirsch-Stoer algorithm [14]. Our p-FGH method
completely reproduces the exact distribution Eq. (10)
up to the given controlled tolerance. So the calibrations
of the method on the unperturbed Morse oscillator and
the nonperturbative driven harmonic oscillator are both
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FIG. 1. Field-deformed potential Vo(ao;z) at E, = 3.15
[corresponds to ap = 1.0 for w1 (1074 nm)]. Dotted line,
w1 (1074 nm); solid line, ws (193 nm). There is almost no
difference from the field-free potential for the latter.
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established.

We then propagate Eq. (8) directly in momentum
space at frequencies wy; = 0.0425 (1074 nm), wy =
0.08578 (532 nm), and w3 = 0.236 076 (193 nm), respec-
tively. The pulse duration time 7" in Eq. (5) is 100 optical
cycles. A time step of 0.8 a.u. is used. To prevent wrap-
around error from the grid boundaries, a filter function
f(ky) = [1 + exp(—alk, — b])]"! with a = 1.5,b = 40 is
multiplied to the wave function at each time step. The
calculated results are convergent with respect to the dou-
bling of the maximum momentum and the number of grid
points.

The dissociation probability is defined at the turnoff
of the field as

n=24

Pi=1-Y [{¢alp())I*. (12)

Because the dissociated fragments are neutral and the
pondermotive energy is absent in this process, the mini-
mum momentum value required for dissociation is

The filtered out portions are those components with
momenta beyond 40 a.u. and they have a negligible ef-
fect on the bound-state projections. Thus, in spite of
the filter function, the defined P, describes the disso-
ciation probability well. In Fig. 2 we plot Py vs apg
for all cases, where ag = E,,/mw? is the unique pa-
rameter of the zeroth-order field-deformed potential that
plays the central role at high-frequency limit [1]. For
w1, at ap = 0.1 (3.5 x 10*®* W/cm?), P; ~ 3%, and
at ap = 1.0 (3.5 x 10'7 W/cm?), Py ~ 96%; for wy,
Py ~ 1%, at ap = 0.1, and P, ~ 87% at ag = 1.0; while
for w3, with ap up to 1.0 (3.3 x 10%2° W/cm?), P, is still
less than 0.005%. This shows the extreme stabilization
of the molecule against dissociation in the high-frequency
limit under intense fields. It confirms that the system is
stationary at high frequency [1,2].

Next we consider the harmonic-generation effects. It
has been shown in real hydrogen atom under an intense
field [15] that the acceleration form dipole function gives
a better power spectrum than the length form. We
use the acceleration form to obtain harmonic-generation
spectra in the present case. The expectation value of Z(t)
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FIG. 2. Dissociation probability vs ao = Em/mw® at
wi (1074 nm), w2 (532 nm), and ws (193 nm).
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FIG. 3. Harmonic spectrum vs ao for (a) 1074 nm and (b) 193 nm.

is obtained by means of Ehrenfest’s theorem,
S\ _% _ —a(z—xz0) _ _—2a(z—zo)
m(z) = < 9% > = —2aD(e e )
~d:1E(t), (14)

where in the p representation

(e=x(@==0)y — % Zzi/’*(’cu;t)e—i(k"‘k”m
v 3 )
xe” @m0y (k5 t). (15)

The Fourier transform of (Z(t)) gives a power spec-
trum of harmonics. We depict in Fig. 3(a) the har-
monic spectra for the case w;. It shows that at lower
field (ap = 0.01), the motion of the system is just orbit-
ing with laser frequency. High-order harmonics emerge at
the increase of laser intensity. At the onset of dissociation
(a0 = 0.1, Py ~ 3%), there are harmonics up to order 8.

And at high dissociation regime (ap = 0.5, Py ~ 80%),
similar characteristics of atomic harmonic generation ap-
pear: an exponential decay in power for the first few
orders followed by a plateau region showing nonpertur-
bative behavior [4]. It is interesting to note that the typ-
ical harmonic structure and significant dissociation oc-
cur simultaneously. At present, the correlation between
these two intense field effects is still an open question [16].
Similar features for the case ws are shown in Fig. 3(b),
but the corresponding laser intensities are exceptionally
high. For a real molecule in the latter environment the
ionization and channel couplings will certainly be more
important in making the present model realistic.

To provide a vivid visualization of the time develop-
ment of the quantum system in phase space (z, p), it is in-
structive to construct the coarse-grained Wigner (CGW)
density distribution [17]

(c)

FIG. 4. Contour diagrams at oo = 0.5,
solid line at level 1072, dashed line at 1073,
and dash-dotted line at 10™*. (a) The initial
14th lowest vibrational state, (b)—(e) time
evolution of the initial state under a 1074-nm

laser at t=10, 15, 20 and 50 optical cycles, re-

spectively, and (f) for 193 nm at ¢t= 100 op-
tical cycle. The horizontal z axis is from 0 to
8 a.u., while the perpendicular p axis is from
—40 to +40 a.u.
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(c)

FIG. 5. Classical phase space portraits

corresponding to Fig. 4. The z axis and p

axis are the same as in Fig. 4, except for (e),

(f) where the z axis is 0 to 50 and p axis is 20

to +60.

p(z,p) = (1/2mh)|(bg (), (16)

where ¢, is a coherent state. Figure 4(a) is the con-
tour diagram of the initial 14th lowest vibrational state.
Figures 4(b)—4(e) show the time evolution of the initial
state under a 1074-nm laser at ag = 0.5. We can see the
breakup of contours and diffusion of the CGW density
around the 15th optical cycle. At the 50th optical cycle,
the ergodic distribution over the phase space indicates
the chaotic behavior. The use of the CGW distribution to
describe the chaotic state has been reported before [18].
On the other hand, in Fig. 4(f) we see there is almost no
change in the contour structure at ap = 0.5 during the
interaction for 193 nm. The classical correspondences
of Figs. 4(a)-4(f) are shown in Figs. 5(a)-5(f). We
choose 500 initial points in (z,p) space by Monte Carlo
method with the beginning energy equal to the 14th en-
ergy level. Then we turn on the field and integrate the
classical Hamilton-Jacobi equations. We find that the
closed contour starts to break up around the 15th opti-
cal cycle, and at the 50th optical cycle the phase-space

distribution is chaotic.

In summary, we found that the p-FGH is a very ef-
ficient method for solving problems involving the con-
tinuum. We examined the stabilization from excited
molecular vibrational states in intense fields. Within the
currently available frequencies, we showed the stabiliza-
tion against dissociation at high laser frequency. In the
harmonic-generation spectra, we find that the appear-
ance of a plateau in the spectra is related to significant
dissociation. The time evolution of the system is shown
by both the CGW density distribution and the corre-
sponding classical trajectories. Further details will be
reported elsewhere.
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