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High-frequency stabilization and high-order harmonic
generation of an excited Morse oscillator under intense fields
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We study the quantum dynamics of a Morse oscillator under an intense 6eld with three difer-
ent frequencies: (1) one much higher than the dissociation energy from an excited state, (2) one
resonant with the dissociation energy from an excited state, and (3) an intermediate one. The
calculations were performed by using the momentum-space Fourier-grid Hamiltonian method. The
high-frequency stabilization and harmonic-generation spectra are shown. The laser frequencies dis-
cussed are currently experimentally available.

PACS number(s): 33.80.Wz, 33.90.+h

Recent theoretical studies showed that atoms under a
very strong high-&equency field will be relatively stable
against ionization [1]. But the predicted frequency lead-
ing to stabilization is much higher than the ionization
potential [2]. This kind of laser frequency required for
stabilization for systems prepared in the atomic ground
states is not available in current laser sources. Inciden-
tally, the dissociation dynamics of a diatomic molecule
under intense laser shows similar characteristics of atomic
strong-field phenomena [3]. It would be interesting to
study the corresponding molecular stabilization against
dissociation with the currently available laser sources.
The present study is oriented along this line. Another in-
teresting phenomenon of current atomic physics study is
the high-order harmonic-generation efFect in strong Belds
[4]. There are many reports on harmonic generation for
atoms, but few for molecules [5].

In a previous study of strong-Beld efFects on a one-
dimensional hydrogen atom, we explored the advantages
of the momentum-space representation for treating the
nonperturbative time-dependent problem [6]. We de-
velop here the Fourier-grid Hamiltonian method [7] in
momentum space (p-FGH). It preserves the excellent
properties of momentum-space representation, and more
importantly, the number of grid points required to reach
excellent accuracy is significantly reduced. The p-FGH
method associated with complex scaling and Floquet the-
ory has been used by Yao and Chu in studying the stabil-
ity of Cl in 193-nm intense laser fields [8]. In this study,
we integrate the time-dependent Schrodinger equation
for a driven Morse oscillator directly in momentum space
with the Fourier grid. The system has many bound states
in addition to the continuum instead of the single-bound-
state system such as Cl [9]. Also, the pulse shape to
model the experimental source is considered.

The purposes of this article are threefold: (1) First,
we study the stabilization of an excited Morse oscilla-
tor. With the parameters of HF molecule and prepared
in the lowest 14th vibrational state, the current ArF ex-
cimer 193-nm laser provides the ratio of photon energy
to dissociation energy at 5.6. It satisfies the criterion of
high-&equency stabilization and can be examined exper-
imentally. We choose this initial state because the exci-
tation of the HF molecule from the 14th vibrational state

(2)
where

n(t) = (E /m(u )sin(cut) = nosin(iot). (3)
So V(x+ n(t)) is periodic and can be written in Fourier

series form:

V(2: + n(t)) = ) V„(no, z)e (4)

In the high-frequency regime, the n g 0 terms in Eq. (4)
oscillate rapidly and can be neglected in the zeroth-order
approximation. In Fig. 1 we show the field-deformed po-
tential Vo(no,.x) at a fixed intensity for both 1074-nm
and 193-nm cases. The dissociation limit of the 1074-
nm case decreases about 35% while the potential curve
for the 193-nm case is almost unchanged. This illustrates
that the high-frequency case is relatively stable compared
to the low-frequency one.

We then choose a laser pulse with electric field

E(t) = E sin(cut)sin (art/T). (5)

has been studied before [10]. (2) Second, we study the
multiphoton dissociation from the same state but with
1074- and 532-nm wavelength lasers. From this study we
can examine the f'requency effects on stabilization. (3)
Finally, we study the high-order harmonic generations in
both cases.

With the current short-wavelength ir and excimer laser
sources, the dipole approximation is adequate. The
model Hamiltonian of a Morse oscillator with dipole mo-
ment di in the electromagnetic field can be written as

2
P D(1 cl(x —Ko))2 1 P

( )2m+ m
where D is the dissociation energy, xo is the equilibrium
nuclear separation, m is the reduced mass, and A is the
vector potential. For HF molecular vibrational states,
the physical parameters are D = 0.225, xo ——1.7329, o. =
1.1741, di ——0.31, and m = 1744.7 (atomic units are used
throughout the paper). The Morse potential supports 24
bound states.

To give a simple interpretation for the high-&equency
stabilization, consider the Morse oscillator in the in-
tense sinusoidal field E(t) = E sin(wt). It has been
shown that the Schrodinger equation under the Kramers-
Henneberger frame is in the following form [l,ll]:

i(0/0t) I@) = (p'/2m) I@) + V(*+n(t)) 14)
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The relationship between the electric field and vector po-
tential is given by

&(t) = —(»/~t).
The Schrodinger equation

'(ti/~t) I@) = Hl@)
in p- FGH formalism can be written as

N
" y(k„) + —' ) V(*,).-"".-"-l* q(k„

Ot " 2m " N
2i

(6)

(7)

where
Ps „—e o."/n!, (10)

g
2mB

E(t)e' 'dt

We inte rate the Schrodinger equation ~y p-b FGH with
the Bulirsch-Stoer algorithm [14]. ur p-

e in egra e
Our FGH method

completely reproduces the exact distribution Eq. (10)
up to the given con ro et ll d tolerance. So the calibrations

illator andof the method on the unperturbed Morse oscillator an
the nonp crt urbative rivenb '

d
' harmonic oscillator are both

0.75

"@(k„), p = 1, 2, . . . , ¹

m

In this calculation, only 12
&

—— ~ g8 (
——N~ rid points were

used [12]. The range of x~ is from 0 to 8 a.u. and o
I is —50.3 to +50.3 spaced evenly. Diago-

e uation ivesl' at' of the unperturbed Schodinger equa g
24 bound states an i umd 104 discretized pseudocontinuum

Th fi t 2 1 calculated bound-state leve ener-
ies agree with the exact energy levels up to t e eig

up to the fourth decimal place. To ensure tiie re ia i i y
of the time-depen en p-d t FGH calculation, we also ma e
a test on an analytically known case [13]. Consi er e
time-dependent Hamiltonian of a driven harmonic oscil-
lator.

H=(p /2)+ —0 T —qA p, 9

where the electric field E(t) = E~sin(cut) and its rela-
tions ip w i ah ith A(t) are described in Eq. (6 . The transi-
tion probability from ground state to excited s a e

l )
given by the Poisson distribution

n=24

Pd = 1 —). I(&-l@(t))I'.
n=1

Because the dissociated fragments are neutral and the
ondermotive energy is absent in pon erm

' '
this rocess, t e mini-pon erm

mum momentum value requ ired for disso ciation is

13)p = +2m(D l&i4l) = » 2.

The filtered out portions are those components with
b d 40 .u. and they have a negligible ef-

fect on the bound-state projections. Thus, in spite o
the filter function, the defined Pg describes the disso-
ciation pro a i i y web b 1 t ll. In Fig. 2 we plot Pg vs no

E mw is the unique pa-for all cases, where a 0
rame ter of the zero t h-order field-deformed potent ia t at

lays the central role at high-frequency limit [1]. or

at no ——1.0 (3.5 x 10 W/cm ), Pd 96%; for wq,

for w3, with no up to
i ization0.005%. This shows the extreme stabiliza ion

of the molecule against dissociation in t e ig —req
at the s stem islimit under intense fields. It confirms t a e sys

stationary at high frequency 1 2 ~

ects. Itwe consider the harmonic-generation efFects. tNext we consi er e
h been shown in real hydrogen atom un er an
field 15 that the acceleration form dipole un g

as een s
ole function gives

a better power spectrum than t e g
use the acceleration form to obtain harmonic-generation
spectra in t e presen cas ~h t case. The expectation value of x(t)

(12)

es ablished .
We then propagate Eq. (8) directly in momentum

tively. The pulse duration time T in Eq . p
cycles. A time s ep ot f 0.8 a.u. is used. To prevent wrap-

z th rid boundaries, a filter functionaround error rom e gri
f (k„) = [1 + exp( —ulk„—bl)]

' with a = 1.5, b = is
l

' l' d to the wave function at each time step. Themu tip ie o
calculated results are convergent with respect o e
bling of the maximum momentum an t e nut e num er o grid
p olnts.

4 ~ ~ at the turno fI'The dissociation probability is defined at
of the field as
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FIG. 1. Field-deformed potential Vs(ns, x)x~)at E = 3.15
co = 1.0 for wi (1074 nm)]. Dotted line,[corresponds to no —— . or wi

(1074 nm); solid line, ws (193 nm). There is almost no
difference from the Geld-free potential for the latter.
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is obtaxne y mbt d b means of Ehrenfest's theorem,

OH
rn(x) = —~(0—eo) —2~(0 —*p )

)= —2o.D(e p —e

—d, E(t),
where in the p representation

(
--'*-*')= —„).):~ (~.;t) -'"-"-'*

x --&* -")1t(a.;t).

(14)

The Fourier transform of (x(t)) gives a povrer spec-
t um of harmonics. We depict in 'g.

= 0.01~, the motion of the system is just or z-
harmonics emerge atin with laser frequency. High-order harm

e
' . At the onset of dissociationthe increase of laser intensity.

to order 8.(cro: 0.1 (g p), P 3%%u) there are harmonics up to or er

And at high dissociation regime o.0 ——io.' = 0.5, Pd, 80%),

pear: an exponential decay in power for t e rs ew

ical harmonic structure an signi can is
resent, the correlation betweencur simultaneously. At presen,

ion 16.these two intense e e ecfi ld efFects is still an open quest&oni. 3b,Similar features or e 3f the case w3 are shown in ig.
~

lintensities are exceptional y
high. For a real molecule in the latter environment t e
ionization an c ad hannel couplings will certainly be more

~ ~

akin the present model reahstsc.p rt t ng p

in hase space (x,p, it is m-t f the quantum system p
structive to cons ruct t the coarse-grained Wigner
density distribution [17]
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FIG. 4. Contour diagrams at o.p = 0.5,

and dash-dotted line at 10 . (a) The initia
14th lowest vibrational state, b —e time
evolution of the initial state under a 1074-nm
laser at k=10, 15, 20 and 50 optical cycles, re-
spectively, and (f) for 193 nm at t= 100 op-
tical cycle. The horizontal x axis is from to
8 a u while the perpendicular p axis is from~ ~

7

—40 to +40 a.u.
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FIG. 5. Classical phase space portraits
corresponding to Fig. 4. The x axis and p
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where Pg is a coherent state. Figure 4(a) is the con-
tour diagram of the initial 14th lowest vibrational state.
Figures 4(b)—4(e) show the time evolution of the initial
state under a 1074-nm laser at 0;p = 0.5. We can see the
breakup of contours and diffusion of the CGW density
around the 15th optical cycle. At the 50th optical cycle,
the ergodic distribution over the phase space indicates
the chaotic behavior. The use of the CGW distribution to
describe the chaotic state has been reported before [18).
On the other hand, in Fig. 4(f) we see there is almost no
change in the contour structure at o,p = 0.5 during the
interaction for 193 nm. The classical correspondences
of Figs. 4(a)—4(f) are shown in Figs. 5(a)—5(f). We
choose 500 initial points in (x, p) space by Monte Carlo
method with the beginning energy equal to the 14th en-
ergy level. Then we turn on the field and integrate the
classical Hamilton-Jacobi equations. We find that the
closed contour starts to break up around the 15th opti-
cal cycle, and at the 50th optical cycle the phase-space

distribution is chaotic.
In summary, we found that the p-FGH is a very ef-

ficient method for solving problems involving the con-
tinuum. We examined the stabilization from excited
molecular vibrational states in intense fields. Within the
currently available frequencies, we showed the stabiliza-
tion against dissociation at high laser frequency. In the
harmonic-generation spectra, we find that the appear-
ance of a plateau in the spectra is related to significant
dissociation. The time evolution of the system is shown
by both the CGW density distribution and the corre-
sponding classical trajectories. Further details will be
reported elsewhere.
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